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ABSTRACT Real-time transient stability assessment (TSA) of power systems based on mining system
dynamic response has been widely considered by scholars. In this regard, extracting the most discriminative
transient features (MDTFs) to achieve high-performance transient stability prediction (TSP) should be
regarded as a fundamental issue in the transient learning strategy. In fact, MDTFs extraction is raised to
make a trade-off between paradoxically intertwined indices, namely the accuracy and processing time of
TSP. To this end, we offer a bi-mode hybrid feature selection scheme called BMHFSS for extracting MDTFs
in high dimensional transient multivariate time series (TMTS). First, we used the TMTS, which are effective
features on TSA. Next, the trajectory-based filter-wrapper mode (TFWM) is applied on TMTS to surmount
the curse of dimensionality in two phases. In the filter phase, statistical and intrinsic characteristics of
the TMTS in the form of agglomerative hierarchical clustering (AHC) are measured, and relevant TMTS
(RTMTS) is selected according to obtained weight. In the wrapper phase, the RTMTS is entered into
the trihedral kernel-based approach, including both fuzzy imperialist competitive algorithm (FICA) and
incremental wrapper subset selection (IWSS) to find the intersected most RTMTS (IMRTMTS). As a
complementary step, the filter-wrapper scenario in point-based mode (PFWM) is conducted for selecting
MDTFs per time series in IMRTMTS. Finally, the aggregated MDTFs (AMDTFs) are tested to verify their
efficacy for TSP based on cross-validation. The results show that the proposed framework has prediction
accuracy greater than 98 % and a processing time of 52.94 milliseconds for TSA.

INDEX TERMS Fuzzy imperialist competitive algorithm (FICA), most discriminative transient features
(MDTFs), support vector machine (SVM), transient stability assessment (TSA).

I. INTRODUCTION
The public vital utilities like water, telecom, natural gas,
transportation, and oil reached conjunction with electric
power. In fact, electricity supply securely and adequately
called grid reliability plays the pivot role to keep the nor-
mal operation in interdependent infrastructure. However,
the power outage raised due to the problem of quality and
resiliency is themain concern for the senior manager at power
energy developments. Hence, changing the power energy
landscape via electricity restructuring is emerged as a neces-
sary paradigm to achieve a reliable power supply. One of the
important aspects of the restructured system is to be equipped
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with the real-time advanced statistic dashboard mounted on a
wide-area monitoring system (WAMS) like phasor measure-
ment units (PMUs). Such a PMU-assisted metering frame-
work makes possible the awareness-based actions by power
system operators (PSOs) via joint synchronization status-
reported (JSSr) of power system components toward power
system stability [1]. One of the significant issues in power
system stability studies is addressing the JSSr of power sys-
tem components under large and sudden disturbance, namely
transient stability assessment (TSA) [2]. Since fast-occurred
dynamic responses at high sampling frequency are the domi-
nant property in transient space, conducting timely ancillary
services accompanied with fast detection of instability is an
essential task [3]. However, such time-oriented transient anal-
ysis (TA) can affect the accuracy of TSA. In fact, finding an
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approach that makes a trade-off between paradoxically inter-
twined indices, namely accuracy and the processing time,
is the most significant concern on TSA. To this end, data
mining (DM) technology has been considered by scholars
as a way out of this challenge. The DM offers the feature
subset selection (FSS) process for compacting the curse of
dimensionality in transient space. In fact, the FSS process
by selecting optimal features against high dimensional tran-
sient space shrouded the mentioned challenge and balanced
the inconsistent indices toward high performance on TSA.
Hence, the feature selection problem (FSP) as a joint study
has been considered by scholars in transient processes in
power systems and machine learning scope. Making the lit-
erature review on the FSP-based TSA studies shows this fact
that the FSS applied by scholars on transient space including
two approaches: 1) information theory/filter-based approach;
for example, in Reference [4], the extended Relief-based
feature selection algorithm called ReliefF finds the most
sensitive features via relevance index for monitoring rotor
fault on induction motors. Also, the minimum-redundancy
andmaximum-relevance (mRMR) applied on features related
to power and angle for large-scale power systems TSA
have been considered in [5], [6]. In Reference [7], the fast
correlation-based filter method (FCBF) to eliminate irrele-
vant features is applied for the total transfer capability cal-
culation considering static security, static voltage stability,
and transient stability. Also, measuring correlations between
variables via partial mutual information (PMI) and Pear-
son correlation coefficient (PCC) has been considered for
selecting key features on TSA in [8], and 2) filter-wrapper
approach; In Reference [9], the optimal features called global
trajectory clusters feature subset (GTCFS) are selected from
the large observations of rotor angle and voltage magnitude
swing curves by the filter-wrapper approach in the form of
the Relief-support vector machine (SVM) scenario for TSP.
Also, a two-stage feature selection method including normal-
ized mutual information (NMI) and binary particle swarm
optimization (BPSO) has been considered to select the final
optimal feature subset for TSP in [10].

Regardless of proposed well-suited solutions against the
FSP in high dimensional transient space; in this paper, design-
ing an inclusive FSS scheme is on the agenda regarding the
following two aspects:

a) In previous studies on FSP-based TSA, selecting opti-
mal features is triggered via point-based data type char-
acteristic of dynamic responses. Regardless of the proper
efficacy of point-oriented FSS, the exploration of the intrin-
sic traits into excursions of transient multivariate time
series (TMTS) is an unvetted issue in the feature selec-
tion mechanism. In fact, ignoring the dynamic behavior
per univariate trajectory-face of TMTS caused to prevent
surviving optimal-blurred features. Hence, the necessity of
regarding the cross-effects of point and trajectory-oriented
behavior of TMTS for selecting the most discriminative
transient features (MDTFs) motivated us to follow this
point.

b) Designing the novel FSS scheme compatible with the
matter raised in terms of (a) aspect is addressed as a challenge
that did not occur in FSP-based TA previous research. In fact,
lack of consideration to the intrinsic characteristics in point
and trajectory-face of transient responses in previous FSP-
based TSA negatively affects the training and testing proce-
dure of classification techniques, which leads to low accuracy
on TSP. In other words, selecting the best-laid feature set is
the necessary concern to achieve high-performance (time and
accuracy) on TSP. This challenge can be solved via conduct-
ing the FSS process in the form of a bi-mode scenario. In fact,
presenting the framework that can consider the point and
trajectory-face of transient response behavior in the feature
selection process cohesively is intended in this paper.

