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ABSTRACT This paper investigates the detectability of delayed Boolean control networks (DBCNs) via
the Boolean semi-tensor product (BSTP) method. Firstly, three concepts of weak detectability, strong
detectability, and detectability for DBCNs are proposed and the dynamics of DBCN are converted into
an equivalent algebraic form. Secondly, a full-order observer of DBCNs is constructed to judge the
detectabilities of DBCNs by using BSTP. Thirdly, based on the observer, some necessary and sufficient
conditions of weak detectability, strong detectability, and detectability for DBCNs are presented. Finally,
two examples are illustrated to verify the obtained results.

INDEX TERMS Boolean control network, time delay, detectability, full-order observer, Boolean semi-tensor
product.

I. INTRODUCTION
In control theory, detectability is an important character to
investigate the performance of nonlinear systems [1]–[3]. The
main focus of detectability is how to determine a unique
current state by measuring the input sequences and output
sequences, regardless of the initial state. When the current
states are uniquely determined, the subsequent states are
also determined uniquely. In [3], four kinds of detectability
were proposed for discrete event systems, and some effective
criteria were obtained based on graph-method. Detectabil-
ity has many applications, such as fault detection and fault
tolerance [4]. During the past twenty years, the study of
detectability has received lots of scholars’ attention in areas
of biology, engineering, computer technology, and so on.

Boolean control network (BCN) is a kind of finite-value
discrete-time dynamical systems [5], whose state and input
take value from a finite set. The dynamics of BCNs are
described by a Boolean difference equation. BCN is a classic
model for the investigation of gene regulatory networks [6].
In addition, BCNs are applied to many other areas [7]–[9],
such as information security, social networks, digital circuits,
and so on.

Recently, semi-tensor of product (STP) method has been
introduced to explore BCNs [10]. Several fundamental issues
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of BCNs are well addressed by resorting to STP, such as con-
trollability and observability [11]–[15], stability [16]–[18],
stabilization [19]–[21], and so on. In addition, STP is also
applied to game theory [22], [23], finite automata [24], [25],
and so on.

Detectability is an important problem for the reconstruc-
tion of gene states. Using the STP method, many schol-
ars focus on the detectability problem of BCNs [26]–[31].
Fornasini and Valcher [26] presented the reconstructibility
which determines the unique current state and reconstructed
an unobservable Boolean network or BCN. Zhang et al. [27]
proposed a new reconstructibility of BCNs based on a
weighted pair graph, which is a generalization of [26].
Wang et al. [30] defined three types of detectabilities
of BCNs, and proposed some criteria and algorithms for
detectability of Boolean networks and BCNs based on a new
data model. Recursive methods and a termination condition
were presented for the reconstructibility of BCNs in [28].
Furthermore, there exist several new results on the detectabil-
ity of probabilistic Boolean networks [32]–[34], singular
Boolean control networks [35], delayed Boolean control net-
works (DBCNs) [36] and so on.

As we all know, a state observer is an effective tool to
estimate the internal state of nonlinear systems by observing
input and output. To estimate the state of BCNs, there exist
several forms of a state observer for BCNs [26], [28], [31],
[37], [38]. A full-order observer of BCNs was proposed
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in [26]. A Luenberger-like observer of BCNs was presented
in [37], which can be observed by all possible input sequences
and output sequences. To reduce the computational complex-
ity, a reduced-order observer of BCNs was explored [38].

The delay phenomenon in gene regulatory network is
caused by slow biochemical reactions such as gene transcrip-
tion and translation [42], [43]. It is worth noting that time
delay can lead to the poor performance of systems [39]–[41].
Due to the influence of time delay, the obtainment of
input and output information may be lagged, which makes
the estimation of the current state more complex. There-
fore, the detectability of DBCNs is more difficult than
BCNs considered in [26], [27], [31]. Sun et al. [36]
proposed an algorithm to check the reconstructibility of
DBCNs based on the weighted pair graph, constructed forest,
and finite automata. In this paper, we further propose three
types of detectabilities, that is, weak detectability, strong
detectability, and detectability. Besides, we present some cri-
teria to verify these three kinds of detectabilities of DBCNs
based on a full-order observer. This paper provides a new
perspective to study the detectability of DBCNs. As an appli-
cation of DBCNs, the apoptosis network with time delay [43]
is used in Example 2 to verify the obtained results.

