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ABSTRACT This paper covers the modeling and nonlinear attitude control of the Cubli, a cube with
three reaction wheels mounted on orthogonal faces that becomes a reaction wheel based 3D inverted
pendulumwhen positioned in one of its vertices. The proposed approach utilizes quaternions instead of Euler
angles as feedback control states. A nice advantage of quaternions, besides the usual arguments to avoid
singularities and trigonometric functions, is that it allows working out quite complex dynamic equations
completely by hand utilizing vector notation. Modeling is performed utilizing Lagrange equations and it
is validated through computer simulations and Poinsot trajectories analysis. The derived nonlinear control
law is based on feedback linearization technique, thus being time-invariant and equivalent to a linear one
dynamically linearized at the given reference. Moreover, it is characterized by only three straightforward
tuning parameters. Experimental results are presented.

INDEX TERMS Attitude control, modeling, nonlinear control systems, quaternions.

I. INTRODUCTION
Inverted pendulum systems have been a popular demonstra-
tion of using feedback control to stabilize open-loop unstable
systems. Introduced back in 1908 by Stephenson [1], the first
solution to this problem was presented only in 1960 with
Roberge [2] and it is still widely used to test, demonstrate
and benchmark new control concepts and theories [3]–[9].

Differently from cart-pole inverted pendulums, that have a
controlled cart with linear motion (Fig. 1a), reaction wheel
pendulums have a controlled rotating wheel that exchanges
angular momentum with the pendulum (Fig. 1b). First intro-
duced in 2001 by Spong et al. [10], it was soon adapted to a
3D version by Lee and Goswami in 2007 [11].

Perhaps, even most notable is the Cubli (Fig. 2). Originally
developed and baptizedin 2012 byGajamohan et al. [12], [13]
from the Institute for Dynamic Systems and Control of Zurich
Federal Institute of Technology (ETH Zurich), the Cubli
is a device that consists of a cube with three reaction
wheels mounted on orthogonal faces. By positioning it in
one of its vertices, it becomes a reaction wheel based
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FIGURE 1. Inverted pendulum types.

3D inverted pendulum. This method of utilizing reaction
wheels is similar to the one used for decades to stabilize satel-
lites and spacecraft in space [14]–[16], but due to gravity and
surface friction, the dynamics of these systems are somewhat
different.

The purpose of this paper is first to model the system, and
then design and implement a nonlinear attitude controller for
it. Although the ETH team has already done this [17], [18],
the novel of this work is the use of quaternions as feedback
control states. In addition, ETH’s attitude estimator utilizes
just accelerometers [19], [20], which is only possible due to
the fact that the Cubli has a non-accelerated pivot point and,
thus, angular and centripetal acceleration terms can be dis-
membered. However, a disadvantage of this approach is that
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FIGURE 2. Cubli.

it requires six IMUs spread throughout the entire structure in
previously known positions. The Cubli of this work utilizes
an accelerometer together with a rate gyroscope in a quater-
nion based complementary filter, which requires only one
IMU placed anywhere and yields equally satisfactory results.

Quaternions were used for simulation of the rotational
motion of rigid bodies as early as 1958 by Robinson [21], but
it was only a decade later, in 1968, that some early results on
the use of quaternions as feedback control states was shown
by Mortensen [22]. In fact, it was Meyer that introduced the
attitude control theory a few years earlier, in 1966, but he uti-
lized rotational matrices instead [23]. In1985, Wie and Barba
proposed a linear decoupled model-independent control law,
also utilizing quaternions [24]. Although different, all of them
used Lyapunov control theory. A disavantage of it is that
the control law is based on intuition rather than fundamental
principles. Moreover, important concepts such as damping
and loop bandwidth are not well defined as in linear control
theory.

Dwyer, in 1984 [25], and Slotine and Li, in 1991 [26],
approached this problem utilizing a nonlinear transformation
to realize an exact linear model of the rotational dynamics
to which linear control can be applied, a method that is also
called feedback linearization or dynamic inversion. The first
utilized the Gibbs vector, whereas the second utilized Euler
angles. The main problem here is that both parametrizations
are singular at certain attitudes, even with no attitude error.

It was in 1993 that Paielli and Bach proposed an approach
which incorporates features of these others while avoid-
ing their main problems [27], [28]. They utilized the same
dynamic inversion as Dwyer, Slotine and Li, but with
quaternions in the rotation dynamics, which are globally non-
singular, just as Mortensen andWie et al.However, the Gibbs
vector was utilized in the error dynamics because they have
no nonlinear mathematical constraints to prevent the realiza-
tion of linear error dynamics.

The control law derived in this paper utilizes this same
approach. Although it was proposed three decades ago, it con-
tinues to be considered state of the art control law in the field,
with few practical applications even today. Most of nowadays
aircraft and even some spacecraft are designed from a set of
linear plant models and implemented with a gain-scheduled
linear controller [29]. The first aircraft to utilize dynamic

inversion control was the Lockheed Martin F-35, released
in 2006 and currently the most advanced fighter jet in ser-
vice. This scenario has started to change in the last years
with the astonishing growth of nanosatellites and commercial
UAVs [30]–[34].

Although this control technique is not novel, the imple-
mentation of it in the Cubli, as far as the authors know,
has not been presented is the literature before. Moreover,
a nice advantage of quaternions, besides the usual arguments
to avoid singularities and trigonometric functions, is that it
allows working out quite complex dynamic equations com-
pletely by hand utilizing vector notation [35]. This becomes
evident in this paper, where the entire modeling and nonlinear
control law is derived without the need for any mathematical
symbolic software in a very didactic and self-contained way,
being a contribution to control education as well.