According to what was mentioned above, one of the great-
est challenges faced in TSA is large amounts of instances,
and there are time series features, which consist of the long
sequence with members from ith to jth. Therefore, the FSS
is one of the useful ways of reducing the dimensionality
of TMTS space. In fact, improvement in accuracy rate and
reduction in processing time for TSA by exploiting opti-
mal features are considered in this paper. As can be seen
in Fig. 1, our proposed framework for TSA including three
steps. In the first step, database construction by using power
system component features on the New England-New York
interconnection (NETS-NYPS) grid case is considered in the
form of transient 28-variate time series. Next, we offer a bi-
mode hybrid feature selection scheme (BMHFSS) as the cor-
nerstone of our integrated research program on TSA, which is
consists of two modes: (1) the trajectory-based filter-wrapper
mode (TFWM) and (2) the point-based filter-wrapper mode
(PFWM). The TFWM reducing the high dimensional space
of TMTS in two phases: a) filter phase; information theory
criteria are applied on TMTS via agglomerative hierarchical
clustering (AHC) for selecting relevant TMTS (RTMTS),
and b) in the wrapper phase, the RTMTS is entered into the
trihedral kernel-based approach including both fuzzy imperi-
alist competitive algorithm (FICA) and incremental wrapper
subset selection (IWSS) to find the intersected most RTMTS
(IMRTMTS). As the second mode of BMHFSS, the PFWM
is conducted to select MDTFs per time series in IMRTMTS
called aggregated MDTFs (AMDTFs). In the last step of the
proposed framework, evaluating the efficacy of AMDTFs
for TSA is considered by conducting a cross-validation
technique.

The rest of the paper is organized as follows: we elaborate
the BMHFSS strategy based on the dual-mode in Section 2.
Experimental results of the proposed framework are pre-
sented in Section 3. Finally, the conclusion is presented in
Section 4.

II. BI-MODE HYBRID FEATURE SELECTION
SCHEME (BMHFSS)
A. OVERALL THE TFWM STERATEGY
The TFWM was embedded in BMHFSS for addressing
the behavioral content of transient samples in a trajectory
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FIGURE 1. The proposed framework for TSA based on BMHFSS.

manner. To this end, information theory criteria and
hyperplane-based learning strategy regarding this point were
applied to TMTS for selecting RTMTS. The visual summary
of the TFWM, including filter and wrapper phase, is shown
in Fig. 2. The detailed descriptions of these phases are offered
in the following paragraphs:

1) FILTER PHASE OF TFWM
In this phase, which is independent of the learning algo-
rithm and according to statistical and intrinsic characteris-
tics of the features, the dependency of each feature on the
target class is measured, and the features are sorted accord-
ing to their weight. Then, features with weights more than
a threshold is selected and placed in the selected subset.
Before proceeding to this phase, transient samples are clus-
tered per univariate trajectory of TMTS (UToTMTS) using
agglomerative hierarchical clustering (AHC) [11] to pro-
vide trajectory-based FSS implementation conditions. This
section is considered a preprocessing step for the filter phase.
One of the important issues in AHC clustering is the selec-
tion of suitable distance measurement for the computation
of distances between trajectory-type objects. Historical dis-
tance measurement (e.g., Euclidean, Manhattan) that aligns
the ith point on one trajectory with the ith point on another
will produce a poor similarity in score distance and affect
the learning model in terms of TSA. Dynamic time warp-
ing (DTW) [12] is a method for finding an optimal match
between two given sequences. The DTW has advantages over
the Euclidean distance in the aspect of its elastic and robust
matching; therefore, it is used in forming the distance matrix
of AHC. After the application of the preprocessing step,

relevance, interdependence, and redundancy analysis based
on information theory criteria are considered. In terms of
relevance, symmetric uncertainty (SU) [13] based on mutual
information (MI) and entropy is used to measure the amount
of information shared by two variables as (1):

SUi,c(Fi,C) = 2
MI (Fi;C)

H (Fi)+ H (C)
(1)

where Fi is the feature and C target class. Also, MI (Fi;C)
and H (C) is considered as (2) and (3), respectively:

MI (X;Y ) = H (X )− H (X |Y ) (2)

Let X be a discrete random variable and probability density
function p(x) = Pr{X = x}:

H (X ) = −
∑
x∈X

p(x) log p(x) (3)

In terms of interdependence and redundancy analysis (IR),
redundancy and the interdependent ratio between two fea-
tures are used, which is given as (4):

IR(i, j) = 2
MI (Fi;C|Fj)−MI (Fi;C)

H (Fi)+ H (C)
(4)

where −1 ≤ IR(i, j) ≤ 1.
The detailed description of the filter phase of the TFWM

is considered as the following steps:
Step 1) filter phase of the TFWM contains a preliminary

step for clustering time series data per UToTMTS. To this
end, three different techniques of AHC, namely single- link-
age [14], complete linkage [14], and average linkage [15] are
applied to the TMTS dataset. First, the proximitymatrix (PM)

VOLUME 9, 2021 121089



S. A. Bashiri Mosavi: Extracting Most Discriminative Features on TMTS by BMHFSS for TSP

FIGURE 2. Visual summary of TFWM strategy.

is calculated by DTW:

PM (i, j) = distanceDTW (UToTMTSi,UToTMTSj) (5)

where 1 ≤ i, j ≤ 28 and measure is defined as (6):

distanceDTW (Ap1,B
q
1)

= d(a(p), b(q))+Min

 distanceDTW (Ap−11 ,Bq1)
distanceDTW (Ap−11 ,Bq−11 )
distanceDTW (Ap1,B

q−1
1 )

 (6)

d(·, ·) is the Lp norm, and Ap1 is a sequence with a discrete
index varying between 1 and p. Given the distance matrix
PM, the linkage functions generate a hierarchical cluster tree
returning the linkage information based on method type in a
matrix R[S|C|A] as (7):

[R(S|C|A)]n−1×3 = Linkagefunctions:S|C|A(PM ) (7)

where [R(S|C|A)] is the matrix output by the linkage func-
tion which its size is (n –1)-by-3 matrix, n the numbers of
observations in the TMTS, and (S|C|A) are single, complete
and average functions as clustering approach respectively.

