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ABSTRACT Photovoltaic (PV) output power is significantly random and fluctuating due to its sensitivity
to meteorological factors, making PV power forecasting a big challenge. Accurate short-term PV power
forecasting plays a crucial role for the stable operation and maintenance management of PV systems.
To achieve this target, the paper proposes a novel Spatial-Temporal Genetic-based Attention Networks
(STGANet), which consists of a spatial-temporal module (STM) and a genetic-based attention module
(GAM). STM serves to predict the missing solar irradiance to support the generation forecast, and contains
a graph convolutional neural network to learn the spatial and temporal dependencies between historical
meteorological data, while using dilated convolution as the non-linear part to simplify the network structure.
The GAM efficiently explores for potential relationships in input features with attentional mechanism and
uses genetic-based operation and LSTM which takes forecasting error as reference to find global optimal
solutions and to avoid getting trapped in local optimal solutions. The model is verified through comparative
experiment with several benchmark models using a real-world historical meteorological dataset and a power
generation dataset of PV plants in southeastern China. The results have illustrated that the proposed model
can provide better prediction performance in PV systems.

INDEX TERMS Photovoltaic output power forecasting, long short term memory model, attention
mechanism, genetic algorithm.

I. INTRODUCTION
In recent years, with the shortage of traditional resources
and the need for environment protection, the demand for
Renewable Energy Sources (RESs) has increased dramati-
cally [1]. Among all RESs, solar energy, as the most typi-
cal one, has attracted wide attention for its abundance and
accessibility nearly everywhere. At the same time, it has a
multitude of advantages over other forms of power genera-
tion, such as hydropower [2], [3]. As a result, the scale of
Photovoltaic (PV) power generation has grown rapidly. The
global PV market has continued to grow in recent years, with
99.8 GW of new capacity installed worldwide in 2018. China
is the world’s largest PV market with about 45 GW of new
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installed capacity and this growth is expected to continue at
a similar or higher rate in the future.

However, the randomness, volatility, and intermittence of
PV power generation which because of its dependence on
immediate meteorological factors such as atmospheric tem-
perature, total cloud cover, and humidity makes it more
challenging to utilize than traditional generation sources [4].
In some distributed photovoltaic power plants, the precise
measurement of meteorological factors is often ignored,
which brings more difficulties to the prediction of power
generation. These uncertainties can degrade real-time control
performance, reduce system economics, and jeopardize the
stable operation of the power system, thus posing significant
challenges to the management and operation of the power and
energy systems.

To overcome these shortcomings, accurate PV power pre-
diction is required. Besides, it also could provide a reference
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for power grid dispatching and operation of PV power sta-
tions, which is significant for security and economic effi-
ciency [5]. PV power generation forecasts can be categorized
as ultra-short-term forecast (<1 h), short-term forecast
(1 h∼ 24 h), medium-term forecast (1 day ∼1 month), and
long-term forecast (1 month∼1 year). Short-term forecasting
is useful for pre-scheduling and equipment maintenance to
prevent improper output power. In addition, excessive or
insufficient PV output power affects the safe and reliable
operation of the grid, which limits the use of large grid-
connected PV systems. Therefore, it is necessary to establish
an accurate short-term PV prediction model to ensure the PV
power stations remain stable and reliable.

Various recent researches reported different approaches
to establish appropriate PV output power forecasting mod-
els aiming for higher accuracy and lower computation cost.
The persistence model, as the most basic model, requires
only historical data to predict PV power, and the result is
equal to the actual output power of the same period of the
previous day [6]. Therefore, this model usually acts as a
benchmark for other models [7]. The statistical techniques
generally both include the classical ones, such as the time
series methods [8], regression methods [9], [10], regression
trees [12], and the advanced ones, such as machine learning
methods. In statistic models, the output power is forecasted
by the statistical analysis of the different input variables,
which include historical data and meteorological factors. The
classical statistical methods play a crucial role in PV power
forecasting and are easy to implement. In Semero et al. [10],
a hybridmodel with Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) was reported, which achieved superior
performance of the proposed method as compared with com-
monly used forecasting approaches.