II. MODELING
The Cubli is composed of four rigid bodies: a structure and
three reaction wheels (Fig. 3). The structure rotates freely
around pivot pointO (articulation vertex), whereas each reac-
tion wheel, besides rotating together with the structure, also
rotates around its axial axis.

FIGURE 3. Cubli body parts.

There are other bodies, such as motors, batteries, micro-
controllers, etc., that can be interpreted as being part of one
or other of them. The exceptions are the motors, whereby
their stators are considered part of the structure whereas their
rotors are considered part of the reaction wheels.

A. KINEMATICS
Unlike Euler angles, based on the property that any orienta-
tion of a rigid body can be described with a sequence of three
consecutive rotations around a predefined axis, quaternion
rotation is based on the property that any orientation of a rigid
body can be described with a single rotation around the real
eigenvector of the transformation matrix between body and
inertial axes. For this, quaternions require four parameters:
three to describe the eigenaxis ê coordinates plus one to
describe the rotation angle φ.

Quaternions possess a not very common and somewhat
complex algebra, that is going to be briefly described in this
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section. Before diving into quaternion algebra, the rotation
around a specific axis (the property which quaternions are
based on) will be derived.

1) SPACIAL ROTATION
Let Er be an arbitrary vector to be rotated around a unit vector ê
by an angle φ generating a rotated vector Er ′ (Fig. 4).

FIGURE 4. Rodrigues’ rotation geometry.

Projection vectors Ev1, Ev2, Ev3 and Ev4 can be written in terms
of vector Er , unit vector ê and angle φ as

Ev1 = (Er · ê)ê, (1)

Ev2 = Er − Ev1, (2)

Ev3 = Ev2 × ê, (3)

Ev4 = Ev2 cosφ + Ev3 sinφ. (4)

The rotated vector Er ′ can be written in terms of projection
vectors such that

Er ′ = Ev1 + Ev4. (5)

Substituting (1) to (4) in (5) results in

Er ′ = (1− cosφ)(Er · ê)ê+ cosφEr + sinφ(Er × ê). (6)

Equation (6) is the Rodrigues’ rotation formula that
describes the rotation of a vector Er by an angle φ along a unit
vector ê.

2) QUATERNION FUNDAMENTALS
Quaternion algebra can be generated from the following prop-
erties

i2 = j2 = k2 = ijk = −1. (7)

By left and right multiplying (7), together with associativ-
ity and distributivity, the following multiplication rules arise

ij = k, ji = −k,

jk = i, kj = −i,

ki = j, ik = −j, (8)

as it can be seen, the product is non-commutative.

3) QUATERNION NOTATION
A quaternion q is a set of four parameters, a real value q0 and
three imaginary values q1, q2 and q3, such that

q = q0 + q1i+ q2j+ q3k. (9)

A quaternion can also be represented as a four-dimensional
column vector composed of a real value q0 and a vectorial
imaginary value Eq =

[
q1 q2 q3

]T , such that

q =
[
q0
Eq

]
. (10)

The conjugate of a quaternion is defined as

q̄ =
[
q0
−Eq

]
, (11)

and its norm (a non-negative real value) as

|q| =
√
q20 + q

2
1 + q

2
2 + q

2
3. (12)

4) QUATERNION PRODUCT
From the rules given in (7) and (8), the product of two
quaternions q and r (represented by the ◦ operator) can be
derived

q ◦ r =
[

q0r0 − Eq · Er
q0Er + r0Eq+ Eq× Er

]
. (13)

Since (13) is linear in r , it can also be written in
matrix-vector product form

q ◦ r =
[
q0 −EqT

Eq q0 I3×3 + q̃

] [
r0
Er

]
, (14)

where q̃ is the rotation quaternion vector represented as a
skew-symmetric matrix corresponding to its cross product

q̃ = Eq× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 . (15)

Note that the matrix corresponding to its quaternion prod-
uct can also be written as

q ◦ =

 | |

q G(q)T

| |

 , (16)

where

G(q) =
[
−Eq q0 I3×3 − q̃

]
. (17)

From (13), it can be seen that

q ◦ r = r̄ ◦ q̄, (18)

and

q ◦ q̄ = q̄ ◦ q =
[
|q|2

E0

]
. (19)

Moreover, if the quaternion has unit norm, i.e. |q| = 1, two
other properties are valid

q ◦ q̄ = q̄ ◦ q =
[
1
E0

]
, (20)

and

G(q)G(q)T = I3×3. (21)
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5) ROTATION QUATERNION
Let Er be an arbitrary fixed vector described in an inertial
coordinate frame O : {x, y, z} (Fig. 5a) and Er ′ be this same
vector but described in a body fixed coordinate frame O :
{x ′, y ′, z ′} (Fig. 5b).

FIGURE 5. Same vector described in different coordinate frames.

To transform Er into Er ′, consider the following quaternion
multiplication

r ′ = q̄ ◦ r ◦ q, (22)

where r and r ′ are quaternions with no real part and with
vectors Er and Er ′ in their imaginary part

r =
[
0
Er

]
, r ′ =

[
0
Er ′

]
, (23)

and q is the rotation quaternion whose components are
defined in terms of the eigenaxis ê and rotation angle φ, such
that

q =

 cos
φ

2

ê sin
φ

2

 . (24)

Note that, because the eigenaxis has unit norm, i.e. |ê| = 1,
the rotation quaternion also has unit norm, i.e. |q| = 1.
Substituting (23) and (24) into (22) results in

r ′ =
[

0
(1− cosφ)(ê · Er)ê+ cosφEr + sinφ(Er × ê)

]
, (25)

which is the Rodrigues’ rotation formula derived in (6).
For the inverse transformation, one just needs to swap the

rotation quaternion with its conjugate

r = q ◦ r ′ ◦ q̄. (26)

Moreover, since vector Er is fixed in the inertial coordinate
frame, a rotation quaternion q can be used to represent the
rotation of the body fixed coordinate frame with respect to
the inertial coordinate frame

Er ′ = R(q)Er, (27)

where R(q) is the rotation matrix in terms of the rotation
quaternion, given by

R(q) =
[
q0 I3×3 + Eq Eq T + 2 q0q̃+ q̃2

]
. (28)

6) KINEMATIC EQUATION
Let us suppose now that the body fixed coordinate frame is
in rotational motion around the origin O (Fig. 6).