To investigate natural cluster divisions per UToTMTS based
on triple approach, cross-correlation coefficient or cophenetic
correlation (CP) [16] is used as (8):

CP =

∑
i<j

(x(i, j)− x̄) · (t(i, j)− t̄)√∑
i<j

(x(i, j)− x̄)2 ·
∑
i<j

(t(i, j)− t̄)2
(8)

where x(i, j) = |Xi − Xj|, the DTW distance between the
ith and jth observations and t(i, j) is the dendrogrammatic
distance between the model points Ti and Tj. This distance
is the height of the node at which these two points are first
joined together. x̄ is the x(i, j) average, and t̄ is the average
of the t(i, j). In fact, in natural cluster divisions, the linking of
objects in the hierarchical cluster tree has a proper correlation
with the distances between objects in the distance vector. The
cophenetic correlation compares these two sets of values and
calculates their correlation. The closer value to 1 shows the
clustering is quite fit. In fact, after clustering all UToTMTS
based on the triple linkage function, m CPs are obtained
for each AHC technique. Thereafter, the average of CPs is
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considered as the accuracy rate of each AHC technique for
clustering the trajectory data.

Step 2) After the clustering process, in the first step of the
filter phase, the weight per UToTMTS computed using SU
measure (See Equation (1)) represents the degree of impor-
tance of the UToTMTS. By selecting UToTMTS with the
highest SU called UToTMTSh(1), it is situated in the RTMTS
subset as the RTMTS1:

RTMTS1 = UToTMTSh(1) = Max(SU[UToTMTS1:28]) (9)

Step 3) The injection of IR ratio (Equation. (4)) in SU amount
is considered in this step. Based on (4), we have:

SUNew
[UToTMTS1:28−UToTMTSh(1)]

= W (1)
· ∗
(
SU[UToTMTS1:28−UToTMTSh(1)]

)
;

W (1)

= W (0)
·∗IR

(
UToTMTS1:28−UToTMTSh(1),UToTMTSh(1)

)
(10)

where W (0) for initializing the weight per UToTMTS
(28-variate trajectory features) to 1 equally.

Now, UToTMTS2 is selected and added to RTMTS subset:

RTMTS2 = UToTMTSh(2)

= Max(SUNew
[UToTMTS1:28−UToTMTSh(1)]) (11)

Step 4)We repeat this scenario to select the k th member of
RTMTS subset as follow:

SUNew
[UToTMTS1:28−UToTMTSh(1):h(k−1)]

= W (k−1)
· ∗
(
SU[UToTMTS1:28−UToTMTSh(1):h(k−1)]

)
; (12)

W (k−1)

= W (k−2). ∗ IR
(
UToTMTS1:28 − UToTMTSh(1):h(k−1) ,

UToTMTSh(k−1)
)

RTMTSk

= UToTMTSh(k)

= Max(SUNew
[UToTMTS1:28−UToTMTSh(1):h(k−1)]) (13)

After applying the filter phase of TFWM on TMTS,
[RTMTS]n×k×c where n is the number of transient samples,
k number of selected features (called RTMTS1 to RTMTSk),
and c is the number of observed cycles after fault clearing;
entered into the wrapper phase of TFWM equipped with
hyperplane-based learning strategies.

2) WRAPPER PHASE OF TFWM
After completing the two-stage filter phase, selected RTMTS
is entered as input into the wrapper phase. The wrapper
phase is used to cover the shortcoming of the filter phase
in ignoring the accuracy of the classifier. In this phase,
both FICA and IWSS are applied to find the most relevant
TMTS (MRTMTS) subset in the wrapper phase. The IWSS is
one of the hybrid feature selection algorithms for the selection

of the most relevant features [17]. Generally, in hybrid meth-
ods like IWSS, the weighting process is conducted on the
features in the filter phase, and features are sorted according
to their weight. Then, an incremental mechanism is used to
select a subset of features. At first, the selected subset is
empty, and in the first iteration, the feature that has the highest
weight is added to the selected subset. Then, a classifier
is trained based on the selected subset, and classification
accuracy is saved as the best result. In subsequent iterations,
the new features with high weight are added to the selected
subset, and a classifier is trained based on it. If by adding a
new feature, accuracy increased against the preceding subset
accuracy, the feature has remained in the selected subset;
otherwise, this attribute is removed, and the next feature is
added (See Fig. 3).

FIGURE 3. The IWSS algorithm.

The imperialist competitive algorithm (ICA) is one of the
evolutionary techniques for solving optimization problems.
ICA shows convergence and high speeds in comparison with
other evolutionary algorithms (e.g., genetic algorithm (GA),
simulated annealing (SA), etc.) in the presence of a large
number of independent variables [18]. In recent years, more
researchers working on ways to improve ICA and its effi-
ciency in solving optimization problems, but weaknesses
like falling into local optimum points are the main chal-
lenges of this algorithm. The FICA is an improved version of
ICA [19] with higher convergence and speed rate than ICA
and solves the mentioned challenges against optimization
problems. To solve a given optimization problem using FICA,
it can be assumed that there are N countries (or features),
and each country represents the trajectory-face features in
the RTMTS space. Among them, countries with the lowest
cost according to optimization problems are considered impe-
rialist, and the rest are considered colonies. FICA consid-
ers imperialist as a fuzzy set and colonies as a member of
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imperialist communities that are associated with the specific
membership function for each colony [19].

In the following example, the typical iteration of the wrap-
per phase according to Fig. 4 is offered for readers at a glance
for a better understanding of how each step is formalized.
Example: Let us assume an iteration of wrapper phase:
E.1.WRAPPER PHASE; FICA Initialization
E.1.1. Formation of countries (See Fig. 5 (a)): N countries

are created based on selected RTMTS of filter phase by
weighted random selection.