Machine learning methods, such as Artificial Neu-
ral Network (ANN) [14], [15], Support Vector Machine
(SVM) [16], [20], Multilayer Oerceptron (MLP) [19], [21]
are the most effective techniques for PV power forecast-
ing. In dealing with non-linear data, limitations of sta-
tistical techniques due to variable meteorological factors
have led to the application of artificial neural networks
for predicting PV output power. Wang et al. [13] proposed
a model using an analog plus neural network ensemble
method for the very-short-term PV power forecasting and
achieved great improvements. Cervone et al. [14] proposed
a methodology based on ANN and an analog ensemble that
tested on extreme-scale supercomputer simulations and out-
performed each method run individually. Persson et al. [11]
presented a non-parametric machine learning approach used
for multi-site prediction of short-term PV power generation
prediction, which was simple and has competitive perfor-
mance. In Grimaccia et al. [15], a procedure to set up the
main characteristics of the hybrid artificial neural networks
using a physical hybrid method for day ahead PV power
prediction was proposed. Malvoni et al. [17] developed a
hybrid model with the principal component analysis and

support vector machine for reducing the input data size.
Jang et al. [18] developed a PV power forecasting model
based on SVM which could have better forecasting accu-
racy. Paiva et al. [19] proved multigene genetic programming
presented more accurate and robust in a single PV predic-
tion case, whereas ANN presented more accurate results for
ensemble forecasting. Huang et al. [21] proposed a robust
genetic MLP neural network that was developed for day-
ahead forecasting of hourly PV power. However, the relia-
bility of these methods is affected by the random initial data
and is sensitive to the parameters. Meanwhile, the complex-
ity may significantly increase due to the stacked network
structure.

Most currently available methods are restricted by limited
data and are not able to uncover underlying correlation and
related information [25]. Deep learning has been the most
popular among researchers on account of its powerful capa-
bility to describe potential dependencies between data. Long
Short-Term Memory network (LSTM), as one of the typical
deep learning techniques, is broadly applied in PV power
forecasting [26], [27]. Zhou et al. [27] used the stack LSTM
model for adaptively focusing on input features that are more
significant in forecasting, and conducted experiments with
real-world photovoltaic power generation datasets. However,
the output predicted by the traditional LSTM network is
unstable, and methods to strengthen time linkages may fall
into partial optimal solutions.

Hybrid methods [22], [24] combine two or more tech-
niques could include advantages of both methods and exclude
their limitations. Wang et al. [22] proposed a novel hybrid
model for short-term PV output power interval forecasting
based on ensemble empirical mode decomposition as well as
relevance vector machine, which achieved relatively higher
forecasting accuracy. Raza et al. [23] proposed a multivariate
neural network with a Bayesian model averaging technique
for predicting a day ahead PV output power. Lin et al. [24]
proposed a multivariate neural network ensemble forecast
framework, which substantially improved the forecast accu-
racy in short-term forecasting horizons. Chang et al. pro-
posed a novel Deep Belief Network (DBN) combined with
a grey theory-based data preprocessor for generation fore-
casting, which was superior to other models in forecasting
accuracy.

In recent years, many studies based on deep learning have
also been conducted. Li et al. [35] constructed a hybrid
deep learning model combining wavelet packet decompo-
sition (WPD) and LSTM networks for one-hour-ahead PV
power forecasting. Kushwaha and Pindoriya [36] compared
the accuracy of four artificial intelligence methods in fore-
casting Taiwan’s renewable energy sources based on histori-
cal data from 2000 to 2015, and results showed that seasonal
auto regressive integrated moving average random vector
functional link neural network is suitable for small dataset
forecast. Korkmaz et al. [37] used a deepCNN structure com-
bining with Empirical Mode Decomposition (EMD) algo-
rithm which is greatly improved the accuracy of prediction.
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Yildiz and Acikgoz [38] applied an ANN-based system for
very short-term (2 to 4-h) PV power forecasting. Compared
with the individual LSTM-RNNnetworks, thismodel showed
a superior forecasting performance.