FIGURE 6. Body fixed coordinate frame angular velocity.

Its angular velocity vector Eω is given by

Eω =

ωxωy
ωz

 . (29)

Note that this is the angular velocity with respect to the
inertial coordinate frame but described in the body fixed
coordinate frame axes.

Let ω be a quaternion with no real part and with the
vector Eω in its imaginary part

ω =

[
0
Eω

]
. (30)

Since vector Er is fixed in the inertial coordinate frame,
its time derivative, as seen by the inertial coordinate frame,
is zero

ṙ =
[
0
Ėr

]
=

[
0
E0

]
. (31)

In turn, its time derivative, as seen by the body fixed coor-
dinate frame, depends on the body-fixed coordinate frame
angular velocity vector

ṙ ′ =
[
0
Ėr ′

]
=

[
0

−Eω × Er ′

]
. (32)

The minus sign appears because, if the body coordinate
frame rotates in one direction, the vector will be seen by the
body coordinate frame as rotating in the opposite direction.

Since quaternions r ′ and ω have no real part, (32) is
equivalent to

ṙ ′ = −ω ◦ r ′. (33)

Differentiating (22) and using (26) and (31), yields

ṙ ′ = −2q̄ ◦ q̇ ◦ r ′. (34)

Comparing (34) with (33), it is possible to obtain the angu-
lar velocity quaternion in terms of the rotation quaternion and
its time derivative

ω = 2q̄ ◦ q̇, (35)
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which can also be rewritten by making use of (18) as

ω = −2 ˙̄q ◦ q. (36)

By left-multiplying both sides of (35) with q and
using (20), the rotation quaternion time derivative q̇ can be
isolated

q̇ =
1
2
q ◦ ω. (37)

Equation (37) is the rotational kinematic equation of a rigid
body utilizing quaternions.

Because quaternion ω has no real part, (35), (36) and (37)
can also be written in vector notation utilizing (16) as

Eω = 2G(q)q̇, (38)

Eω = −2G(q̇)q, (39)

q̇ =
1
2
G(q)T Eω, (40)

and also from (16), it is possible to demonstrate that

ω̃ = 2 G(q)G(q̇)T . (41)

B. KINETICS
Is this section, the kinetic equations of the Cubli will be
derived utilizing the Lagrange equations.

1) KINETIC ENERGY
The Cubli total kinetic energy is the sum of the kinetic energy
of each moving body

T = Ts +
3∑
i=1

Twi, (42)

where Ts is the kinetic energy of the structure and Twi is the
kinetic energy of the i-th reaction wheel.

Let Eωs be the structure angular velocity vector described
along the body fixed coordinate frame but with respect to the
inertial coordinate frame (Fig. 7), given by

Eωs =

ωxωy
ωz

 . (43)

Let Eωw1, Eωw2 and Eωw3 be the reaction wheels relative
angular velocity vectors described in and with respect to the
body fixed coordinate frame (Fig. 7), given by

Eωw1 =

ω1
0
0

 , Eωw2 =

 0
ω2
0

 , Eωw3 =

 0
0
ω3

 . (44)

Note that these angular velocity vectors are relative; hence,
to obtain the reaction wheel angular velocity vector with
respect to the inertial coordinate frame, the structure angular
velocity vector needs to be added (since the reaction wheels
are rotating together with the structure).

The structure can be approximated to a cube of side
length l, mass ms and moment of inertia around its principal
axes Isxx = Isyy = Iszz , whereas each reaction wheel can be

FIGURE 7. Cubli angular velocities.

approximated to a disc of massmw, moment of inertia around
its axial principal axis Iwxx and moment of inertia around its
perpendicular principal axes Iwyy = Iwzz . These parameters
were obtained from the CAD version of the Cubli and are
given in Table 1.

TABLE 1. Cubli parameters.

Let IsG be the structure inertia tensor on its center of mass
Gs with respect to the x ′′y′′z′′ axes and Ers be the vector from
pivot point O to the structure center of mass Gs (Fig. 8a),
given by

IsG =

Isxx 0 0
0 Isxx 0
0 0 Isxx

 , Ers =
l/2
l/2
l/2

 . (45)

FIGURE 8. Moment of inertias.

Let Iw1G be reaction wheel 1 inertia tensor on its center
of mass Gw1 with respect to the x ′′1 y

′′

1z
′′

1 axes and Erw1 be the
vector from pivot point O to reaction wheel 1 center of mass
Gw1 (Fig. 8b) given by

Iw1G =

Iwxx 0 0
0 Iwyy 0
0 0 Iwyy

 , Erw1 =
 0
l/2
l/2

 . (46)

VOLUME 9, 2021 122429



F. Bobrow et al.: Cubli: Modeling and Nonlinear Attitude Control Utilizing Quaternions

Since all three reaction wheels are identical and differ
only in their position, orientation and axis around which they
rotate, it can be inferred that

Iw2G =

Iwyy 0 0
0 Iwxx 0
0 0 Iwyy

 , Erw2 =
l/2

0
l/2

 , (47)

Iw3G =

Iwyy 0 0
0 Iwyy 0
0 0 Iwxx

 , Erw3 =
l/2
l/2

0

 . (48)