E.1.2. Cost calculation: Cost per country as (14) is calcu-
lated using IWSS:

CountryCosti

= 1− SVMClassification AccuracyIWSSKerneltype(country
i) (14)

where SVM in (14) is a robust classification technique that
maximizes predictive accuracy without overfitting training
data. SVM is originally designed to be a binary classification,
and it follows the principle of structural risk minimization.
SVM employs a separating hyperplane with low structural
risk in the classification of data and is not linearly separable in
feature space. The optimization problem and the constraints
of SVM are defined according to (15):

a∗ = argmin
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyjK (xi, xj)−
l∑

k=1

αk ;

0 ≤ αi ≤ C,
l∑
j=1

αiyi = 0, i, j = 1, . . . , l (15)

whereK (xi, xj) for projecting TMTS space to a higher dimen-
sion space. The optimal separating hyperplane in feature
space is determined by solving (16):

f (x) = sgn

(∑
i∈s

αiyiK (xi, x)+ b

)
;

b =
1
s

∑
i∈s

yi −∑
j

αjyjK (xj, xi)

 (16)

For calculating CountryCosti in (14), the accuracy index is
used for the evaluation of classifier performance as (17):

Acc =
True Positive (TP)+ True Negative (TN )

TP+TN+False Positive (FP)+False Negative (FN )
(17)

where Positive: identified stable sample, Negative: identified
unstable sample, TP: correctly identified stable sample, TN:
correctly identified unstable sample, FP: incorrectly identi-
fied stable sample, and FN: incorrectly identified unstable
sample.

E.2. WRAPPER PHASE; FICA main body
(e.g., ith iteration)

E.2.1. Determination of imperialists and colonies
((See Fig. 5 (b)): Countries are sorted based on country
cost, then by defining threshold parameter countries with low

cost are selected as imperialist (green-face), and the rest are
considered as a colony (blue-face).

E.2.2. Construction of membership matrix
((See Fig. 5 (c)): In FICA, each colony belongs to each
imperialist according to a membership function.

E.2.3. Absorption phase ((See Fig. 5 (d)): After calculat-
ing the membership degree of each colony per imperialist,
colonies must move towards the position of imperialists. The
higher degree of colonymembership caused the jth imperialist
to have more impact on the colony movement. The number
of features that should be transferred from all imperialists
to colony i are computed according to the absorption phase
equations. Fig. 5 (e) shows features per colony after imple-
mentation of the absorption phase.

E.2.4. Revolution phase: To implement the revolution
phase, all countries (colony and imperialist countries) are
sorted according to their cost. Then, a percentage of high-
cost countries are discarded, and new countries are created
(See E.1.1). Then, new countries are substituted with the
removed countries.

According to the designed strategy in the wrapper phase,
MRTMTS is selected based on the FICA-IWSS mechanism
accompanied by the SVM classifier. An important point to
note is that the SVM in FICA-IWSS used for cost calculation
per country has an important embedded component, namely
kernel type (See Equation (14)) that impacts the performance
of SVM, which itself affect the TFWM capacity for selecting
the MRTMTS (transitive relation). In fact, the choice of the
efficient kernel function caused to constructs an optimal sep-
arating hyperplane against the TMTS space. Hence, we con-
sider three efficient kernels plugged into SVM to feed the
FICA-IWSS for selecting MRTMTS as follows:

(a) Standard Gaussian radial basis function (GRBF) [20]:
GRBF kernel as K (x, x ′) in (15) is defined as (18):

K (x, x ′) = exp
(
−
||x − x ′||2

2σ 2

)
(18)

where ||x − x ′||2 is squared Euclidean distance between the
two time series feature.

(b) DTW in Gaussian RBF kernel (DTW-GRBF ker-
nel) [21]: Since the DTW outperforms Euclidean distance in
most cases because its matching is elastic and robust, it is
tempting to substitute DTW distance for Euclidean distance
in theGaussianRBF kernel and plug it into SVM for sequence
classification. Hence, the DTW-GRBF kernel as K (x, x ′) in
(15) is defined as (19):

K (x, x ′) = exp

(
−

[
distanceDTW (Ap1,B

q
1)
]

2σ 2

2)
(19)

where;

distanceDTW (Ap1,B
q
1)

= d(a(p), b(q))+Min

 distanceDTW (Ap−11 ,Bq1)
distanceDTW (Ap−11 ,Bq−11 )
distanceDTW (Ap1,B

q−1
1 )


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FIGURE 4. Pseudocode of wrapper phase (FICA-IWSS) embedded to TFWM.
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FIGURE 4. (Continued.) Pseudocode of wrapper phase (FICA-IWSS) embedded to TFWM.

(c) Recursive time warp kernel, called RTWK [22]: The
positive definite recursive elastic kernels outperform the dis-
tance substituting kernels for the classical elastic distances.
A function 〈·, ·〉 : U × U → R is called a recursive time
warp kernel (RTWK) if, for any pair of sequences Ap1,B

q
1

there exists a function f : R → R such that the following

recursive equation is satisfied:

〈
Ap1,B

q
1

〉
=

∑

〈
Ap−11 ,Bq1

〉
f (0(A(p)→ 3))〈

Ap−11 ,Bq−11

〉
f (0(A(p)→ B(q)))〈

Ap1,B
q−1
1

〉
f (3→ B(q))

(20)
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FIGURE 5. The wrapper phase (FICA-IWSS) of TFWM in i th iteration.

FIGURE 6. Visual summary of PFWM strategy.

Let U be the set of finite sequences (sequences or time
series); U = {Ap1|p ∈ N}. Ap1 is a sequence with a discrete
index varying between 1 and p. Also, 0(h) is the cost function
for edit operation.

According to what was mentioned above, we confronted
the trihedral wrapper phase based on triple kernels for
conducting wrapper phase (trihedral FICA-IWSS) of the
TFWM. In fact, three categories ofMRTMTS based on kernel
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FIGURE 7. Single line diagram of NETS-NYPS grid case.

substitution in FICA-IWSS are obtained which is called
MRTMTSGRBF, MRTMTSDTW−GRBF, and MRTMTSRTWK

(See Fig. 2). Hence, the intersection of obtained results in
three categories was considered as intersected MRTMTS.
Finally, by performing the wrapper phase of the TFWMbased
on RTMTS, the obtained IMRTMTS are entered into the
PFWM.