The rest of this paper is organized as below. Section II
recalls some preliminaries on STP, DBCNs, and three kinds
of detectabilities. In Section III, we propose a full-order
observer of DBCNs to analyze the three types of detectabil-
ities. In Section IV, we give some necessary and sufficient
conditions for weak detectability, strong detectability, and
detectability. Two illustrative examples are provided to verify
our main results in Section V. In Section VI, a short conclu-
sion is given.

II. PRELIMINARIES
The following notations will be used in the sequel.

• R, Z and Z+ denote the set of real numbers, the set of
integers, and the set of positive integers, respectively.

• D := {1, 0}, and Dk
:= D × · · · ×D︸ ︷︷ ︸

k

.

• [1, n]Z+ := {1, · · · , n}.

• 1k :=
[
1 1 · · · 1︸ ︷︷ ︸

k

]>
.

• Given A ∈ Rm×m, A> denotes the transposition of A.
Rowj(A) and Coli(A) represent the j-th row of A and the
i-th column of A, respectively.Col(A) represents the set
of all columns of A.

• Ik denotes the k dimensional identity matrix, and
δik denotes the i-th column of Ik . 1k := {δ

i
k : i =

1, · · · , k}, 1 := 12.

• δ0k :=
[
0 0 · · · 0︸ ︷︷ ︸

k

]>
, and δ0k can be abbreviated

as δk [0].
• Set A = [δi1n δ

i2
n · · · δ

it
n ]. We abbreviate A as A =

δn[i1 i2 · · · it ]. If ij ∈ {1, · · · , n}, ∀ j = 1, · · · , t , then
A is said to be a logical matrix; if ij ∈ {0, 1, · · · , n},

∀ j = 1, · · · , t , then A is said to be the generalized
logical matrix.

• Lm×n denotes the set of m × n dimensional logical
matrices. Mm×n denotes the set of m× n dimensional
generalized logical matrices.

• W[m,n] represents the mn × mn dimensional swap
matrix [10].

• Consider matrix B = (bi,j)m×n ∈ Rm×n. If bi,j ∈ {0, 1},
then B is said to be a Boolean matrix. Bm×n denotes the
set of m× n dimensional Boolean matrices.

• 1k := 1k
⋃
{δ0k }.

• Consider a, b ∈ {0, 1}. The Boolean addition of
a and b is defined as a +B b = max{a, b}. The
Boolean multiplication of a and b is defined as a ×B
b = min{a, b}.

• Consider two Boolean matrices A ∈ Bm×n and
B ∈ Bn×q. The Boolean product of A and B is denoted
as A×B B.

Next, we give some necessary preliminaries on STP and
Boolean semi-tensor product (BSTP). For details, please refer
to [10].
Definition 1 [10]: The semi-tensor product of two

matrices A ∈ Rm×n and B ∈ Rp×q is

An B = (A⊗ I α
n
)× (B⊗ I α

p
), (1)

where α = lcm(n, p) is the least common multiple of n and p,
and ⊗ is the Kronecker product.
Definition 2 [10]: The Boolean semi-tensor product of

two matrices A ∈ Bm×n and B ∈ Bp×q is

AnB B = (A⊗ I α
n
)×B (B⊗ I α

p
), (2)

where α = lcm(n, p).
Lemma 1 [10]: Consider the logic vector x ∈ 1kn .

It holds that

x nB x = 8n nB x,

where 8n = diag{δ1kn , · · · , δ
kn
kn }.

Remark 1: Consider the logic vector ui ∈ 1n, i =
1, · · · , s. One has

B
s∏
i=1

ui = ns
i=1ui,

where B
s∏
i=1

ui = u1nB · · ·nB us, andns
i=1ui = u1n· · ·nus.

Identifying 1 ∼ δ12 , 0 ∼ δ
2
2 , we have1 ∼ D. We recall the

algebraic form of logical functions.
Lemma 2 [10]: Let f : Dn

→ D be a logical function.
Then, there exists a unique matrix Mf ∈ L2×2n , called the
structural matrix of f , satisfying

f (x1, x2, · · · , xn) = Mf nn
i=1 xi, xi ∈ 1. (3)

DBCN with n state variables, m input variables and
p output variables can be described in the following:{

X (t + 1) = f (X (t − τ + 1), · · · ,X (t),U (t)),
Y (t) = h(X (t)),

(4)
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where τ ∈ Z+ denotes time delay,X (t) = (x1(t), · · · , xn(t)) ∈
Dn denotes the state variables at time t , U (t) =

(u1(t), · · · , um(t)) ∈ Dm and Y (t) = (y1(t), · · · , yp(t)) ∈
Dp represent the input variables and the output variables
at time t , respectively, f = (f1, · · · , fn) : Dnτ+m

→ Dn

and h = (h1, · · · , hp) : Dn
→ Dp are logical functions.