With all these values, it is possible to calculate IsO and
IwiO , the structure and i-th reaction wheel inertia tensor on
pivot point O, respectively, with respect to the x ′y′z′ axes,
by applying the Huygens-Steiner theorem

IsO = IsG + msr̃sr̃
T
s , (49)

IwiO = IwiG + mwr̃wir̃
T
wi. (50)

Thus, the total kinetic energy of the Cubli is

T =
1
2
EωTs IsO Eωs +

3∑
i=1

(
1
2
( Eωs + Eωwi)

T IwiG ( Eωs

+ Eωwi)+
1
2
( Eωs × Erwi)

Tmw ( Eωs × Erwi)
)
. (51)

Because each reaction wheel rotates around an axis orthog-
onal to each other, (51) can be simplified to

T =
1
2
EωTc Īc Eωc +

1
2
( Eωc + Eωw)

T Iw( Eωc + Eωw), (52)

where Eωc is Cubli angular velocity vector, which is the same
as the structure

Eωc =

ωxωy
ωz

 , (53)

Eωw is the composition of all three relative angular velocities
vectors of the reaction wheels

Eωw =

ω1
ω2
ω3

 , (54)

Iw is the net inertia tensor of the three reaction wheels around
each of their individual rotational axis

Iw =

Iwxx 0 0
0 Iwxx 0
0 0 Iwxx

 , (55)

and Īc is the Cubli total inertia tensor IcO on pivot point O,
subtracting the net inertia tensor Iw previously defined

Īc =

(
IsO +

3∑
i=1

IwiO

)
︸ ︷︷ ︸

IcO

−Iw, (56)

where

Īcxx = Isxx + 2Iwyy + (ms + 2mw)
l2

2
, (57)

Īcxy = −(ms + mw)
l2

4
. (58)

2) POTENTIAL ENERGY
The Cubli total potential energy is given by

V = Vs +
3∑
i=1

Vwi, (59)

where Vs is the potential energy of the structure and Vwi is the
potential energy of the i-th reaction wheel.

Let Eg be the acceleration of gravity vector described in the
inertial coordinate frame

Eg =

00
g

 . (60)

In the body fixed coordinate frame, it is simply the rotation
of the previous vector

Eg ′ = R(q)Eg, (61)

Thus, the total potential energy of the Cubli is

V = msErTs R(q)Eg+
3∑
i=1

mwErTwiR(q)Eg, (62)

which can be simplified to

V = mcErTc R(q)Eg, (63)

where mc is the Cubli total mass

mc = ms + 3mw, (64)

and Erc is the vector from pivot point O to the Cubli center of
mass Gc

Erc =
msErs + mw

∑3
i=1 Erwi

ms + 3mw
. (65)

3) LAGRANGE EQUATIONS
The Lagrangian, L = T − V , is given from (52) and (63)

L =
1
2
EωTc Īc Eωc +

1
2
( Eωc + Eωw)

T Iw( Eωc + Eωw)− mcErTc R(q)Eg.

(66)

The kinetic equations of the Cubli can then be obtained
applying the Lagrange equations

d
dt

(
∂L

∂Q̇i

)
−
∂L
∂Qi
=

∑
FQi , (67)

where Qi is the generalized coordinates of the system, and
FQi the generalized forces in the Qi direction.
There are two generalized coordinates of interest in the

Cubli: the rotation quaternion q and the reaction wheels
relative angular displacement vector Eθw.
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As for the generalized forces, there is only the vector
of torques Eτ from the motors applied on each of the three
reaction wheels, given by

Eτ =

τxτy
τz

 . (68)

These torques occur in the same direction as the reaction
wheels relative angular displacement, which means that∑

Fq = E0,
∑

FEθw = Eτ . (69)

For each one of these generalized coordinates, there will
be one kinetic equation to be calculated separately.

4) GENERALIZED COORDINATE q
Applying the Lagrange equations for Qi = q, the Lagrangian
can be written substituting the angular velocity vector Eωc
with (38), when differentiating with respect to q̇, and
with (39), when differentiating with respect to q. This yields
the following kinetic equation

2 G(q)T Īc Ėωc + 4 G(q̇)T Īc Eωc + 2 G(q)T Iw
(
Ėωc + Ėωw

)
+ 4 G(q̇)T Iw ( Eωc + Eωw)+ 2 mc1q = E0, (70)

where

1 =

[
EgT Erc −(Eg× Erc)T

−Eg× Erc Eg ErTc + ErcEg
T
− I3×3(EgT Erc)

]
. (71)

Equation (70) can be further simplified by left multiplying
it with 1

2G(q) and making use of (21) and (41)

Īc Ėωc + Eωc ×
(
Īc Eωc

)
+ Iw

(
Ėωc + Ėωw

)
+Eωc × (Iw ( Eωc + Eωw))+ m̄cglG(q)0q = E0, (72)

where

m̄c = ms + 2mw, 0 =


1 1 − 1 0
1 − 1 0 1
−1 0 − 1 1
0 1 1 1

 . (73)

5) GENERALIZED COORDINATE Eθw
When applying the Lagrange equations for Qi = Eθw, it is
possible to rewrite the Lagrangian substituting the angular
velocity vector Eωw with Ėθw, which yields the following kinetic
equation

Iw
(
Ėωc + Ėωw

)
+ Eωc × (Iw ( Eωc + Eωw)) = Eτ . (74)

C. DYNAMICS
The Cubli kinetic equations, (72) and (74), can be rewritten
together isolating their time derivative terms{
Ėωc = Ī−1c

(
−Eωc ×

(
Īc Eωc + Iw Eωw

)
− m̄cgl (G(q)0q)− Eτ

)
Ėωw = I−1w Eτ .