B. OVERALL THE PFWM STRATEGY
As the complementary mode of the proposed BMHFSS,
the obtained IMRTMTS (obtained from the TFWM strategy)
as input is fed to the PFWM strategy. In fact, for selecting
MDTFs, the point-based filter-wrapper strategy is applied per
trajectory of IMRTMTS individually. Finally, after obtaining
MDTFs for each trajectory of IMRTMTS, the aggregated
MDTFs (AMDTFs) are selected as final optimum features.
The graphical abstract of the PFWM strategy is shown
in Fig. 6. As can be seen in Fig. 6, the filter and wrapper
phases are applied on each trajectory-face member of the
IMRTMTS subset, and MDTFs per trajectory are selected.
Finally, by aggregating the trajectory-specific MDTFs, the
AMDTFs are obtained as final survived features. We elab-
orated on the PFWM strategy in the following steps:

After conducting TFWM strategy, we have:

IMRTMTS t = {UToTMTS1,UToTMTS2, . . . ,UToTMTS t }

(21)

The following steps are conducted for each UToTMTS of
IMRTMTS subset. For ithUToTMTS, we have:
Step 1) The weight per point-feature (PF) of UToTMTS i

computed using SU measure (See Equation (1)) represents
the degree of importance of the PF of UToTMTS i. By select-
ing PF with the highest SU called PFh(1), it is situated in the
preliminary MDTFs subset of UToTMTS i as the pMDTFs.

UToTMTSPF
h(1)

i = Max
(
SU

[UToTMTSPF
1:s

i ]

)
;

(1 ≤ i ≤ t), s number of point-feature inUToTMTS i

(22)

TABLE 1. Transient multivariate time series features (28-variate).
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So now we have one point-feature in the preliminary
MDTFs subset of UToTMTS i;

UToTMTS{pMDTFs}
len:1#

i ← {UToTMTSPF
h(1)

i }; len = length.

Step 2) The injection of IR ratio (4) in SU amount is
considered in this step. Based on (4), we have:

SUNew
[UToTMTSPF

1:s
i −UToTMTSPF

h(1)
i ]

= W (1)
· ∗

(
SU

[UToTMTSPF
1:s

i −UToTMTSPF
h(1)

i ]

)
;

W (1)

= W (0). ∗ IR
(
UToTMTSPF

1:s

i − UToTMTSPF
h(1)

i ,

UToTMTSPF
h(1)

i

)
(23)

Now, the second point-feature with high value is selected
and added to preliminary MDTFs subset of UToTMTS i:

UToTMTSPF
h(2)

i = Max
(
SUNew

[UToTMTSPF
1:s

i −UToTMTSPF
h(1)

i

)
(24)

So far we have two point-feature in the preliminaryMDTFs
subset of UToTMTS i;

UToTMTS{pMDTFs}
len:2#

i ← {UToTMTSPF
h(1)

i ,UToTMTSPF
h(2)

i }

Step 3)We repeat this scenario to select the r th member of
preliminary MDTFs subset of UToTMTS i as follow:

SUNew
[UToTMTSPF

1:s
i −UToTMTSPF

h(1):h(r−1)
i ]

= W (r−1)
· ∗

(
SU

[UToTMTSPF
1:s

i −UToTMTSPF
h(1):h(r−1)

i ]

)
;

W (r−1)

= W (r−2)
· ∗IR

(
UToTMTSPF

1:s

i − UToTMTSPF
h(1):h(r−1)

i ,

UToTMTSPF
h(r−1)

i

)
(25)

UToTMTSPF
h(r)

i

= Max
(
SUNew

[UToTMTSPF
1:s

i −UToTMTSPF
h(1):h(r−1)

i

)
(26)

Here we have r point-feature in the preliminary MDTFs
subset of UToTMTS i:

UToTMTS{pMDTFs}
len:r#

i

← {UToTMTSPF
h(1)

i ,UToTMTSPF
h(2)

i , . . . ,UToTMTSPF
h(r)

i }

Step 4) After obtaining UToTMTS{pMDTFs}
len:1#

i ,

UToTMTS{pMDTFs}
len:2#

i , UToTMTS{pMDTFs}
len:3#

i , . . . ,

UToTMTS{pMDTFs}
len:r#

i ; each point-feature package ({1#},
{2#} to {r#}) belongs to UToTMTS i are fed to GRBF-
SVM for measuring performance of them. Next, the high-
performance point-feature (PF) package among packages are
selected in the form ofMDTFs perUToTMTS i as (27), shown
at the bottom of the next page.

FIGURE 8. Dynamic contingency simulation recording workflow.

In Eq. (27), the matrix Z contains the obtained accuracy
grouped by selected p MDTFs with different lengths ({1#},
{2#} to {r#} belongs to UToTMTS i. In fact, by applying
pMDTFs with length of {1#}, {2#} to {r#} (selected after
conducting filter phase of PFWM) to SVM-GRBF (wrapper
phase of PFWM), the prediction accuracy of pMDTFs with
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length ({1#}, {2#} to {r#}) are obtained. Finally, according
to (27), the pMDTFs with length x which is caused to high
prediction accuracy are selected as MDTFs of UToTMTS i.
In the final step of the PFWM strategy, the obtained

MDTFs per UToTMTS i are gathered and AMDTFs is
obtained as (28). The size of the 2-dimension AMDTFs
matrix is [AMDTFs]n×PF where n is the number of transient
samples, and TPF (total PF) is the selected total MDTFs
of UToTMTS1:t [selected cycles of F1+ selected cycles of
F2 + . . .+ selected cycles of Ft].

[AMDTFs]n×TPF =



MDTFsUToTMTS1
{pMDTFs}len:x#

∪

MDTFsUToTMTS2
{pMDTFs}len:x#

∪

...

∪

MDTFsUToTMTSt
{pMDTFs}len:x#


(28)

III. EXPERIMENTAL DESIGN
A. TRANSIENT DATASET CONSTRCUTION
In this paper, transient data required to exert all scenarios
embedded in the proposed framework (See Fig. 1) is gen-
erated through coupling Python code and SIEMENS power
system simulator for engineering (PSS/E) planning tools.
SIEMENS PSS/E is a powerful network analysis tool, and
Python technology has powerful data processing modules.
Hence, interlacing python into PSS/E leading to results in
high reliability for dynamic simulation [23]. In this section,
contingencies that are generated using the PSS/E applica-
tion program interface (API) routine are substation outages,
generator outages, line outages, and random combinations of
generator and line outages. Also, time parameters of dynamic
simulation, including fault duration time (0.23 second (s))
and fault clearing time (after the end of fault duration time)
regarded at 0.0167 s time step. For each transient sample,
4 cycles (0.0668 s) per univariate time series are observed
after fault clearing time for required analysis in the proposed
framework. Furthermore, different load characteristics are
considered in generating dynamic responses of the test sys-
tems. This parameter is used to convert the constant MVA
load for a specified grouping of network loads to a specified
mixture of the constant MVA, constant current, and constant
admittance load characteristics. The test system used in this