Z (0) = (X (−τ + 1), · · · ,X (−1),X (0)) ∈ Dnτ denotes an
initial state trajectory of DBCN (4). When τ = 1, DBCNs
degenerate to BCNs. Therefore, the results in this paper are
also applicable to BCNs.

We define the weak detectability, detectability, and strong
detectability of DBCN (4).
Definition 3: DBCN (4) is said to be weakly detectable,

if there exists s ∈ Z+, for any integer t ≥ s,
it holds that X (t) can be determined uniquely by an input
sequence {U (0), · · · ,U (t − 1)} and an output sequence
{Y (0), · · · ,Y (t)} corresponding to the input sequence.
Definition 4: DBCN (4) is said to be detectable, if there

exists s ∈ Z+, for any integer t ≥ s, it holds that X (t)
can be determined uniquely by an input sequence {U (0), · · · ,
U (t − 1)} and any output sequence {Y (0), · · · ,Y (t)} corre-
sponding to the input sequence.
Definition 5: DBCN (4) is said to be strongly detectable,

if there exists s ∈ Z+, for any integer t ≥ s,
it holds that X (t) can be determined uniquely by any input
sequence {U (0), · · · ,U (t − 1)} and any output sequence
{Y (0), · · · ,Y (t)} corresponding to the input sequence.

To simplify the study, we give another three concepts based
on the state trajectory of DBCNs, which are equivalent to
Definitions 3, 4 and 5.
Definition 6: DBCN (4) is said to be weakly detectable,

if there exist a positive integer s ≥ τ , an input
sequence {U (0), · · · ,U (s − 1)} and an output sequence
{Y (0), · · · ,Y (s)} corresponding to the input sequence, such
that state trajectory Z (s) = (X (s − τ + 1), · · · ,X (s)) can be
determined uniquely.
Definition 7: DBCN (4) is said to be detectable, if there

exist a positive integer s ≥ τ and an input sequence
{U (0), · · · ,U (s − 1)}, such that state trajectory Z (s) =
(X (s− τ + 1), · · · ,X (s)) can be determined uniquely for any
output sequence {Y (0), · · · ,Y (s)} corresponding to the input
sequence.
Definition 8: DBCN (4) is said to be strongly detectable,

if there exists a positive integer s ≥ τ , such that for any
input sequence {U (0), · · · ,U (s−1)} and any output sequence
{Y (0), · · · ,Y (s)} corresponding to the input sequence, state
trajectory Z (s) = (X (s−τ+1), · · · ,X (s)) can be determined
uniquely.
Remark 2: If DBCN (4) is strongly detectable, then it

must be detectable. Moreover, if DBCN (4) is detectable,
then it must be weakly detectable. However, the converse is
not true.
Remark 3: When studying the detectability of DBCNs,

the estimation of state X (i) cannot be determined by the input
sequence and the output sequence, where −τ + 1 ≤ i < 0
(i ∈ Z). Thus, the state X (i) can take any values in Dn,

where −τ + 1 ≤ i < 0 (i ∈ Z). The estimation of state
X (0) can be determined by the output sequence Y (0).

Using STP, according to [10], the algebraic form of
DBCN (4) can be expressed as follows:{

x(t + 1) = F n z(t)n u(t),
y(t) = H n x(t),

(5)

where x(t) = nn
i=1xi(t) ∈ 12n , z(t) = nt

i=t−τ+1x(i) ∈
12nτ , u(t) = nm

i=1ui(t) ∈ 12m , y(t) = np
i=1yi(t) ∈ 12p ,

F ∈ L2n×2nτ+m , and H ∈ L2p×2n .

III. FULL-ORDER OBSERVER OF DBCNs
In this section, based on the system (5), we construct a
full-order observer, whichwill be used to study the detectabil-
ity of DBCNs.

