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ABSTRACT A novel distributed model predictive control (DMPC) strategy with time-varying terminal set
for linear constrained systems is presented in this paper. To decrease the load of computation of DMPCwhile
ensuring the global optimization, the nominal system is introduced by treating the influence of neighboring
subsystems as a bounded disturbance. Then, under the distributed control structure, a distributed predictive
control optimization problem containing the nominal state and input can be designed for each subsystem.
Furthermore, different from most DMPC approaches, a novel approach to design a terminal constraint set
that can be updated in every update time based on the predicted state of the system is proposed. Additionally,
the analysis of feasibility and the stability of the proposed DMPC algorithm are described under kinds of
the system constraints. Finally, experimental simulation is shown to prove validity by the control scheme in
this paper.

INDEX TERMS Distributed model predictive control, time-varying terminal constraint set, linear
constrained system.

I. INTRODUCTION
In recent years, model predictive control (MPC) is one of the
advanced control technology in complex industrial fields [1].
Some constraints in the complex industrial system [2]–[4]
can be built in optimization problems through this control
method, and further processed online depend on the MPC
algorithm. Therefore, the appearance of MPC has brought
huge economic benefits to the industrial control field [5]–[7].
Centralized predictive control is one of the model predictive
control methods, which has been widely used in many con-
ventional industrial control systems [8], [9]. The optimization
problem of the entire system needs to be solved by this control
scheme, therefore, the optimal controller and the optimal
system performance can be obtained. If the controller fails,
however, the entire system will not work properly [10], [11].
In addition, the load of online computing is increased by the
huge scale of the system, and the performance of real-time
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is more difficult to guarantee [12], [13]. Later, the decentral-
ized predictive control have been proposed by some research
scholars. In [14], a decentralized model predictive control
scheme with coordinated control is designed, in which the
system structure is consisted by a local MPC controller and a
game-theoretic supervisory controller. A reasonable method
to solve the frequency problem between asynchronous sys-
tems is to adopt decentralized predictive control to simplify
the system model [15]. Recently, Nikou et al. [16] offered
a decentralized model predictive control method that can
deal with the problem of robust navigation of the system to
the working area state when only use local information was
created. In another recent work, for dealing with the coupling
effects between subsystems, a decentralized predictive con-
trol method was presented by Ahandani et al. [17]. In the
decentralized predictive control mentioned above, the calcu-
lation load of the online optimization is reduced. However,
the controllers related to the subsystem will not exchange
information with each other to improve the system perfor-
mance. In this case, distributed predictive control is proposed
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by some researchers [18], [19], which allows communication
information sharing between subsystem controllers, so that
the coupling between subsystems can be fully considered to
make the system performance better. To the best of our knowl-
edge, the online calculation load is still large. Subsequently,
in the DMPC strategy proposed by Rawlings [20], only the
direct coupling effect of the upstream subsystem is consid-
ered, while the indirect coupling effect of other subsystems
is neglected. In another research method, Zhang et al. [21].
have studied a random DMPC by extending deterministic
DMPC. Although the load of calculation is reduced, these
two methods have a certain degree of requirements on the
structure of the system. Additionally, in all the DMPC meth-
ods described above, the local terminal controller respects the
state and control input constraints when operating only in the
terminal constraint set. Therefore, to make the system exist
a better performance, it is essential for a suitable terminal
set to be constructed. Zheng at al. [22], [23] came up with
a DMPC strategy, where the terminal constraint set is a fixed
static ellipsoid set, this is a conservative choice. In [24], [25],
Dunbar et al. have emphasised on a polytopic invariant sets
as terminal constraint set in the process of the DMPC design,
compared with the ellipsoid set, only a little of degree of
conservative is reduced.

Therefore, to reduce the load of online calculations and
the conservative brought by the fixed terminal constraint
set in DMPC, a novel distributed model predictive control
strategy is studied in this paper. Unlike the conventional
approaches [19], each subsystem regards the coupling effect
of neighboring subsystems as its own disturbance, to directly
introduce the nominal system of the corresponding system,
thereby reducing the complexity of the DMPC calculation
process caused by the disturbance. Subsequently, due to the
time-varying terminal constraint set is more practical than
constant terminal constraint set, measures to design such ter-
minal constraint set are provided, together with feasibility and
stability of the closed-loop system. Based on the time-varying
terminal constraint set, the designed novel DMPC algorithm
makes the system have a better performance.