FIGURE 9. The transient samples stability status based on monitoring F6
excursions: stable and unstable samples.

paper is the 68-Bus New England-New York Interconnection
(NETS-NYPS) system (See Fig. 7) [24]. In all, 800 sim-
ulation transient samples were generated based on defined
28-variate trajectory features [25]–[27] (See Table 1) for
existing processes in our study. As a concise report of tran-
sient sample recording workflow, according to Fig. 8, after
implementing the Python code to save the channel activity
behavior of the desired attributes (e.g., voltage, active power,
and so on), the PSSPLT module is employed to put the data
into a common file format (e.g., text file) (See level 2 of
Fig. 8). When all contingency samples of the test systems
are obtained, the data file is sent to the feature calculation
module in MATLAB to extract the desired features (See level
4 of Fig. 8). For example, Fig. 9 shows the Max[busvoltage]
variations (F6 univariate of 28-variate time series in Table 1)
for stable and unstable samples of the NETS-NYPS grid case.

MDTFsUToTMTSi
{pMDTFS}len:x#

= {pMDTFs}len:x#
[
MaxAccx# (Z )

]

Z =


Acc1# = SVMClassifierKernel:GRBF (UToTMTS{pMDTFs}

len:1#

i )

Acc2# = SVMClassifierKernel:GRBF (UToTMTS{pMDTFs}
len:2#

i )
...

Accr# = SVMClassifierKernel:GRBF (UToTMTS{pMDTFs}
len:r#

i )

 (27)
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FIGURE 10. The hierarchical cluster tree of F12 based on the complete linkage function.

FIGURE 11. The CP rate per linkage function.

B. OBTAINED RESULTS BASED ON BMHFSS
1) TFWM STRATEGY RESULTS
a: FILTER PHASE OF TFWM
According to what was mentioned in Step 1 of Section 2.1,
the calculated proximity matrix via DTW (Eqs. (5), (6)) for
TMTS is entered into linkage functions to generate a hier-
archical cluster tree per UToTMTS (Eq. (7)). For example,
the hierarchical cluster tree of F12 UToTMTS (See Table 1)
based on the complete linkage method is shown in Fig. 10.

After clustering 28 UToTMTS based on triple AHC
techniques (single, complete and average linkage), linkage
function-specific 28 CPs are obtained based on Eq. (8).
Fig. 11 shows the mean of 28 CPs (accuracy rate) in clus-
tering solution per AHC technique which the average linkage
outperforms the other two linkage functions in clustering the
trajectory data. Hence, In the continuation of the TFWM
strategy, we will use the results obtained from this approach.
After conducting the preprocessing step based on the average
linkage method, we first ranked the 28 UToTMTS based on
the SU measure (See Eqs. (1) to (3)). Fig. 12 shows the

FIGURE 12. Weights of 28 trajectory features obtained by SU measure;
RTMTS1 = F10.

SU amount of 28 trajectory features. Thereafter, we follow
Steps 2 to 4 of TFWM’s filter phase by using Eqs. (9)
to (13). Based on Step 2, UToTMTS with the highest SU
called UToTMTSh(1) is situated in the RTMTS subset as the
RTMTS1(See Eq. (9)). As can be seen in Fig. 12, F10 has a
highest SU among other trajectory features. Hence, F10 is
considered as the RTMTS1. Next, by considering Eqs. (10)
to (13), k-1 other RTMTS are selected according to the
obtained results of Figure 13. By performing the filter phase
of TFWM, 22 RTMTS of the 28 initial trajectory features
including F1: F11, F14, F15, F16, F18: F22, F24, F26, and F27
are selected. Figure 13 shows the weights of the features and
selected feature (point explosion in 3-D pie) in each filter
phase execution. In fact, each 3-D pie in Fig. 13 shows how
k-1 RTMTS is selected by conducting the TFWMfilter phase.
For example, after selecting UToTMTS with the highest SU,
called RTMTS1 = F10 based on Eq. (9), F10 was removed
from the feature set with 28 members (a green-face legend
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FIGURE 13. Selecting RTMTS subset based on filter phase of TFWM strategy.
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FIGURE 13. (Continued.) Selecting RTMTS subset based on filter phase of TFWM strategy.

VOLUME 9, 2021 121101



S. A. Bashiri Mosavi: Extracting Most Discriminative Features on TMTS by BMHFSS for TSP

FIGURE 13. (Continued.) Selecting RTMTS subset based on filter phase of TFWM strategy.
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FIGURE 13. (Continued.) Selecting RTMTS subset based on filter phase of TFWM strategy.

in Fig. 12). Next, by considering the Eq. (10), the IR value
(refer to Eq. (4)) of the remaining features (27 features minus
F10) in the presence of F10 was calculated and then multiplied
to W(0) (W(0) represents the initial weight of the features
which is equal to 1). In this way, the newweight of 27 features
called W (1) is obtained. Then, W (1) is multiplied by the SU
value of 27 features, and thereafter each feature has the new
value called SUNew. Now, according to Eq. (11), the feature
with the highest SUNew is selected as RTMTS2 (namely F14;
point explosion in the top-left corner 3-D pie of the first 3-D
package of Fig. 13). For selecting k-2 RTMTS, this process
continues as Eqs. (12) and (13).

b: WRAPPER PHASE OF TFWM
After conducting the filter phase of TFWM, the RTMTS
subset (22-variate transient time series features) is entered
into the wrapper phase of TFWM mounted on a trihe-
dral kernel-based approach including, FICA-IWSS sce-
nario to find IMRTMTS (See second subsection of
Section 2.1 including Fig. 4 and example of an itera-
tion of the wrapper phase). In fact, the wrapper phase
of TFWM based on the FICA-IWSS scenario is exerted
three times in the presence of the triple kernel (Eq. (18)
to Eq. (20): GRBF, DTW-GRBF, and RTWK) for learning

TABLE 2. Selecting IMRTMTS based on FICA-IWSS accompanied with
triple kernel.

procedures in this phase. Consequently, the kernel-specific
MRTMTS involved selected trajectory features in the form of
MRTMTSGRBF, MRTMTSGRBF−DTW, and MRTMTSRTWK

are obtained. Thereafter, the intersection of MRTMTSGRBF,
MRTMTSGRBF−DTW, andMRTMTSRTWK called IMRTMTS
is selected as the optimal trajectory features subset in the
wrapper phase of TFWM. According to what was men-
tioned in the wrapper phase of TFWM, the results involved
MRTMTS grouped by kernels and IMRTMTS are shown
in Table 2. Formore clarity on details of the obtained results in
the wrapper phase, how selecting MRTMTSDTW−GRBF (F2,
F10, F14, F22) via FICA-IWSS based on DTW-GRBF kernel
conducted in two iterations are shown in Fig. 14 and Fig. 15.
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FIGURE 14. The obtained results by applying FICA-IWSS based on DTW-GRBF kernel in the first iteration.
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FIGURE 15. The obtained results by applying FICA-IWSS based on DTW-GRBF kernel in the second iteration.