In the following, the algebraic form of full-order observer
is given, which is similar to the observer of [37]:

x̂(t) = 8>n nB F nB ẑ(t − 1)nB u(t − 1)
nB H

> nB y(t), t ∈ Z+
x̂(0) = H> nB y(0),
x̂(i) = 12n , i = −τ + 1, · · · ,−1,

(6)

where x̂(t) ∈ B2n×1, ẑ(t) = nt
i=t−τ+1x̂(i) ∈ B2nτ×1, and

y(t) ∈ 12p represent the estimation of state, the estimation
of state trajectory and the output at time t , respectively, and
u(t − 1) ∈ 12m represents the input at time t − 1.
Remark 4: In the sequel, the matrix product is BSTP,

denoted by nB. We often omit the symbol ‘‘nB’’. Based on
Remark 1, for u(i) ∈ 12m and y(i) ∈ 12p , i = 1, · · · , s,

it is easy to see that B
s∏
i=1

u(i) = ns
i=1u(i), and

B
s∏
i=1

y(i) =

ns
i=1y(i).
Based on (6), we give the equivalent algebraic form of the

observer as follows:
x̂(t) = Mẑ(t − 1)u(t − 1)y(t), t ∈ Z+
x̂(0) = H>y(0),

x̂(i) = 12n , i = −τ + 1, · · · ,−1,

(7)

where M = 8>n (I2n ⊗ H
>)F ∈M2n×2nτ+m+p .

Proof: Based on (6), we have

x̂(t) = 8>n Fẑ(t − 1)u(t − 1)H>y(t)

= 8>n (I2n ⊗ H
>)Fẑ(t − 1)u(t − 1)y(t)

:= Mẑ(t − 1)u(t − 1)y(t).

Therefore, (7) is equivalent to (6). �
According to (7), we conclude

ẑ(t) = nt
i=t−τ+1x̂(i) = nt−1

i=t−τ+1x̂(i)x̂(t)

= nt−1
i=t−τ+1x̂(i)Mẑ(t − 1)u(t − 1)y(t)

= nt−1
i=t−τ+1x̂(i)M nt−1

i=t−τ x̂(i)u(t − 1)y(t)

= nt−1
i=t−τ+1x̂(i)Mx̂(t − τ )
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nt−1
i=t−τ+1x̂(i)u(t − 1)y(t)

= (I2n(τ−1) ⊗M )nt−1
i=t−τ+1 x̂(i)x̂(t − τ )

nt−1
i=t−τ+1x̂(i)u(t − 1)y(t)

= (I2n(τ−1) ⊗M )W[2n,2n(τ−1)]x̂(t − τ )

[nt−1
i=t−τ+1x̂(i)]

2u(t − 1)y(t)

= (I2n(τ−1) ⊗M )W[2n,2n(τ−1)](I2n ⊗8n(τ−1))

nt−1
i=t−τ x̂(i)u(t − 1)y(t)

:= Pnt−1
i=t−τ x̂(i)u(t − 1)y(t)

:= Pẑ(t − 1)u(t − 1)y(t), (8)

where t ∈ Z+,P = (I2n(τ−1)⊗M )W[2n,2n(τ−1)](I2n⊗8n(τ−1)) ∈
M2nτ×2nτ+m+p . Note that pseudo-commutative law comes
from [10].

Based on (8), we can obtain that

ẑ(t) = Pẑ(t − 1)u(t − 1)y(t)

= P2ẑ(t − 2)nt−1
i=t−2 u(i)y(i+ 1)

= · · ·

= Pt ẑ(0)nt−1
i=0 u(i)y(i+ 1)

= Pt n0
i=−τ+1 x̂(i)n

t−1
i=0 u(i)y(i+ 1)

= Pt12n(τ−1)H
>y(0)nt−1

i=0 u(i)y(i+ 1), (9)

where t ∈ Z+, Pt = PnB · · ·nB P︸ ︷︷ ︸
t

.