Notations: Real sets are expressed as <n and <m, n × n
-dimensional matrix is signed as <n×n, I1:M is the set of
integers from 1 to M . Given an appropriate positive def-
inite matrix Q, ‖x‖2Q = xTQx. For arbitrary g ⊆ <n,
j ⊆ <n, the Minkowski sum is represented by G ⊕ J =
{g+ j|g ∈ G, j ∈ J}, and G 	 J = {e ∈ <n|e+ J ⊆ G} is
denoted as Pontryagin difference.

II. PROBLEM FORMATION
Consider a linear system [9] that combines all theM subsys-
tems

x(k + 1) = Ax(k)+ Bu(k) (1)

where x(k) ∈ <
n, u(k) ∈ <

m represent state and
control input. System (1) can be divided into M non-
overlapping subsystems, hence the state can be indi-
cated x(k) = (x1(k), · · · , xM (k)), n =

∑M
i=1 ni, where

xi(k) ∈ Xi ⊆ <
ni is expressed as the state of the i-th sub-

system. Under this system framework, the control input u(k)
is also divided into M non-overlapping sub-vectors, shown
by u(k) = (u1(k), · · · , uM (k)). Then, the coefficient matrix
of M subsystems are signed as A11 ∈ <n1×n1 , · · · ,AMM ∈
<
nM×nM ,B11 ∈ <n1×n1 , · · · ,BMM ∈ <nM×nM , which respec-

tively refer to the diagonal block matrix of A and B matrix.
The off-diagonal block matrices Aij and Bij are respectively
defined as the coupling terms between subsystems and the
influence of the control input uj(·) upon the state xi(·).

As for the communication between subsystems, the net-
work topology of all subsystems is indicated as an undirected
graph a = (b, c), where b = {1, . . . ,M} is signed as a set of
subsystems, c ⊆ {(i, j) ∈ b × b|i 6= j} is edge set. Suppose
that set of neighboring of subsystems i is denoted as Ni,
which contains i itself, then |Ni| represents the number of
elements inNi. If the neighbor of subsystem i is subsystems j,
information can be transmitted between them. Hence, the i-th
subsystem [26] is of the form

xi(k + 1) = Aiixi(k)+ Biiui(k)

+

∑
j∈Ni

(Aijxj(k)+ Bijuj(k)) (2)

where xi(k), xj(k) ∈ Xi ⊆ <
ni and ui(k), uj(k) ∈ Ui ⊆ <

mi .
Ui and Xi represent the constraint sets that contain the origin
respectively. Let Wi(k) =

∑
j∈Ni (Aijxj(k)+ Bijuj(k)), U =∏M

i=1Ui ⊆ <
m and X =

∏M
i=1Xi ⊆ <

n, hence the above
subsystem model (2) can be rewritten as

xi(k + 1) = Aiixi(k)+ Biiui(k)+Wi(k) (3)

and the predictive state of the uncertain system related to (3)
at time k is established that

xi(k + t + 1|k)

= Aiixi(k + t|k)+ Biiui(k + t|k)+Wi(k + t|k) (4)

where xi(k + t|k) ∈ Xi, ui(k + t|k) ∈ Ui. Let set Wi(k +
t|k) := Co{

∑
j∈Ni Aijxj(k + t|k)+ Bijuj(k + t|k)|xj(k +

t|k) ∈ Xj,uj(k + t|k) ∈ Uj}, from which it can be known that
Wi(k+ t|k) ∈Wi(k+ t|k). Without considering the influence
of the uncertainty of system (3), the nominal model of i-th
subsystem associated with equation (3) is signed as

zi(k + t + 1) = Aiizi(k + t)+ Biivi(k + t) (5)

where the nominal state and nominal control input are repre-
sented as zi(k + t) and vi(k + t).
By leading into nominal system (5), a better DMPC algo-

rithm will be presented in this article, where a time-varying
terminal set will be constructed to effectively improve sys-
tem performance.The detailed description will be presented
below.