Inspired by the previous research efforts, a novel Spatial-
Temporal Genetic-based Attention Networks (STGANet)
was proposed to predict day-ahead and 5 days ahead hori-
zons. The method aims to achieve more accurate results
by leveraging the interconnections of inputs and stabiliz-
ing the predicted output results. The network consists of a
spatial-temporal module (STM) and a genetic-based attention
module (GAM). STM consists of temporal and spatial sub-
modules for predicting solar irradiance of PV plants without
weather collectors to support power generation forecasting
and contains a graph convolutional neural network to learn
the spatial and temporal dependencies between historical
weather data while using dilated convolution as the nonlinear
part to simplify the network structure. The result combined
with historical generation and weather data is used as input
features for GAM. GAM combines the predicted solar irra-
diance and historical power generation data to predict the
power generation of PV plants using an attention mechanism
to efficiently explore the potential relationships in the input
features and using genetic-based operations and an LSTM
that takes the prediction error as a reference to find the glob-
ally optimal solution and avoid getting trapped in a locally
optimal solution. The main contributions of this study are as
listed:

1) We proposed a hybrid ensemble deep learning model,
the spatial-temporal genetic-based attention network,
considering historical meteorological and power gen-
eration data.

2) We proposed a spatial-temporal module to predict the
missing solar irradiance data utilizing the spatial depen-
dencies between photovoltaic plants.

3) We proposed a novel attention mechanism based on
LSTM and genetic algorithm to predict PV power,
exploring the deep connection between data and
searching for the globally optimal solution.

The paper is organized as follows. Section II presents the
information and analysis of real PV plants’ data; Section III
presents a comprehensive description of the methods applied
to forecast the PV power generation; Section IV indicates the
performance metrics to evaluate the forecasting models and
the benchmark algorithms; Section V discusses the results of
the proposed model including comparison and validations;
finally, Section VI summarizes and concludes the study. The
abbreviation and full name in this paper are listed in Table 1.

II. DATASET ANALYSE AND PROCESSING
A. DATA DESCRIPTION AND ANALYSIS
The datasets used in the experiments are collected from three
PV plants distributed in different areas in Southeastern China,
2019. Table 2 summarizes the information of the collected
datasets. Output power and meteorological factors (i.e., solar
irradiance, temperature, humidity, and total clouds cover) are

TABLE 1. Abbreviation and full name.

managed separately from each power plant. The power gen-
eration data are presented at five-minute intervals, whereas
the meteorological data are presented at one-hour intervals
due to the limitations of the weather collection system. The
meteorological data include solar irradiance, temperature,
humidity and total clouds cover, where total clouds cover
is expressed as percentages. Since solar irradiance can be
collected only during the daytime, data from 7:00-17:00 are
used in the experiment.

TABLE 2. Information of the dataset used for the experiment.

Fig. 1 illustrates the daily PV output power generated by
each plant for July 2019. As is shown in Fig. 1, the output
power is comparatively low in the eighth and twelfth day due
to the rainy or heavy cloudy weather condition. Meanwhile,
output power relatively high on the days of 13, 14, and 15 in
July due to the sunny weather and clear sky condition, which
is because the output power fluctuates with variations in the
weather conditions.

Meteorological factors strongly influence photovoltaic
output power. Fig. 2(a) illustrates the pattern of PV output
power for rainy or heavy cloudy days, and Fig. 2(b) illustrates
the pattern of PV output power for sunny days. In abnormal
weather conditions such as rainy and cloudy days, solar irra-
diance fluctuates without an apparent change in trend. In con-
trast, solar irradiance tends to increase on sunny days, peaking
at noon and then decreasing. As shown in Fig. 2(a), due
to the large fluctuations in solar irradiance on cloudy days,
the outputs of PV power plants are also unstable. Under sunny
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FIGURE 1. Daily output power of July 2019.

days, however, three PV plants’ output tends to increase and
then decrease, as does solar irradiance, indicating the PV
output depends entirely on solar irradiance. Under sunny
conditions, the output power of the three plants is different,
and the curves fluctuate due to the various meteorological
factors of the location and the influence of the PV modules
on the generation of electricity.