To help the reader better understating, the obtained results per
step of the wrapper phase are explained in a detailed manner.
In the first iteration of FICA-IWSS based on DTW-GRBF
kernel (See Fig. 14), five countries (part (a) of Fig. 14)
contain 8 features (feature assigned per country based on
probability score of 22-variate RTMTS; lines 1-9 of Fig. 4)
are obtained. Then, based on the cost factor (Refer to lines
10-19 of Fig. 4), the cost per country was calculated, and

the countries were divided into imperialists (low cost) and
colonies (high cost) (part (b) of Fig. 14; e.g., two counties
with index 2 and 3 is selected as imperialists and rest (index
1, 4, and 5) is considered as colonies). In part (c) of Fig. 14,
the membership degree of each colony per imperialists was
calculated according to membership function (lines 20-22 of
Fig. 4). Thereafter, the number of features that should be
transformed from all imperialists to colonies with index 1,
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4, and 5 according to absorption phase (See part (d) and (e);
e.g., one feature from imperialist with index 2 should be
transformed to the colony with index 4; namely F14). After
conducting the absorption phase for all colonies, a new cost
per colony based on (e) part and IWSS scenario is calculated.
Next, according to the revolution phase (See part (g) of
Fig. 14), all countries are sorted, and two high-cost countries
are discarded (the second row of the part (g) of Fig. 14;
countries with index 3 and 5 highlighted by red-face) and
new countries are substituted with them (the third and fourth
row in part (g) of Fig. 14). In the final step of the first
iteration, the cost of new countries was calculated (the fifth
row of the part (g) of Fig. 14). Also, these steps are continued
for the second iteration of FICAIWSS based on DTW-GRBF
which is results are shown in Fig. 15. Furthermore, for
selecting MRTMTSGRBF and MRTMTSRTWK, the defined
scenario in the wrapper phase regarding the other kernels
(GRBF and RTWK) for FICAIWSS was followed according
to Fig. 4.

2) PFWM STRATEGY RESULTS
After selecting optimal transient trajectory features based on
the TFWM strategy in the form of the IMRTMTS subset,
namely F2, F10, and F14, we conducted the PFWM strategy,
including filter and wrapper phase per element of IMRTMTS
subset separately for selectingMDTFs. Hence, in this section,
we elaborated on the obtained results of exerting the PFWM
strategy in the following paragraphs.

a: FILTER PHASE OF PFWM
According to what was mentioned in Section 2.2, first,
we conducted the filter phase for selecting preliminary
MDTFs-specific per UToTMTS of IMRTMTS subset in
the form of the point-feature package {UToTMTSPF

h(1)

i , . . . ,

UToTMTSPF
h(r)

i } according to Eq. (22) to Eq. (26) (See
Section 2.2; Step 1 to Step 3). We set r = 3 as length of point-
feature package ({1#}, {2#}, and {3#}) in the preliminary

FIGURE 16. Selecting pMDTFs of F2(Cycle1).

FIGURE 17. Selecting pMDTFs of F2 (Cycle2).

FIGURE 18. Selecting pMDTFs of F2 (Cycle3).

MDTFs subset per UToTMTS i. Given that each UToTMTS
of IMRTMTS has 4 PF (4 cycles observed after fault clear-
ing time), for example, after conducting filter phase on
UToTMTS F2, we selected preliminary MDTFs (pMDTFs)
for F2 as follow (Fig. 16 to Fig. 18):

UToTMTSPF
h(1)

F2 = cycle1

UToTMTS{pMDTFs}
len:1#

F2
← UToTMTSPF

h(1)

F2 (29)

UToTMTSPF
h(2)

F2 = cycle2

UToTMTS{pMDTFs}
len:2#

F2
← {UToTMTSPF

h(1)

F2 ,

UToTMTSPF
h(2)

F2 } (30)

UToTMTSPF
h(3)

F2 = cycle3

UToTMTS{pMDTFs}
len:3#

F2
← {UToTMTSPF

h(1)

F2 ,UToTMTSPF
h(2)

F2 ,

UToTMTSPF
h(3)

F2 } (31)

Also, pMDTFs for UToTMTSF10 andUToTMTSF14 were
obtained according to Table 3.
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TABLE 3. Selecting point-feature package of F10 and F14.

TABLE 4. Selecting high performance point-feature package of F2, F10
and F14.

TABLE 5. The performance metrics.

b: WRAPPER PHASE OF PFWM
After finding optimal cycles of F2, F10, and F14 in the form
of triple point-feature package, each point-feature package
({1#}, {2#}, and {3#}) belongs to UToTMTS i are fed to
GRBF-SVM for selecting high-performance point-feature
package as the MDTFs for UToTMTS i according to Eq. (27)
(See Section 2.2; Step 4). As can be seen in Table 4,
UToTMTS{pMDTFs}

len:3#
for F2, F10, and F14 has a high per-

formance based on the learning model applied in the wrapper
phase of the PFWM strategy.