(75)

Because Eωw � Eωc, the approximation ( Eωc + Eωw) ≈ Eωw
was applied. Moreover, since the reaction wheels angular
velocities are relative (measuredwith respect to the structure),
their gyroscopic torques have no influence on them, only
on the Cubli. Hence, the reaction wheels gyroscopic torques
in (74) were disregarded.

For themodel to become evenmore realistic, it is necessary
to include friction forces. There are two main frictions in this
model: the friction between the Cubli and the surface at pivot
point O, and the friction of the motors.

The surface friction can be modeled by a viscous friction
coefficient b. However, since it occurs only in the direction
orthogonal to the gravity vector, it depends on the orientation
of the Cubli.

The motor friction is somewhat more complicated. Besides
having viscous friction, it also has static friction (that gener-
ates a dead zone) and aerodynamic drag (since the reaction
wheels are hollow). It can be modeled as

τf (ωi) = sign(ωi)
(
τc + bw|ωi| + cd |ωi|2

)
, (76)

where τc is the Coulomb friction, bw is the viscous friction
coefficient and cd is the aerodynamic drag coefficient. Those
parameters were identified experimentally with a torque con-
troller by varying the torque reference, registering the equiv-
alent steady-state velocity (where the input torque equals the
friction torque), and curve fitting of the data (Fig. 9). The
identified parameters are given in Table 2.

FIGURE 9. Friction torque data and curve fitting.

Including the kinematic equation (37) and friction forces
in (75), the full equations of motion are obtained



q̇ = 1
2G

T (q) Eωc
Ėθw = Eωw

Ėωc = Ī−1c
(
−Eωc ×

(
Īc Eωc + Iw Eωw

)
− m̄cgl (G(q)0q)

−b
(
G(q)3q (G(q)3q)T

)
Eωc + Eτf ( Eωw)− Eτ

)
Ėωw = I−1w

(
−Eτf ( Eωw)+ Eτ

)
.

(77)
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TABLE 2. Friction torque parameters.

where

Eτf ( Eωw) =

τf (ω1)
τf (ω2)
τf (ω3)

 , 3 =


0 0 0 1
0 0 1 0
0 − 1 0 0
−1 0 0 0

 . (78)

The system can also be represented in a block diagram
(Fig. 10), where it is easier to interpret the gyroscopic terms,
gravity torque, surface friction and motor friction.

FIGURE 10. Cubli dynamics.

Note that the Cubli and the reaction wheel dynamics
are coupled by the gyroscopic terms and motor friction.
In steady-state conditions, angular velocities are close to zero
and thus they are coupled only by the viscous friction of the
motors.

D. VALIDATION
The model was validated by means of computer simulations,
and they were divided into three main types. In all of them,
friction forces are being despised.

1) INVARIANT ANALYSIS
Invariant analysis considers parameters that must remain
unchanged with time when no forces are being applied. The
Cubli has three invariants:
• Total mechanical energy E
• Angular momentum projection in the gravitational field
direction Hz

• Angular momentum projection in the gyroscopic axis
direction (diagonal axis of the Cubli) Hz ′

The total mechanical energy,E = T+V , is given from (52)
and (63)

E =
1
2
EωTc Īc Eωc +

1
2
( Eωc + Eωw)

T Iw( Eωc + Eωw)+ mcErTc R(q)Eg.

(79)

Assuming the Cubli is initially aligned with the inertial
coordinate frame, i.e. q(0) =

[
1 E0

]T
, with no initial angular

velocities, i.e. Eωc(0) = Eωw(0) = E0, it results in the motion
presented in Fig. 11.

FIGURE 11. Simulation 1 - Invariant analysis (quaternion).

Because quaternions do not have an intuitive physical
meaning, it is just possible to infer that the Cubli pre-
sented some kind of periodic motion. However, since the
objective is only to analyze its energy, this is not a prob-
lem. The mechanical energy, presented in Fig. 12, remained
unchanged. As Cubli lost potential energy, it acquired the
same amount of kinetic energy, and vice-versa. This not only
confirms the hypothesis of periodic motion, but also ensures
that the model is consistent.

FIGURE 12. Simulation 1 - Invariant analysis (energy).

For the angular momentum projection invariants, the reac-
tion wheels were assumed to be fixed. The angular momen-
tum vector is

EH = Īc Eωc, (80)

so that its projections are simply given by

Hz = Īc Eωc · Eg′, Hz ′ = sum(Īc Eωc). (81)

Let us assume the same initial conditions, but now with
an arbitrary initial angular velocity, i.e. Eωc(0) = E1. As it can
be seen in Fig. 13, the angular momentum projection on the
gravitational field and gyroscopic axis directions remained
unchanged.

FIGURE 13. Simulation 2 - Invariant analysis (angular momentum).
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2) SINGULAR MOTIONS
Singular motions consider pre-defined initial conditions in
which the behavior of the system can be predicted. They will
be divided into static equilibrium, whereby the system states
must remain unchanged, and dynamic equilibrium, whereby
the system states change as expected.

FIGURE 14. Cubli static equilibrium positions.

The Cubli has two static equilibrium positions: stable and
unstable, as it can be seen in Fig. 14. Note that the stable
one is only being considered for simulation purposes, since
the Cubli would never be under the xy plane. The rotation
quaternions corresponding to these orientations are

qs =



√
2
3

(
3−
√
3
)

2

−

√
1
3

(
3+
√
3
)

2√
1
3

(
3+
√
3
)

2

0


, qu =



√
2
3

(
3+
√
3
)

2√
1
3

(
3−
√
3
)

2

−

√
1
3

(
3−
√
3
)

2

0


. (82)

Since the Cubli can rotate around its diagonal axis and
still be in an equilibrium position, there are infinite other
equivalent rotation quaternions. In one simulation, the Cubli
was considered initially on its stable equilibrium position,
i.e. q(0) = qs, whereas in the other, it was considered in its
unstable equilibrium position, i.e. q(0) = qu, both with no
initial angular velocities, i.e. Eωc(0) = Eωw(0) = E0. In both
cases, rotation quaternions remained unchanged, confirming
that these are in fact static stable positions.