Table 3 illustrates the correlation between the meteorolog-
ical factors (i.e., solar irradiance, temperature, humidity and
total clouds cover) and average PV output power.

TABLE 3. The correlation between the meteorological factors and
average PV output power.

B. DATA PRE-PROCESSING
In order to avoid large differences in data scales that can
impair the effectiveness of the model, the data pre-processing
is normalization, so that the data are restricted in range 0 to 1.
The normalization speeds up the gradient descent to the
optimal solution, increases the comparability of the data, and
improves the precision of the data. The formula is:

x ′in =
xin −min(xin)

max (xin)−min(xin)
(1)

where x ′in is the normalized input data; xin is the origin input
data(PV output power and meteorological factors data); and
max (�) and min(�) are the maximum and minimum values of
the origin input data, respectively.

III. METHODOLOGY DESCRIPTION
A. OVERVIEW
In practical application, weather factors in distributed pho-
tovoltaic power stations are not precisely collected, which

FIGURE 2. Pattern of PV output power under different weather conditions.

brings great difficulties to power generation prediction.
Therefore, the whole process is divided into two parts. Firstly,
the meteorological factors are predicted, and then the power
generation is predicted.

The overall framework of the proposed model is illus-
trated in Fig. 3. Our proposed STGANet consists of a
spatial-temporal module (STM) and a genetic-based attention
module(GAM). The STM is used to predict the missing mete-
orological information, and the GAMuses themeteorological
information obtained from STM and historical power gener-
ation data to forecast power generation. STM contains two
temporal sub-modules, a spatial sub-module in the middle
and a fully connected layer in the end. The STMprocesses the
input data uniformly to jointly explore spatial and temporal
dependencies and then generates integrated features by the
output layer to generate the final meteorological prediction.
The GAM firstly constructs the input matrix consisting of
historical generation data and meteorology data by sliding
window, secondly generates the weights of the input matrix
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FIGURE 3. PV short-term forecasting framework.

by genetic-based search operator, then feeds the input matrix
into LSTM layer to get the loss for further iterations and to
obtain better weights. Subsequently, the model will be trained
until loss convergence and obtains the predicted power result.
The flow of model training is shown in Fig 4.

1) The historical meteorological data are normalized and
mapped to the interval [0, 1];

2) Weather factors such as solar irradiance are sent to
the spatial temporal module to predict the missing
values;

3) The completed meteorological data is sent to genetic-
based attention module as input to predict the actual
power generation of distributed photovoltaic power
station;

4) Calculate the loss function and judge whether the train-
ing has converged;

5) If loss has converged turn to the end, otherwise jump to
step 2 to start a new round of training.

B. SPATIAL-TEMPORAL MODULE
In this work, we define the distribution of PV plants with
structured meteorological time series in undirected graph,
Gt = (Vt , ε,W ), where Vt is a finite of vertices each of
which means the meteorological factor at time t , ε is the
set of edges and W is the adjacency matrix of the graph.
The meteorological factor data prediction on graphs can be
represented by

[dt−P+1, . . . , dt ]
f
−→

[
d̂t+1, . . . d̂t+H

]
(2)

where P is the number of historical data, H is the number of
the predicted data.

FIGURE 4. Flow chart of model training.

1) SPATIAL SUB-MODULE
Graph Convolutional Networks (GCN)[28] generalizes CNN
to graph domains by computing in the spectral domain with
the graph Fourier transform as

gθ (�) ∗ x = Ugθ (3)UT x (3)

where U is the matrix of eigenvectors of the normalized graph

Laplacian L = IN − D
−
1/2AD−

1/2 = U3U , with a diagonal
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matrix of its eigenvalues3 and UT x being the graph Fourier
transform of x.