IV. VERIFICATION OF DETECTABILITIES FOR DBCNs
In this section, using the full-order observer, we present some
necessary and sufficient conditions for the strong detectabil-
ity, weak detectability, and detectability of DBCNs.
Theorem 1: DBCN (4) is weakly detectable, if and only if

there exist l ≥ τ (l ∈ Z+) and q ∈ {1, · · · , 2ml+p(l+1)} such
that

Colq
(
Pl12n(τ−1)H

>

)
∈ 12nτ . (10)

Proof: (Necessity) Consider the algebraic form (5).
According to Definition 6, the state trajectory Z (s) = (X (s−
τ+1), · · · ,X (s)) can be estimated by using an input sequence
and an output sequence {Y (0), · · · ,Y (s)} corresponding to
the input sequence.

Based on (7) and (9), we have

ẑ(s) = Pẑ(s− 1)u(s− 1)y(s) = · · ·

= Ps−1ẑ(1)ns−1
i=1 u(i)y(i+ 1)

= Psẑ(0)ns−1
i=0 u(i)y(i+ 1)

= Ps12n(τ−1)H
>y(0)ns−1

j=0 u(j)y(j+ 1). (11)

Then, there exist s ≥ τ (s ∈ Z+) and y(0) ns−1
j=0 u(j)y(j +

1) ∈ 12ms+p(s+1) , such that ẑ(s) ∈ 12nτ holds. Set l = s.
Let y(0)nl−1

j=0 u(j)y(j+ 1) = δq
2ml+p(l+1)

. Therefore, there exist
a positive integer l ≥ τ and q ∈ {1, · · · , 2ml+p(l+1)} such
that (10) holds.

(Sufficiency) Assume that (10) holds for l ≥ τ (l ∈ Z+)
and q ∈ Z+. Then, there exist l ∈ Z+ and y(0)nl−1

j=0 u(j)y(j+
1) = δq

2ml+p(l+1)
satisfying (11).

Based on (11), one can obtain that

ẑ(l) = Pl12n(τ−1)H
>y(0)nl−1

j=0 u(j)y(j+ 1). (12)

Thus, we have ẑ(l) ∈ 12nτ . Then, there exist l ≥ τ

(l ∈ Z+), an input sequence {U (0), · · · ,U (l − 1)} and
an output sequence {Y (0), · · · ,Y (l)} corresponding to the
input sequence, such that ẑ(l) ∈ 12nτ holds. Therefore, by
Definition 6, DBCN (4) is weakly detectable. �
Theorem 2: DBCN (4) is strongly detectable, if and only

if there exists l ≥ τ (l ∈ Z+) such that

Col
(
Pl12n(τ−1)H

>

)
⊆ 12nτ . (13)

Proof: (Necessity) Based on (7) and (9), one can
obtain (11). According to Definition 8, there exists s ≥ τ

(s ∈ Z+), for any input sequence and any output sequence
{Y (0), · · · ,Y (s)} corresponding to the input sequence,
it holds that ẑ(s) ∈ 12nτ . In addition, for any input sequence
and any output sequence independent of the input sequence,
we have ẑ(t) = δ02nτ . Set l = s. Therefore, there exists l ≥ τ
(l ∈ Z+) such that (13) holds.
(Sufficiency) Based on (11), one can get (12), which shows

that ẑ(l) ∈ 12nτ . When ẑ(t) = δ02nτ , for any input sequence
and any output sequence independent of the input sequence,
the state trajectory does not exist. When ẑ(t) ∈ 12nτ , for
any input sequence and any output sequence {Y (0), · · · ,Y (l)}
corresponding to the input sequence, the state trajectory
can be uniquely determined. Therefore, by Definition 8,
DBCN (4) is strongly detectable. �
Theorem 3: DBCN (4) is detectable, if and only if there

exist l ≥ τ (l ∈ Z+) and q ∈ {1, · · · , 2ml} such that{
Pl12n(τ−1)H

>3lδ
q
2ml 6= 1>2p(l+1)δ

0
2nτ ,

Col
(
Pl12n(τ−1)H

>3lδ
q
2ml

)
⊆ 12nτ ,

(14)

where 3l = W[2m,2p]

[
B

l∏
i=2

(I2(i−1)m ⊗W[2m,2ip])
]
.

Proof: (Necessity) According to Definition 7, the state
trajectory Z (s) = (X (s − τ + 1), · · · ,X (s)) can be esti-
mated by using an input sequence and any output sequence
{Y (0), · · · ,Y (s)} corresponding to the input sequence. More-
over, for any input sequence and any output sequence inde-
pendent of the input sequence, the state trajectory does not
exist.