The Cubli has many dynamic equilibrium motions,
the most well-known being those like the spinning top
motion. Two of them will be analyzed: the single spin motion
and the precession, nutation, and spinmotion. The first occurs
when the Cubli is in its static equilibrium position (either
stable or unstable) but spinning around its diagonal axis
(Fig. 15a), whereas the second occurs when the Cubli center
of mass vector Erc is not perfectly aligned with the z axis in the
inertial coordinate frame, so it spins around its diagonal axis
and also precesses around the z axis in the inertial coordinate
frame (Fig. 15b).

FIGURE 15. Cubli dynamic equilibrium motions.

All these simulations were performed utilizing quater-
nions, but for the ease of representation, the results were
converted to precession, nutation and spin angles. Moreover,
the reaction wheels were assumed to be fixed.

For the single spin motion, the same initial conditions, i.e.
q(0) = qu, were assumed, but now with an initial angu-
lar velocity, i.e. Eωc(0) = 2π E1√

3
, meaning it is spinning.

Results are presented in Fig. 16. The spin angle kept increas-
ing whereas the precession and nutation angles remained
unchanged, meaning that the Cubli only rotated around its
diagonal axis. Moreover, Cubli rotated at exactly 2π rad/s
(1Hz), which agrees with the initial angular velocities.

FIGURE 16. Simulation 5 - Dynamic equilibrium (Euler angles).

To simulate the precession, nutation and spin motion,
a non-equilibrium rotation quaternion qne was calculated con-
sidering a somewhat small nutation angle (10◦). Consider-
ing this new rotation quaternion as an initial condition, i.e.
q(0) = qne, and with initial angular velocities 10 times faster
(to guarantee it precesses), i.e. Eωc(0) = 20π E1√

3
, Fig. 17

shows the results.

FIGURE 17. Simulation 6 - Dynamic equilibrium (Euler angles).

Now all three angles are changing, but in a standard-
ized way. The nutation angle keeps oscillating around 10◦,
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whereas the precession and spin angle kept increasing. More-
over, the spin velocity is clearly higher than the precession
velocity, which is, in fact, expected in the spinning top
motion. Although the initial spin velocity is 10 times that
of the previous simulation, the frequency is not 10 times
higher, meaning that the spin is now somewhat slower. This
is because the Cubli is now also performing a gyroscopic
precession.

Another interesting graph of the same simulation is a
three-dimensional position of the Cubli center of mass, which
can be seen in Fig. 18. Although not in scale, it gives a clear
perspective of the spinning top motion.

FIGURE 18. Simulation 6 - Dynamic equilibrium (center of mass).

To completely validate this motion, they will be compared
to the well-known [36] general equations of rotation of a
symmetrical body about a fixed point O
Io
(
ψ̈ sin θ + 2ψ̇ θ̇ cos θ

)
−I θ̇

(
ψ̇ cos θ + φ̇

)
= 0

Io
(
θ̈ − ψ̇2 sin θ cos θ

)
+ I ψ̇

(
ψ̇ cos θ + φ̇

)
sin θ = mcg|Erc| sin θ

I
(
φ̈ + ψ̈ cos θ − ψ̇ θ̇ sin θ

)
= 0,

(83)

where Io is the Cubli maximum principal moment of inertia,
around axis 1 and 2, whereas I is the minimum principal
moment of inertia, around axis 3 (Fig. 19).

FIGURE 19. Cubli principal moment of inertia.

These moments of inertia are the eigenvalues of the Cubli
inertia tensor Īc and are given by

I = Īcxx − Īcxx , Io = Īcxx + 2Īcxx . (84)

Considering the same previous initial conditions, but now
in terms of Euler angles, i.e. ψ(0) = φ(0) = ψ̇(0) =
θ̇ (0) = 0, θ (0) = 10◦ and φ̇(0) = 20π , and simulating (83),
the result is the same of Fig. 17, confirming that the dynamic
equations are consistent.

Next, the steady precession case is considered. For this
motion to happen, the Cubli should have constant spin and
precession velocities, and also a constant nutation angle, i.e.
ψ̈ = φ̈ = θ̇ = 0. This simplifies (83) to a single equation

(Io− I ) ψ̇2 cos θ−I ψ̇φ̇ + mcg|Erc| = 0. (85)

From (85), it is possible to calculate the precession velocity
in terms of the spin velocity and nutation angle

ψ̇ =
I φ̇ ±

√
I2φ̇2 − 4 (Io− I ) cos θmcg|Erc|

2 (Io− I ) cos θ
. (86)

Note that, for this equation to be valid, the square root term
must be real, meaning that there is a minimum spin velocity
needed for steady precession

φ̇ ≥
2
I

√
(Io− I ) cos θmcg|Erc|. (87)

The spin velocity and nutation angle of the previous sim-
ulation satisfy (87), but for the Cubli to present steady pre-
cession, the precession velocity from (86) should be ψ1 =

4.40 rad/s or ψ2 = 22.19 rad/s. Assuming the same initial
conditions but now with ψ(0) = ψ1, which means that
Eωc(0) =

[
38.47 38.47 39.40

]T , and simulating (77) instead
of (83), yield the results presented in Fig. 20. As it can be
seen, the Cubli is now clearly in steady precession, showing
once again the consistency of the model.