Organizing the data as a graph according to the distribution
of PV plants can make efficient use of spatial information,
meanwhile we apply the graph convolution operation directly
on the structured data to extract deep patterns and features
in the space domain. However, the matrix multiplication
of eigenvectors in (3) might be computationally expensive
for large graphs, Chebyshev polynomials approximation and
layer-wise linear formulation can be applied to overcome it.

To reduce the time complexity, the filter is approximated
by a truncated expansion in terms of Chebyshev polynomials
Tk (x) up to K th order. Then we can rewrite graph convolution
as

gθ (�) ∗ x≈
∑K

k=0
θkTk (Ľ)x (4)

where Ľ = 2L
/
λmax − In can be computed by

(
U3UT

)k
=

U3kUT . The time complexity of (4) is reduced by computing
the K -local convolution through polynomial approximation.

By limiting K = 1, the graph convolution function can be
made linear on the graph Laplacian. Further, since the neural
network can adapt to scale variation, we can approximate
λmax = 2.

gθ (�) ∗ x≈θ0x − θ1(D−
1
2WD−

1
2 )x (5)

where θ0 and θ1 are two shared filter parameters. To reduce
the occurrence of overfitting and numerical manipulation,
the θ0 and θ1 can be exchanged to a single parameter θ by
letting θ = θ0 = −θ1; W̃ = W + IN and D̃ii =

∑
j
W̃ij.Then

we have the following expression as:

gθ (�) ∗ x = θ
(
D̃−

1
2WD̃−

1
2

)
x (6)

2) TEMPOROL SUB-MODULE
RNN-liked models have been suffered from time-consuming
issue and the inability to cope with variable data due to the
complicated gate mechanism, while CNNs have the advan-
tage of fast training and can achieve parallel training process
by stacking convolutional layers. Therefore, we apply gated
linear unit with aKt width kernel and 1-D dilated convolution
on the time dimension of the input data, as shown in Fig. 5.

The input of temporal sub-module can be viewed as a
sequence Z ∈ RM×CI of length M with Ci channels and the
kernel size is 0 ∈ RKt×CI×2Co . After entering the module,
two separate dilated convolution operations are performed to
obtain two output of the same size as [AB] ∈ R(M−Kt+1)×Co .

The d-dilated convolution operation can be represented as

F (x) =
∑k−1

i=0
f (i) � xt−d×i (7)

where d is the dilated parameter which controls the skipping
distance, f ∈ Rk is the kernel, xt is the t-th value of the
sequence x.

The A and B pass through the sigmoid function and fusion
operation respectively, and finally Hadamard product is per-
formed to acquire the result. The sigmoid function helps

to filter the inputs that are instrumental in discovering the
dynamic change pattern of the data, and the nonlinear gate
can capture the information of the data in general. Finally,
the temporal convolution can be defined as

h (0)Z = F(A)⊗ F(σ (B)) (8)

where σ is the sigmoid function; ⊗ is the element-wise
Hadamard product operation.

FIGURE 5. The structure of temporal sub-module.

C. GENETIC-BASED ATTENTION MODULE
The genetic-based attention module (GAM) consists of the
LSTMmodel, attention mechanism and genetic-based search
operator (GSO). The input of GAM is the predicted result
concentrate on historical meteorological data and historical
power data. The LSTM is used to deal with long-term depen-
dencies, the attention mechanism enhances the influence of
important factors, and the GSO searches for optimal weights.
As a specific of the recurrent neural network, LSTM [29]
was proposed, which introduced the memory cell and gate
mechanism to perform time-series data efficiently. To begin
with, the attention weights for N length of time steps are
expressed as:

Watt = (W1,W2, . . . ,WN ) (9)

Then the importance-based input data (PV output power
and meteorological factor data) with attention weights are
defined as:

X̃t = (x1tW1, x2tW2, . . . , xNtWN ) (10)

At time t, sequence input vector X̃t , hidden layer output
ht−1 and cell state Ct−1 are fed into cell, then get LSTM hid-
den layer output ht and cell stateCt as output. The calculation
of cell state Ct is combines the state of previous period and
state of current candidate cell whose proportions are occupied
by the forget gate and input gate respectively. The candidate
cell state C̃t is calculated by a hyperbolic tangent activation
function. The update progress of LSTM can be described as
follows:

ft = σ (Wf �
[
ht−1, X̃t

]
+ bf ) (11)
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FIGURE 6. Basic steps of GSO.