Based on (7), (9) and (11), we have

y(0)ns−1
i=0 u(i)y(i+ 1)

= W[2m,2p]u(0)n1
k=0 y(k)n

s−1
i=1 u(i)y(i+ 1)

= W[2m,2p](I2m ⊗W[2m,22p])n
1
j=0 u(j)

n2
k=0y(k)n

s−1
i=2 u(i)y(i+ 1)

= · · ·
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= W[2m,2p]

[
B

s∏
i=2

(I2(i−1)m ⊗W[2m,2ip])
]

ns−1
j=0u(j)n

s
k=0 y(k)

= 3s ns−1
j=0 u(j)n

s
k=0 y(k), (15)

where 3s = W[2m,2p]

[
B

s∏
i=2

(I2(i−1)m ⊗ W[2m,2ip])
]
∈

L2ms+ps×2ms+ps .
According to (15) and (11), one has

ẑ(s) = Ps12n(τ−1)H
>3s ns−1

j=0 u(j)n
s
i=0 y(i). (16)

Then, there exist s ≥ τ (s ∈ Z+) and {U (0), · · · ,U (s−1)},
for any output sequence {Y (0), · · · ,Y (s)} corresponding to
the input sequence, it holds that ẑ(s) ∈ 12nτ . Besides, for any
input sequence and any output sequence independent of the
input sequence, one obtains ẑ(s) = δ02nτ .
Thus, there exist s ≥ τ (s ∈ Z+) and ns−1

j=0u(j) = δ
q
2ms ,

such that

Ps12n(τ−1)H
>3sδ

q
2ms 6= 1>2p(s+1)δ

0
2nτ ,

and for any ns
j=0y(j) ∈ 12p(s+1) , it holds that ẑ(s) ∈ 12nτ . Set

l = s. Therefore, there exists nl−1
j=0u(j) = δ

q
2ml such that (14)

holds for any nl
j=0y(j) ∈ 12p(l+1) .

(Sufficiency) Assume that there exist l ≥ τ (l ∈ Z+) and
q ∈ Z+ such that (14) holds. Then, there exist l ∈ Z+ and
nl−1
j=0u(j) = δ

q
2ml such that (14) holds.

Based on (16), we have

ẑ(l) = Pl12n(τ−1)H
>3l nl−1

j=0 u(j)n
l
i=0 y(i).

Then ẑ(l) ∈ 12nτ . When ẑ(t) = δ02nτ , there exists an
input sequence {U (0), · · · ,U (l − 1)}, such that for any out-
put sequence independent of the input sequence, the state
trajectory does not exist. When ẑ(t) ∈ 12nτ , there exists
an input sequence {U (0), · · · ,U (l − 1)}, such that the
state trajectory can be uniquely determined for any out-
put sequence {Y (0), · · · ,Y (l)} corresponding to the input
sequence. By Definition 7, DBCN (4) is detectable. �
Remark 5: For DBCN (4), the upper bound of l in

Theorems 1, 2 and 3 is lmax = 22
nτ
.

Remark 6: Theorem 2 also provides a sufficient condition
for the verification of detectability and weak detectability.
In addition, Theorem 3 is also applicable to verifying the
weak detectability.

V. ILLUSTRATIVE EXAMPLES
In this section, we give two examples to illustrate the obtained
results.
Example 1: Consider the following DBCN:

x1(t + 1) = u(t) ∧ {¬x1(t − 1) ∨ ¬x2(t)} ,
x2(t + 1) = u(t) ∧ {¬x1(t) ∧ ¬x2(t)} ,
y(t) = x1(t) ∧ x2(t),

(17)

where xi denotes the state variable, i = 1, 2, u denotes the
input variable, and y denotes the output variable.

Using the STP method, we give the algebraic form of (17)
as same as (5), where

F = δ4[4 4 2 4 4 4 1 4 4 4 2 4 4 4 1 4

2 4 2 4 2 4 1 4 2 4 2 4 2 4 1 4],

H = δ2[1 2 2 2]. (18)

According to the algebraic form, we present a full-order
observer which is the same to (7), where

M = 8>2 (I4 ⊗ H
>)F . (19)

Split M into four equal blocks M = [M1,M2,M3,M4],
where

M1 = δ4[0 4 0 4 0 2 0 4 0 4 0 4 1 0 0 4],

M2 = δ4[0 4 0 4 0 2 0 4 0 4 0 4 1 0 0 4],

M3 = δ4[0 2 0 4 0 2 0 4 0 2 0 4 1 0 0 4],

M4 = δ4[0 2 0 4 0 2 0 4 0 2 0 4 1 0 0 4].