III. CENTRALIZED MODEL PREDICTIVE CONTROL
Before the DMPC strategy, a centralized model predictive
problem is given to facilitate the selection of some parameters
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in the DMPC design scheme. Firstly, the predictive model for
the system (5) is expressed as

zi(k + t + 1|k) = Aiizi(k + t|k)+ Biivi(k + t|k) (6)

where zi(k+ t|k) and vi(k+ t|k) are predictive state and input
of nominal system (6). Additionally, vi(k + t|k) is related to
ui(k + t|k) in (4), the relationship is given by

ui(k + t|k) = vi(k + t|k)+ Ki(xi(k + t|k)− zi(k + t|k)) (7)

where equation (7) is considered as a feedback strategy to
punish the deviation between xi(k + t|k) and zi(k + t|k),
and control gain Ki to guarantee the asymptotic stability is
indicated. Based on the description of (4) and (6), let Li(k +
t|k) = xi(k + t|k)− zi(k + t|k), the following equation holds

Li(k + t + 1|k) = 0Li(k + t|k)+Wi(k + t|k) (8)

where 0 = Aii+BiiKi andLi(k+t|k) ∈ Ei(k+t|k) which is a
set containing the origin. Furthermore, the set Ei(k+ t+1|k)
satisfies Ei(k + t + 1|k) := Wi(k + t|k) ⊕ 0Ei(k + t|k).In
addition, as needed, the following assumption is introduced
Assumption 1([27], [28]): A synchronous update strategy

is adopted in this paper, hence, the assumed state is trans-
mitted between neighboring subsystems, the assumed control
input is expressed as

v̂i(k + t|k + 1) =

{
v∗i (k + t|k), t = 1, . . . ,N − 1
Kiz∗i (k + t|k), t = N

Furthermore, the optimization problem of centralized
model predictive control for the system given by (6) is
obtained by the following form

J∗(k) = min
v(k+t|k)

N−1∑
t=0

‖z(k + t|k)‖2Q+‖v(k + t|k)‖
2
R

+‖z(k + N |k)‖2P
s.t : z(k + t|k) ∈ X	 E(k + t|k)

v(k + t|k) ∈ U	 KE(k + t|k)
z(k + N |k) ∈ Xf

	 E(k + N |k) (9)

where z = [zT1 , . . . , z
T
M ]T and v = [vT1 , . . . , v

T
M ]T are

state and input of the whole nominal system. The terminal
constraint set is selected as Xf

:= {x ∈ <n|�x 6 1},
where the state trajectory starting from Xf will always keep
in Xf and gradually approach the origin [29]. Furthermore,
Xf is a maximum allowable invariant set, which means that
if there exist a control input v = Kz ∈ U 	 KE and state
z ∈ Xf

	E , then (A+BK )z ∈ Xf
	E [30], [31]. Additionally,

X and U are expressed as X := X1 × X2 × . . . × XM and
U := U1 × U2 × . . . × UM . For the positive definite matrix
Q, R, P and the control law K , if there exist z ∈ Xf

	E , such
that the following inequality is satisfied

(A+ BK )TP(A+ BK )−P 6 −Q− KTRK (10)

Let X = P−1 > 0,ϒ = KX , the equation (10) can be
converted as

X ∗ ∗ ∗

AX + Bϒ X ∗ ∗

Q1/2X 0 I ∗

R1/2ϒ 0 0 I

 > 0 (11)

It is worth noting that by solving the linear matrix inequal-
ity (11), K and P are obtained.

In this section, based on the nominal system model (6),
the centralized model predictive control optimization prob-
lem (9) is given. However, in centralized model predictive
control, the fixed polyhedron set is considered as the ter-
minal constraint set, which can bring a certain degree of
conservative. Therefore, a new method of designing terminal
constraint set will be given in the DMPC algorithm.

IV. DISTRIBUTED MODEL PREDICTIVE CONTROL
Anovel DMPC algorithm is designed in this section, in which
a new time-varying terminal set is constructed. Moreover,
the feasibility of the designed algorithm and the stability of
the closed-loop system are described as follows.