it = σ
(
Wi �

[
ht−1, X̃t

]
+ bi

)
(12)

ot = σ (Wo �
[
ht−1, X̃t

]
+ bo) (13)

C̃t = tanh(Wh �
[
ht−1, X̃t

]
+ bc) (14)

Ct = ft � Ct−1 + it � C̃t (15)

ht = ot � tanh(Ct ) (16)

where Wf ,Wi,Wo,Wc denote weight parameters and
bf , bi, bi, bc denote bias parameters of forget gate, bias of
input gate, bias of output gate and bias of internal cell state,
respectively; and σ stands for the sigmoid activation function.

The attention mechanism [30] helps assign more weight
to the critical inputs while giving less weight to the rest of
the analysis to soften their influence. We use a genetic-based
search operator (GSO) to train attention weights by taking
training loss as a reference to acquire optimal parameters in
the attention layer of the LSTM network for better utilizing
the intrinsic relationship between meteorological factors and
power generation data. The basic steps of GSO are shown
in Fig. 6. The detailed process of GSO will be introduced as
follows.

The attention weights set Watt = (W1,W2, . . . ,WM ) is
encoded by binary values as W S

=
(
W S

1 ,W
S
2 , . . . ,W

S
M

)
and

the initial code is randomly generated. TheWi which denotes
attention weights for historical generated data and meteoro-
logical factors will be delivered to the networks and produce
corresponding fitness score based on the training loss. Then
the fittest subset space W̃att is selected according to the fitness
score of correspondingW S

=
(
W S

1 ,W
S
2 , . . . ,W

S
M

)
where the

selected subsets will be equally divided into N segments[22]
such as W S

k =
(
S1k , S

2
k , . . . , S

N
k

)
. New attention weights

space will be rebuilt by crossover and mutation operation.
• Crossover: Suppose the selected subsets areW S

i andW S
j ,

the segments of both subsets will be chosen randomly

for exchanging from themselves until the cross number
is reached and the cross number is fixed. For example,
SNj and SNi will generate SNk after crossover.

• Mutation: In the new offspring formed, some of their
segments may be mutated with random probability,
which means that certain positions in the string can be
flipped. In this work, the odd or even index segments
which decided by random judgment will be flipped in
the new generated string.

We will traverse the subspace W̃att repeatedly until its size
reach the default value M when rebuilding the optimization
space. The GSO is shown in the optimization problem as
follows:

minL(yp (Fatt (θ,Watt)) ,y) (17)

where L(�) is loss function, Fatt (�) is the entire network, θ is
parameter space in LSTM when acquiring predicted values,
yp denotes predicted output, y denotes actual value.

IV. EVALUATION
A. METRICS
In this paper, threemetrics are used to evaluate the forecasting
accuracy of our model, which are the mean absolute error
(MAE), the mean absolute percentage error (MAPE) and the
rootmean square error (RMSE). The definitions of these three
evaluation indexes are shown as (18), (19) and (20):

δMAE =
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (18)

δMAPE =
1
n

∑n

i=1

∣∣yi − ŷi∣∣
yi

(19)

δRMSE =

√
1
n

∑n

i=1

(
yi − ŷi

)2 (20)

where yi is the actual value, ŷi is the predicted value of the
model and n is the number of testing samples.
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B. BENCHMARK ALGORITHMS
To verify the performance of the proposed model for day
ahead PV power generation forecasting, we set contrast
experiments with some benchmark models. The GRU [31]
and CNN [32] were selected as the benchmark for the solar
irradiance prediction experiment. The CNN [33], LSTM [5],
GT-DBN [34], W-RVFL [36] and WPD-LSTM [35] models
were selected as competitors for power generation predic-
tion experiment. The actual PV power generation data and
meteorological data of three PV stations were applied in the
experiments.