Based on (8), we have

P = (I4 ⊗M )W[4,4](I4 ⊗82) = [P1,P2,P3,P4] ∈M16×64,

and split P into four equal blocks P = [P1,P2,P3,P4], where

P1 = δ16[0 4 0 4 0 6 0 8 0 12 0 12 13 0 0 16],

P2 = δ16[0 4 0 4 0 6 0 8 0 12 0 12 13 0 0 16],

P3 = δ16[0 2 0 4 0 6 0 8 0 10 0 12 13 0 0 16],

P4 = δ16[0 2 0 4 0 6 0 8 0 10 0 12 13 0 0 16].

According to (9), we get

(14H>)> = δ2[1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2].

Calculate Pl14H>, where l ≥ 1 and l ∈ Z+. When l = 3,
we have

Colq(P314H>) ∈ 116,

where

q ∈ 9 := {18, 20, 22, 24, 29, 32, 50, 52, 61, 64, 70, 72,

77, 80, 82, 84, 86, 88, 93, 96, 114, 116, 125, 128}.

For any q′ ∈ [1, 128]Z+\9, we obtain Colq′ (P314H>) =
δ016. Based on Theorem 2, DBCN (17) is strongly detectable.
Based on Remarks 2 and 6, it naturally holds that DBCN (17)
is weakly detectable and detectable. �
Example 2: Consider the following apoptosis network

with time delay [43]:
x1(t + 1) = ¬x2(t − 1) ∧ u(t),
x2(t + 1) = ¬x1(t − 1) ∧ x3(t − 1),
x3(t + 1) = x2(t − 1) ∨ u(t),
y(t) = x1(t),

(20)

where x1, x2, x3 and u represent the inhibitor of apoptosis
proteins (IAP), the concentration level of the active caspase 3
(C3 a), the concentration level of the active caspase 8 (C8 a),
and the concentration level of the tumor necrosis factor
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(TNF , a stimulus), respectively, and y denotes the output
variable.

Using the STP method, we give the algebraic form of (20)
as same as (5), where

F = δ8[7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8

3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6

3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8],

H = δ2[1 1 1 1 2 2 2 2]. (21)

Based on the algebraic form, we give a full-order observer
which is the same to (7), where

M = 8>3 (I8 ⊗ H
>)F .

According to (8) and (9), we have

P = (I8 ⊗M )W[8,8](I8 ⊗83) ∈M64×256

and

(18H>)> = δ2[1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2].

Now, calculate Pl18H>, where l ≥ 1 and l ∈ Z+.
When l = 264 and q = 1, we obtain

Colq(Pl18H>) ∈ 164.

However, when l = 264 and q′ = 4(2
64), we have

Colq′ (P
318H>) ⊆ {δ3864, δ

40
64, δ

46
64, δ

48
64, δ

54
64, δ

56
64, δ

62
64, δ

64
64}.

Based on Theorems 1 and 2, DBCN (20) is weakly
detectable, but not strongly detectable.

When l = 4 and q′′ = 1, we obtain 34 = W[2,2](I2 ⊗
W[2,4])(I4 ⊗W[2,8])(I8 ⊗W[2,16]) and{

P418H>34δ
q′′

16 6= 1>32δ
0
64,

Col(P418H>34δ
q′′

16) ⊆ 164.
(22)

By Theorem 3, DBCN (20) is detectable.
Theoretical results reveal that gene states of apopto-

sis network can be determined by the knowledge of IAP
and TNF . �

VI. CONCLUSION
In this paper, we have studied three kinds of detectabilities for
DBCNs based on a full-order observer. We have presented
the concepts of weak detectability, strong detectability, and
detectability for DBCNs. We have constructed a full-order
observer of DBCNs, based on which, we have proposed some

criteria for the weak detectability, strong detectability, and
detectability of DBCNs.

Future works will focus on studying strong periodic
detectability, periodic detectability, and weak periodic
detectability of DBCNs. Another interesting topic is to
explore the detectability of large-scale BCNs [44] with time
delay by using network aggregation and pinning control.
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