A. A NOVEL DMPC DESIGN
In this paper, the states of all subsystems are updated syn-
chronously, the assumed state ẑj(·) and control input v̂j(·)
instead of the actual state and control input are transmitted by
neighbor subsystem. Therefore, based on centralized model
predictive algorithm, the cost function of DMPC with the
predictive horizon N can be described by

J̄ (k) =
∑N−1

t=0
‖zi(k + t|k)‖2Qi + ‖vi(k + t|k)‖

2
Ri

+‖zi(k + N |k)‖2Pi

+

∑
j∈Ni\i

∑N−1

t=0

∥∥ẑj(k + t|k)∥∥2Qi + ∥∥v̂j(k + t|k)∥∥2Ri
+
∥∥ẑj(k + N |k)∥∥2Pi (12)

and then the optimization problem of DMPC is presented as

J̄∗(k) = min
vi(k+t|k)

J̄ (k)

s.t : i ∈ Ni

zi(k + t|k) ∈ Xi 	 Ei(k + t|k)

vi(k + t|k)i ∈ Ui 	 KiEi(k + t|k)

zi(k + N |k) ∈ Xf
i 	 Ei(k + N |k) (13)

where Xi ∈ {0, 1}ni×n, XNi ∈ {0, 1}
ni×n and Ui =

{0, 1}mi×m are the appropriate selection matrices [32], there-
fore, the parameters Qi, Ri, Pi and Ki are calculated by

Q =

M∑
i=1

XTNiQiXNi , R =
M∑
i=1

UiRiUi, P =
M∑
i=1

XTNiPiXNi ,

K =
M∑
i=1

UT
i KiXNi variables zi = Xiz, zNi = XNiz and vi =

Uiv [33].
As can be seen from the foregoing DMPC optimization

problem(13), the predictive model of the system (6) is known,
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however, the terminal constraint set Xf
i is unknown. Since

Xf
i will lead to a large attraction field, hence, it is essential

to design a suitable Xf
i to improve system performance.

To give full play to the advantages of distributed computing,
Xf
i (k) needs to be met (14) while changing the size and

position

Xf
1(k)× Xf

2(k)× · · · × Xf
M (k) ⊂ Xf (14)

where at any time k > 0, Xf
i (k) is defined as

Xf
i (k) := Xf

i (αi(k), βi(k)) = {x|‖x − αi(k)‖∞ 6 βi(k)}

(15)

hence, the design of αi(k) and βi(k) are given by the following
theorem.
Theorem 1:Givenα=(α1, . . . , αM ) andβ = (β1, . . . , βM ).

If there are αi, βi such that the conditions
(16-17) hold, then Xf

i (k) is a set that can be changed as the
update time.

β1 = . . . = βM = σ (α) = min(1−�lα)/‖�l‖1 (16)

α+ = (α1+, α2+, . . . , αM+) ∈ Xf (17)

Proof: Based on [33], suppose that α ∈ Xf , the follow-
ing set can be defined

{x ∈ <n : ‖x − α‖∞ 6 ϑ}.

With vi ∈ {−1, 1}, its vertices are represented as

{α ± ϑvi : i = 1, 2, . . . ,M}.

Therefore, if and only if�(α±ϑvi) 6 1, the set {x ∈ <n :
‖x − α‖∞ 6 ϑ} lies insides Xf . By letting �l is the l-th row
of�, there exist�lvi = ‖�l‖1 for vi. Thus, it can be obtained
that

ϑ 6 (1−�lα)/‖�l‖1.

Then, the maximum value of ϑ is described

σ (α) = min(1−�lα)/‖�l‖1.

Furthermore, it has

{x ∈ <n : ‖x − α‖∞ 6 ϑ} = Xf
1(α1, β1)× Xf

2(α2, β2)

× . . .× Xf
M (αM , βM ).

It implies

β1 = β2 = . . . = βM = σ (α).

where σ (α) is a concave function about α, thus, (16) is
obtained.

Next, assume that there are α, β, and η = (η1, η2, . . . , ηM )
with ηi ∈ Xf

i (αi, βi) are given, since Xf is a invariant set,
hence, let the following equation hold

αi+ =
∑

j∈Ni
(Aij + BijKj)ηj.

Then, it gives

α+ = (α1+, α2+, . . . , αM+) ∈ Xf .