V. RESULT AND DISCUSSION
In this section, we conduct a series of comparative experi-
ments to verify the performance of our proposed model. First,
the STM is utilized to predict solar irradiance for the five
days ahead in the training set to cope with missing data. The
adjacency matrix fed into STM stores the distances between
PV plants, which is calculated from their latitude and longi-
tude. The predicted data is then concentrated with the original
historical meteorological data and fed into GAM together
with the historical generation data for the final generation
forecast for the next 24 hour. These two predictions for the
next 24 hour will be compared with different benchmark
experiments.

A. PERFORMANCE OF SPATIAL-TEMPORAL MODULE
The spatial-temporal module uses spatio-temporal features
to predict the five days ahead solar irradiance in the miss-
ing regions. The prediction results are shown in Table 4.
Since solar irradiance can only be collected during the day,
the predictions for the next 5 days from 8:00-18:00 are shown
in Fig. 7. No-Spa is the module that removes the spatial
sub-module. The results of No-Spa are much more accurate
than GRU and CNN, which indicates that the temporal sub-
module can extract more global temporal information. The
STM is superior to No-Spa, proving that capturing spatial and
temporal features is essential and effective for solar irradiance
prediction. The predicted result will be fed into GAM as part
of the input for generation power forecasting.

TABLE 4. Summary of solar irradiance prediction.

B. POWER GENERATION PREDICTION FOR A DAY AHEAD
1) OVERALL RESULT
The categorized meteorological data show that rainy weather
data accounts for only 16.7% of the overall data, while sunny
weather data is only 8.3%.

For the overall evaluation, the results of the three power
plants are taken together to calculate the metrics. The solar

FIGURE 7. Solar irradiance prediction result (only contains 8:00-18:00).

irradiance obtained from STM predictions provides the basis
for the forecasting of photovoltaic power generation. The
overall predicted results were shown in Table 5. The pre-
diction accuracy of our STGANet model is higher than all
benchmark methods, and it has the best performance over-
all compared to methods in general under different weather
conditions. The MAPE of W-RVFL under rainy conditions
is lower than STGANet because the PV plant generation is
close to 0 in the evening on a rainy day. Due to the way
MAPE is calculated, even minor errors can cause significant
fluctuations in percentage. Compared to the other comparable
models, the average MAEmetrics of STGANet under cloudy
conditions decreased by 2.993, 2.848, 2.659, 2.663 and 0.996,
respectively. Similarly, the average MAE metrics under rainy
conditions were reduced by 7.086, 2.148, 3.048, 1.133 and
1.052, respectively.

In STGANet, the errors calculated on cloudy days are
mostly smaller than those on sunny and rainy days because
the sample size on cloudy days is more significant than that
on sunny and rainy days. Therefore the model can learn
the features better. However, despite the small sample size
of rainy and sunny days, STGANet still obtains promising
results, indicating its vital learning and generalization ability.

2) ANLYZE OF RESULTS IN DIFFERENT WEATHER
CONDITION
The summaries of the forecasting performance of the sunny
day, cloudy day and rainy day are shown in Table 6, Table 7
and Table 8, respectively. During sunny days, the power
generation and solar irradiance will vary regularly together.
While in cloudy and rainy days, the solar irradiance and
output power fluctuate more and have smaller values, with
more volatility and less regularity. Because the sample size
of sunny days is too small, its MAE and RMSE are larger
than other weather conditions. Because the fluctuation of
solar irradiance on rainy days is too large, its MAPE is much
larger than that of sunny and cloudy days. Most methods

VOLUME 9, 2021 138769



T. Fan et al.: STGANet for Short-Term PV Power Forecasting

TABLE 5. Summary of the overall performance for a day ahead.

TABLE 6. Summary of the performance of the cloudy day for a day ahead.

perform better in plant-1 and plant-3 than plant-2, perhaps
caused by differences in geographic location and hardware
devices.

As shown in Table 6, all metrics of STGANet performed
well in the cloudy experiment, with minimal prediction errors
and stable results, indicating its validity and accuracy.