Finally, the obtained MDTFs per UToTMTS i are gathered
and AMDTFS (total point-feature: #9) is obtained according

to Eq. (28):

TPF :#9
AMDTFs =



MDTFs
UToTMTSF2
{cycle1,cycle2,cycle3}len:3#

∪

MDTFs
UToTMTSF10
{cycle1,cycle2,cycle3}len:3#

∪

MDTFs
UToTMTSF14
{cycle1,cycle2,cycle3}len:3#


(32)

C. TSP BASED ON AMDTFS
After selecting AMDTFs based on BMHFSS, assessing the
efficacy of AMDTFs for TSP was considered in this section.
To this end, the 10-fold cross-validation technique based
on the GRBF-SVM classifier was applied on transient sam-
ples of the NETS-NYPS grid case. Also, triple metrics (See
Table 5) per folds (10-fold training and testing sets) were
considered via fine-tuning onC and σ to find optimal pairs on
GRBF-SVM. These parameters in GRBF-SVM are selected
from {C = 2i|i = 0, 1, . . . , 15} and {σ = 2j|j =
−5,−4, . . . , 15}. Based on the learning scenario, the max-
imum value of the Acc index per fold is shown in Table 6
(Fig. 19 shows the GRBF-SVM accuracy variations based
on fine-tuning (C, σ ) in some folds.). Also, according to
obtained Acc per folds, TPR and TNR are calculated for more
analysis on the performance capacity of AMDTFs on TSP.
Finally, the average of triple metrics (Acc, TPR, TNR) in folds
are calculated (underline-face in Table 6). As can be seen
in Table 6, the classification accuracy of GRBF-SVM based
on AMDTFs shows the high-performance capacity for TSP
(Acc: 98.25 %, TPR: 97.75 %, and TNR: 98.75 %).

Besides the importance of prediction accuracy on TSA,
the low processing time for timely corrective control action
(<1 s) [3] is the most significant issue. By consider-
ing on transient simulation parameters setting discussed in
Section 3.1, 4 cycles after fault clearing time are selected per
trajectory features for conducting the proposed FSS scheme.
By applying BMHFSS, selected AMDTFs via IMRTMTS
does not exceed 3 cycles. Hence, only 3 cycles after fault
clearing time are regarded as observation window (50.1 mil-
liseconds (ms)). In addition to the observation window time,
the prediction time based on the learning scenario should be

TABLE 6. Results of TSP based on AMDTFs.
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FIGURE 19. Illustration of GRBF-SVM performance variations (Acc metric) for TSP based on learning parameters in
some folds.

TABLE 7. Processing time for TSP based on AMDTFs.

calculated. Based on GRBF-SVM and AMDTFs, the predic-
tion time is 2.848 ms. Consequently, the processing time is
52.948 ms which provides a very acceptable time to take
corrective action (See Table 7).

D. COMPARISON OF EXPERIMENTAL METHODS:
BMHFSS vs. OTHER RELIABLE FSS SCHEMES
Comparing the performance of BMHFSS with other reli-
able FSS schemes for TSA is considered in this section.
Hence, we focused on the three reliable FSS (3RFSS)

TABLE 8. The obtained optimal cycles based on other FSS schemes.

strategies, including minimum redundancy maximum rel-
evance (mRMR), ReliefF, and fast correlation-based filter
(FCBF)methodswhich are considered by scholars for finding
optimal transient features [4], [5], [7]. First, 3RFSS were
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TABLE 9. Results of TSP based on selected optimal cycles by 3RFSS schemes.

exerted on 28-variate trajectory features (See Table 1) for
selecting optimal PFs. Next, the obtained optimal cycles by
3RFSS fed to GRBF-SVM classifier for performance evalua-
tion on TSP. After applying 3RFSS on 28-variate time series
features, the obtained optimal cycles grouped by 3RFSS
were obtained according to Table 8 (the optimal cycles of
the proposed method are given in Table 4). According to
obtained results (See Table 9), regarding the same learning
scenario, our strategy outperformed 3RFSS approaches based
on the triple metric (ignoring only 0.25% less than TNR
than ReliefF and FCBF). The obtained results of Table 4 and
Table 8 show that BMHFSS in the presence of 9-cycles of
3-variate trajectory has better performance (Acc, TPR, and
TNR) than mRMR, which uses 9-cycle of 4-variate trajectory
features. In the case of the FCBF and ReliefF methods, which
have an equal number of extracted trajectory features with
our method, the selected cycles of 3-variate trajectory feature
via BMHFSS leading to high Acc and TPR than FCBF and
ReliefF schemes. Also, based on a three-cycle observation
window, BMHFSS has low processing time (52.948 ms) than
3RFSS (mRMR: 68.793 ms, FCBF: 68.930 ms, and ReliefF:

TABLE 10. Processing time for TSP-based 3RFSS schemes.

68.910 ms), which uses a four-cycle observation window for
TSP (See Table 8). For more details on the processing time
of BMHFSS and 3RFSS, refer to Table 7 and Table 9.

IV. CONCLUSION
In this paper, we proposed a feature selection scheme
to compact the curse of dimensionality institutionalized
over power system transient data. Given the necessity of
focusing on transient data characteristics from two aspects
(point and trajectory-based transient behaviors), the bi-mode
hybrid feature selection scheme (BMHFSS) is considered for
addressing this concern in the form of point-specific mode
and the trajectory-specific mode. After the data gathering
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process, the trajectory-oriented filter-wrappermode (TFWM)
is applied on transient multivariate time series (TMTS) in
two phases. In the filter phase, information theory con-
cepts based on triple criteria are considered for weighting
the transient trajectories. By selecting high-weight univari-
ate trajectories of TMTS called relevant TMTS (RTMTS),
RTMTS entered to wrapper phase, including both fuzzy
imperialist competitive algorithm (FICA) and incremental
wrapper subset selection (IWSS) in the form of the tri-
hedral kernel-based approach to find the intersected most
RTMTS (IMRTMTS). Next, the filter-wrapper scenario in
point-based mode (PFWM) is conducted for selecting the
most discriminative transient features (MDTFs) per time
series in IMRTMTS. Finally, aggregated MDTFs (AMDTFs)
are tested to verify their efficacy for TSP based on the
cross-validation technique. The obtained results show that the
selected AMDTFs based on the proposed framework have
a high-performance capacity (Acc greater than 98 %, TPR
97.75 %, TNR 98.75 %), and a processing time of 52.948 ms)
for TSP. Also, for more clarity, we justify the effectiveness
of the proposed method by comparing it with the other reli-
able FSS schemes. According to the obtained results based
on triple metrics and applying the same learning conditions
for all FSS schemes, using AMDTFs survived by BMHFSS
compared to selected optimal features by mRMR, ReliefF,
and FCBF algorithms lead to high performance on TSP.
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