The proof is complete.
For each subsystem i, let ηj(k) = xj(k +N |k), the value of

αi(k + 1) is obtained. Then, βi(k + 1) = σ (α(k + 1)) is given
by (16) in Theorem1. Therefore, the terminal constraint set
Xf
i completed the update at time k + 1.
Based on terminal constraint set Xf

i (k), problem (13) can
be solved. Then, a detailed description about DMPC algo-
rithm is given as below.

Algorithm
Require:Ki and Pi.

Initialization zi(0) and k = 0.
Repeat

(1) : v̂i(k + t|k) and ẑi(k + t|k) are calculated for
t ∈ [0,N − 1] and i ∈ Ni.

(2) : ẑi(k+t|k) is sent to the subsystem j, then ẑj(k+
t|k) is received from subsystem j and send to subsystem i.

(3) :Xf
i (k) is calculated according to (16) and (17).

(4) : The controller solve optimization problem
(13) by receiving measured state zi(k), then implement
vi(k) = v∗i (k|k).

(5) : k = k + 1.

Remark 1: A key difference between a linear system and a
nonlinear system is that the stability of a nonlinear system
is not only related to the structure and parameters of the
system, but also related to the initial conditions of the system.
In addition, nonlinear systemsmay have multiple equilibrium
states. Therefore, to reduce the complexity of system stability
analysis, a new DMPC algorithm suitable for linear systems
is studied in this paper. In future work, applying the proposed
control method to nonlinear systems will be the focus of our
research work.
Remark 2: It is worth noting that each subsystem regards

the interdependence of its neighboring subsystems as a
bounded disturbance of its own dynamics, and its realization
needs to increase the range of information obtained by each
subsystem. Although a little bit of flexibility of the subsystem
is sacrificed by this approach, the corresponding nominal
system can be introduced so that a lot of calculation work is
completed offline, which reduces the computational burden
in the process of DMPC optimization.

B. ANALYSIS OF THE FEASIBILITY AND THE STABILITY
The designmethod of distributed predictive control is given in
the previous subsection. Then the feasibility of the algorithm
and the stability of the closed-loop system will be explained
in this section and the following theorems can be obtained.
Theorem 2: If the initial state zi(0) is feasible for optimiza-

tion problem (13), then it remains feasible throughout the
system evolution.
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Proof: Suppose v∗i (k + t|k), z∗i (k + t|k) are existed for
t ∈ [0,N ], and then it can be obtained together with (4) that

xi(k + t + 1|k + 1)

= Aiixi(k + t|k + 1)+Wi(k + t|k + 1)

+Biiui(k + t|k + 1) (18)

Then, the control input can be held as

ui(k + t|k + 1)

= v∗i (k + t|k)+ Ki(xi(k + t|k + 1)− z∗i (k + t|k)) (19)

Furthermore, the following equation is obtained

xi(k + t + 1|k + 1) = z∗i (k + t + 1|k)+Wi(k + t|k)

+(xi(k + t|k + 1)− z∗i (k + t|k))

×(Aii + BiiKi) (20)

Notice the definition of set Ei(k+ t|k+1), it can be known
after derivation that

xi(k + t + 1|k + 1)− z∗i (k + t + 1|k) ∈ Ei(k + t + 1|k).

Additionally, the result of control input can be shown as

ui(k + t|k + 1)− v∗i (k + t|k) ∈ KiEi(k + t|k).

Hence, it inferred that ui(k + t|k + 1) ∈ Ui and xi(k + t +
1|k + 1) ∈ Xi. Now, consider the state of the nominal system
that

zi(k + t + 1|k + 1)

= Aiizi(k + t|k + 1)+ Biivi(k + t|k + 1) (21)

Let the input of the nominal system be structured as

vi(k + t|k + 1)

= v∗i (k + t|k)+ Ki(zi(k + t|k + 1)− z∗i (k + t|k)) (22)

After derivation with (21) and (22), it has

xi(k + t + 1|k + 1)

= zi(k + t + 1|k + 1)+Wi(k + t|k + 1)

+(Aii + BiiKi)(xi(k + t|k + 1)− zi(k + t|k)) (23)

Therefore, the following relationship is gotten that

xi(k + t + 1|k + 1)

−zi(k + t + 1|k + 1) ∈ Ei(k + t + 1|k + 1).