FIGURE 20. Simulation 8 - Dynamic equilibrium (Euler angles).

3) POINSOT TRAJECTORIES
Poinsot trajectories are a geometrical method for visualizing
the torque-free motion of a rotating rigid body [37]. Since
the system needs to be in torque-free motion, gravity will be
neglected. The conservation of angular momentum implies
that in the absence of applied torques, EH is conserved in an
inertial coordinate frame ( d EHdt = 0). The conservation of
energy implies that in the absence of input torques and energy
dissipation, T is also conserved ( dTdt = 0). Considering the
principal axes, it is possible to write EH =

[
Ioω1 Ioω2 Iω3

]T ,
so that the total angular momentum is simply the magnitude
of this vector

H =
√
I2oω

2
1 + I

2
oω

2
2 + I

2ω2
3. (88)
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The angular kinetic energy, also considering the principal
axes, is given by

T =
1
2
Ioω2

1 +
1
2
Ioω2

2 +
1
2
Iω2

3. (89)

Writing (88) and (89) in terms of the angular momentum
vector components along the principal axes yields

H2
= H2

1 + H
2
2 + H

2
3

2T =
H2
1

Io
+
H2
2

Io
+
H2
3

I
,

(90)

which are equivalent to two constraints for the 3D angular
momentum vector EH . The angular momentum constrains EH
to lie on a sphere, whereas the kinetic energy constrains EH
to lie on an ellipsoid. These two surfaces intersections define
the possible solutions for EH .

Simulations in Fig. 21a considered various initial angular
velocities, all with the same total H . Each line or dot is
a different simulation and represents an intersection with
the kinetic energy ellipsoid. The surface created is clearly a
sphere, which is expected for a constant angular momentum.
Moreover, because each simulation has constantH3, the body
is axisymmetric along this axis, which is in fact the case for
the Cubli.

FIGURE 21. Simulation 9 - Poinsot trajectories.

Considering now the same kinetic energy T , yields
Fig. 21b. In this case, the surface is an ellipsoid, which is
also expected for constant kinetic energy. Now each line or
dot represents an intersection with the angular momentum
sphere. Moreover, because two moments of inertia are the
same and the third one is smaller than the other two, the shape
is in fact a prolate spheroid, which is a particular case of an
ellipsoid.

III. ANALYSIS
Before diving into the control of the Cubli, its stability and
controllability properties will be analyzed.

A. LINEARIZED DYNAMICS WITHOUT REACTION WHEELS
When the Cubli is at rest, i.e. Eωc = E0, perfectly balanced on
its unstable equilibrium position, i.e. q = qu, the linearized
dynamics, despising the reaction wheels dynamics, are[

q̇
Ėωc

]
=

[
04×4 1

2G
T

Ī−1c K −Ī−1c B

][
q
Eωc

]
+

[
04×3
Ī−1c

]
Eτ , (91)

where

G = G(qu), K = m̄cgl (G(qu)0−G(0qu)) , B = b 13×3,
(92)

being 13×3 a 3× 3 matrix with all elements equal to one.
Its characteristic equation is given by

s︸︷︷︸
quaternion
redundancy

s
(
s+ ωn1

)︸ ︷︷ ︸
yaw

dynamics

(
s2 − ω2

n0

)2
︸ ︷︷ ︸
roll/pitch
dynamics

= 0, (93)

where ωn0 is the natural frequency of the roll and pitch
dynamics, whereas ωn1 is the natural frequency of the yaw
dynamics, given by

ωn0 =

√√√√ m̄cgl
√
3

Īcxx − Īcxy
, ωn1 =

b

Īcxx + 2Īcxy
. (94)

Note that Īcxx − Īcxy and Īcxx + 2Īcxy are the Cubli prin-
cipal moments of inertia derived in (84), which are, in fact,
the moments of inertia around the roll and pitch motion and
around the yaw motion.

Although quaternions have been utilized the whole time,
the characteristic equation of the linearized dynamics is
clearly described in terms of Euler angles. Roll and pitch
dynamics are unstable due to its poles being located at±ωn0 ,
whereas yaw dynamics are marginally stable due to its poles
being located at 0 and −ωn1 . Moreover, there is also an extra
pole at 0, which is inherited from the rotation quaternion
kinematic equation since a rotation quaternion is a redundant
way to describe an orientation.

The controllability matrix has rank(C) = 6, whereas
the system has dimension n = 7. However, even that
rank(C) 6= n, the system is fully controllable since one of
the system states is redundant due to quaternion representa-
tion. In other words, although quaternions are being utilized
(which includes an extra redundant state), the system still has
3 d.o.f. and thus its ‘‘physical’’ dimension remains n = 6.

B. LINEARIZED DYNAMICS WITH REACTION WHEELS
Let us now consider the full linearized dynamics, that is,
without despising the reaction wheels


q̇
Ėθw

Ėωc

Ėωw

 =


04×4 04×3 1
2G

T 04×3

03×4 03×3 03×3 I3×3

Ī−1c K 03×3 −Ī−1c B Ī−1c F

03×4 03×3 03×3 −Ī−1w F



q
Eθw
Eωc
Eωw

+

04×3

03×3

Ī−1c

I−1w

 Eτ ,
(95)

where

F = bwI3×3. (96)
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The characteristic equation is almost the same but with an
extra term from the reaction wheels dynamics

s︸︷︷︸
quaternion
redundancy

(
s
(
s+ ωn2

))3︸ ︷︷ ︸
reac. wheel
dynamics

s
(
s+ ωn1

)︸ ︷︷ ︸
yaw

dynamics

(
s2 − ω2

n0

)2
︸ ︷︷ ︸
roll/pitch
dynamics

= 0,

(97)

where ωn2 is the natural frequency of the reaction wheel
dynamics, given by

ωn2 =
bw
Iwxx

. (98)

The reaction wheel dynamics are marginally stable due to
its poles being located at 0 and ωn2 . Although the viscous
friction of the motors couples the Cubli and the reaction
wheel dynamics, it does not interfere in the linearized roll,
pitch and yaw dynamics since its poles remained unchanged.