As shown in Table 7, the regularity of meteorological
factors data and PV power generation data decreases in rainy
conditions compared to cloudy days. While RMSE and MAE
of STGANet and other benchmark models have decreased,
their MAPE has increased. Compared with the CNN, LSTM,
GT-DBN, W-RVFL and WPD-LSTM methods, the MAPE
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TABLE 7. Summary of the performance of the rainy day for a day ahead.

TABLE 8. Summary of the performance of the sunny day for a day ahead.

metric of plant-1 has been decreased by 112.586%, 6.658%,
58.465%, 6.703% and 7.804%, respectively.

Under sunny conditions, as shown in Table 8, due to the
regular fluctuation of solar irradiance, the predictions of the
models vary less among all benchmark models. However, our
STGANet still achieves the best results. Moreover, the result

proves that our model has a strong learning ability even for
small sample data.

The results of the proposedmodel for PV plant-1 under dif-
ferent weather conditions (i.e., sunny day, cloudy day, rainy
day) are shown in Fig. 8. The curve for sunny days shows
a clear trend of increasing and decreasing, with the peak of
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TABLE 9. Summary of the performance for the next five days.

FIGURE 8. PV output power of plant-1.

power generation occurring at noon. The curve for cloudy
days, on the other hand, shows significant fluctuations, and
no significant peak appears. The curve for rainy days is more

volatile than other weathers, and the power generation value
decreases significantly in the afternoon, and even to 0 in
the last two hours. The predicted curve of CNN fluctuates
fiercely when the actual curve fluctuates, resulting in sig-
nificant discrepancies in the output. The LSTM and RNN
outperform CNN. Particularly, the predicted curve of our
STGANet model fits better than any other methods. The
prediction curves of our model almost matched the actual
measured curve of PV power generation in all weather con-
ditions, and the prediction curve and actual curve matched a
little less well under rainy conditions.

C. POWER GENERATION PREDICTION FOR THE NEXT FIVE
DAYS
In order to investigate the performance of the STGANet
model in different time horizons, we also conducted long-
term experiments to verify the model’s predictive perfor-
mance for the next five days of generation. Table 9 lists the
overall performance of the compared models. As shown in
the table, the prediction error of each model is increased
compared to the result of sunny days in the short-term predic-
tion. However, all of them are lower than rainy days, perhaps
because there are fewer rainy days and more sunny days in
these five days. There is considerable improvement in error
measures and error variance of STGANet compared to all the
other forecast models. The results at each prediction horizon
generated by the CNN method are the worst compared to
other benchmarks. At all prediction horizons in the case
studies, the proposed method has the smallest RMSEmetrics,
which shows the best forecasting performance compared to
other methods.

VI. CONCLUSION
In this paper, a novel deep learning network called STGANet
is proposed, which focuses on short-term distributed PV
power prediction. This model integrates the spatial-temporal
graph convolution for solar irradiance prediction and a
genetic-based attention mechanism for power prediction.
Specifically, we utilize the spatial connection between PV
plants by graph convolution for prediction and capture both
the global and global dependencies by attention mechanism.
This method can overcome the missing of weather data in dis-
tributed photovoltaic power stations, so as to achieve accurate
power generation prediction. A real-world dataset collected
from PV power plants in southeastern China is employed
for experiments. We conducted a comprehensive compara-
tive study to compare the proposed STGANet method with
existing state-of-the-art methods, including CNN, LSTM,
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GT-DBN, W-RVFL, and WPD-LSTM models over two dif-
ferent error ranges of one day lead and five days lead. All
prediction ranges were compared using three different error
metrics, i.e., MAE, RMSE, and MAPE. Compared to the
CNN, LSTM, GT-DBN,W-RVFL, andWPD-LSTMmodels,
the average MAE metrics of STGANet under cloudy con-
ditions decreased by 2.993, 2.848, 2.659, 2.663 and 0.996,
respectively. The results show that our method has more
competitive effects than other models in PV power forecast-
ing, which proves our method could effectively approximate
optimal attention weights and efficient mining of spatial-
temporal dependencies.
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