Since xi(k + t + 1|k + 1) ∈ Xi, thus, zi(k + t + 1|k + 1) ∈
Xi 	 Ei(k + t + 1|k + 1). Furthermore, due to

z∗i (k + t|k) ∈ Xi 	 Ei(k + t|k)

and

zi(k + t|k + 1) ∈ Xi 	 Ei(k + t|k + 1).

We have

zi(k + t|k + 1)−z∗i (k + t|k) ∈ Ei(k + t|k)	 Ei(k + t|k + 1)

Since v∗i (k+ t|k) ∈ Ui	KiEi(k+ t|k), hence, it shows that

vi(k + t|k + 1) ∈ Ui 	 KiEi(k + t|k + 1).

Next, at time t = N − 1, the same as the above derivation,
it has

xi(k + N |k + 1)

= z∗i (k + N |k)+Wi(k + N − 1|k)+ (Aii + BiiKi)

×(xi(k + N − 1|k + 1)− z∗i (k + N |k)) (24)

From which, we have

xi(k + N |k + 1)− z∗i (k + N |k) ∈ Ei(k + N |k).

Due to z∗i (k + N |k) ∈ Xf
i 	 Ei(k + N |k), it holds that

xi(k + N |k + 1) ∈ Xf
i ⊂ Xi

and

ui(k + N − 1|k + 1) ∈ Ui.

For nominal system, it is obvious that

vi(k + N − 1|k + 1) ∈ Ui 	 KiEi(k + N − 1|k + 1).

By reasons of xi(k +N |k + 1) ∈ Xf
i and xi(k +N |k + 1)−

zi(k + N |k + 1) ∈ Ei(k + N |k + 1), it renders that

zi(k + N |k + 1) ∈ Xf
i 	 Ei(k + N |k + 1).

Finally, at time t = N , owing to xi(k + N |k + 1) ∈ Xf
i ,

thus, ui(k +N |k + 1) renders xi(k +N + 1|k + 1) ∈ Xf
i . The

same as above that zi(k + N + 1|k + 1) ∈ Xf
i . It is relevant

that

xi(k + N + 1|k + 1)

−zi(k + N + 1|K + 1) ∈ Ei(k + N + 1|K + 1).

Hence, it shows that

zi(k + N + 1|k + 1) ∈ Xf
i 	 Ei(k + N + 1|k + 1)

and

vi(k + N |k + 1) ∈ Ui 	 KiEi(k + N |k + 1).

The proof is complete.
In the next theorem, the stability of the system will be

proved.
Theorem 3: Suppose that optimization problem (13) is

feasible by implementing v∗i (k|k), after that, whole system is
asymptotically stable.

Proof: For all t ∈ [1,N ] at time k + 1, let the control
input ṽi(k + t|k + 1) = v̂i(k + t|k + 1) is feasible solution
of (13). Furthermore, the obtained cost by feasible solution
and optimal solution are signed as J̃ (k + 1) and J̄∗(k + 1).
Therefore,it has

J̄∗(k + 1)− J̄∗(k) 6 J̃ (k + 1)− J̄∗(k)

VOLUME 9, 2021 119679



J. Zhu et al.: DMPC for Linear Constrained Systems

FIGURE 1. The trajectories of four terminal constraint sets under two different algorithms.

After derivation, we have

J̃ (k + 1)− J̄∗(k)

6
∑
i∈Ni

‖z̃i(k + N + 1|k + 1)‖2Pi + ‖z̃i(k + N |k + 1)‖2Qi

+‖ṽi(k + N |k + 1)‖2Ri −
∥∥z∗i (k + N |k)∥∥2Pi

−
∥∥z∗i (k|k)∥∥2Qi − ∥∥v∗i (k|k)∥∥2Ri

6
∑
i∈Ni

−
∥∥z∗i (k|k)∥∥2Qi − ∥∥v∗i (k|k)∥∥2Ri

6 0

it holds J̄∗(k + 1)− J̄∗(k) 6 0.The proof is complete.
It can be seen from Theorem 2 that zi(k + 1) and vi(k + 1)

satisfy all the constraints (13), thus, problem (13) is feasi-
ble by utilizing the algorithm at any time k > 0. Theo-
rem 3 shows that the cost of the system is decreased at each
update time. If J̄ (0) is a bounded value, according to the
Lyapunov stability theorem, it can be obtained that the cost
of the system is bounded in the entire time domain. Then,
the state of the system asymptotically converge to 0. So far,
the stability of the global system is proved.

V. NUMERICAL EXAMPLE
The system consisting of four subsystems is considered
to confirm the effectiveness of the proposed algorithm,
of which the model parameters are given as Aii =[
1.1 1
0 1.3

]
, Bii = Bij =

[
1
1

]
, Aij =

[
0 0.1
0.2 0.2

]
.

For any subsystem, control input constraint with ui(k) ∈
Ui = {ui(k) ∈ <

m
| − 2.5 6 ui(k) 6 2.5}.

The primary parameters Ki and Pi of the proposed
method are obtained by calculating (11), the calculation
result are K1 =

[
−0.6939 −1.056

]
,K2 =

[
0.7452 1.113

]
K3 =

[
−0.7312 −1.084

]
, K4 =

[
−0.7312 −1.084

]
and

P1 =
[
4.294 0.3814
0.3814 2.267

]
, P2 =

[
8.062 0.8835
0.8835 4.362

]
. P3 =

P4 =
[

6.306 −0.6004
−0.6004 3.340

]
.

At the initial time, assume that the corresponding states
are given as x1(0) =

[
2.794 2.5

]T , x2(0) =
[
2.08 2.2

]T ,
x3(0) =

[
2.194 −2.305

]T , x4(0) = [−2.8 2.5
]T . For i =

1, 2, 3, 4, αi(0) = 0, βi(0) = 0.5 are given for the update
of terminal constraint set. The weights in the cost are chosen
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FIGURE 2. The state trajectories of four subsystems.

FIGURE 3. The control input trajectories of four subsystems.

in the same way of [34] as follows: Qi = I and Ri = 0.01.
The simulation results are diaplyed in Figs.1-5.

The work in the literature [34] use a block-diagonal of P
matrix as terminal constraint set design, for example, the ter-
minal constraint set of i-th subsystem is of the form ξi := {xi :

FIGURE 4. The trajectory of cost of whole system under two algorithms.

FIGURE 5. The trajectory of convergence speed under two algorithms.

‖xi‖2Pi 6 ri}. Then, by calculating the terminal constraint set
under two different algorithms, a larger terminal constraint set
is obtained by comparing with the algorithm in [34], which
will make the system performance better. The comparison
result are appeared in Fig.1.

Figs.2-3 display the control inputs and states of the four
subsystems, it conclude that the control inputs which obtained
by solving optimization problem (13) content the constraint,
and corresponding states of four subsystems from different
locations reach to the origin.

By implementing the algorithm proposed, the optimal con-
trol inputs and optimal states are obtained after solving the
quadratic programming problem (13). Subsequently, the cost
of the whole system can be calculated by (12). Additionally,
the cost of the entire system is also calculated by adopting
algorithm in [34]. Obviously, it can be seen from Fig.4 that
the system cost is reduced faster with the algorithm proposed.
It also implies that the system performance is better under the
algorithm proposed in this paper.

Then, in terms of convergence speed, the offered DMPC
algorithm is compared with algorithm by [34]. Like [35],
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a function S(x) =
∑
‖xi‖2

/
|Ni| is established to picture con-

vergence speed. From Fig.5, we can see that S(x) is reduced
in two algorithms at the same time. While, the S(x) by put
forward DMPC algorithm in this paper converges faster.

VI. CONCLUSION
A fancy DMPC algorithm for linear coupled systems is pro-
posed in this article. The objective function related to the
nominal system is constructed to reduce load of calculation,
which can be achieved by each system treating the influence
of its neighboring systems as a disturbance. Furthermore,
a new design method is proposed for the terminal con-
straint set to make the system performance better. Moreover,
the DMPC optimization problem is solved. Finally, simula-
tion example prove the validity of the DMPC algorithm.

In future research work, event-triggered model predictive
control of nonlinear systems [36], [37] will be the focus of
our study.
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