The controllability matrix now has rank(C) = 11, whereas
the system now have dimension n = 13. Despising the
quaternion redundancy, its ‘‘physical’’ dimension is n = 12,
which means that now the system is not fully controllable.

IV. CONTROL
Although it is possible to control the yaw motion or reaction
wheel motion, it is impossible to control both simultaneously.
As will be shown further, this is due to the Cubli symmetry
around the yaw axis. One way to deal with this problem is to
decouple the yaw dynamics and do not try to control it, thus,
viscous friction with the surface will make the open-loop yaw
dynamics marginally stable, as shown in [18]. An alternative
way, considered here, is to implement a trajectory control for
the yaw axis to track a sinusoidal like signal with zero-mean.

A. ATTITUDE CONTROLLER
Initially, one will focus only on the Cubli dynamics, without
care about controlling the wheels.

1) FEEDBACK LINEARIZATION
Adopting a new input vector Eu and making the input torque Eτ
equal to

Eτ = −Eωc ×
(
Īc Eωc + Iw Eωw

)
− m̄cgl (G(q)0q)

−b
(
G(q)3q (G(q)3q)T

)
Eωc + Eτf ( Eωw)− ĪcEu, (99)

a feedback linearization law that cancels out all the gyro-
scopic terms, gravity torque, surface friction and motor fric-
tion is obtained (Fig. 22).
By substituting (99) into (77), it reduces the system to q̇ =

1
2
G(q)T Eωc

Ėωc = Eu.
(100)

Although the angular velocity differential equation is now
linear, the rotation quaternion differential equation is still
nonlinear.

FIGURE 22. The Cubli with feedback linearization.

2) STATE REGULATOR
Let qr be an orientation quaternion reference and qe be an
orientation quaternion error, such that

qr =
[
qr0
Eqr

]
, qe =

[
qe0
Eqe

]
. (101)

The orientation error represents the rotation needed
from current orientation to match the orientation reference.
In quaternion notation, consecutive rotations can be rep-
resented as multiplications between respective orientation
quaternions, which means that

qr = q ◦ qe. (102)

By left-multiplying both sides of (102) with q̄ and
using (20), it is possible to isolate orientation quaternion error

qe = q̄ ◦ qr . (103)

Let Eωr be an angular velocity vector reference and Eωe be
an angular velocity vector error, which can be represented as
quaternions with no real parts, such that

ωr =

[
0
Eωr

]
, ωe =

[
0
Eωe

]
. (104)

The angular velocity error represents the difference
between angular velocity reference and current angular veloc-
ity. However, because there is also a difference between
orientations, the angular velocity reference must be rotated
from orientation reference to the current orientation

ωe = qe ◦ ωr ◦ q̄e − ωc, (105)

which, in vector format, is the same as

Eωe = R(qe)T Eωr − Eωc. (106)

When current orientation matches the orientation refer-
ence, no additional rotation is needed and thus the orientation
quaternion error is qe =

[
1 E0

]T
. Because qe is not zero

(and will never be since a orientation quaternion always have
unit norm), (107) could not be used to guarantee asymptoti-
cally stable error dynamics

q̈e + kd q̇e + kpqe 6=
[
0
E0

]
. (107)
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However, the vector part of the orientation quaternion error
will be zero, which means that (108) could be used instead

Ëqe + kd Ėqe + kpEqe = E0, (108)

The first time derivative of qe is obtained by differentiat-
ing (103)

q̇e =
1
2
ωe ◦ qe, (109)

where its vector part is given by

Ėqe =
1
2

(
qe0 I3×3 − q̃e

)
Eωe. (110)

On the other hand, the second time derivative of qe can be
calculated differentiating (109)

q̈e =
1
2
ω̇e ◦ qe +

1
4
ωe ◦ ωe ◦ qe, (111)

where its vector part is given by

Ëqe =
1
2

(
qe0 I3×3 − q̃e

)
Ėωe −

1
4
EωTe EωeEqe. (112)

Substituting (110) and (112) into (108) yields

Ėωe + kd Eωe + 2
(
kp −

1
4
EωTe Eωe

)
Eqe
qe0
= E0. (113)

The term Eqe
qe0

is the Gibbs vector error Eσe, given by

Eσe =


eex tan

φe

2

eey tan
φe

2

eez tan
φe

2

 . (114)

This vector is singular for φe = ±180◦, which appears to
be a disadvantage of utilizing rotation quaternions as feed-
back control states. However, the biggest possible attitude
error between two orientations is 180◦, and if it is necessary
to go to a reference in the longest path, a trajectory control
may be utilized.

The time derivative of ωe is obtained differentiating (105)

ω̇e = ωe ◦ ωc + qe ◦ ω̇r ◦ q̄e − ω̇c, (115)

where its vector part is given by

Ėωe = Eωe × Eωc + R(qe)T Ėωr − Ėωc. (116)

Isolating Ėωc in (116) and substituting (113) in it yields the
following control law

Eu = 2
(
kp −

1
4
EωTe Eωe

)
Eqe
qe0
+ kd Eωe︸ ︷︷ ︸

Feedback

+ Eωe × Eωc + R(qe)T Ėωr︸ ︷︷ ︸
Feedfoward

.

(117)

This control law was derived at NASA Ames Research
Center back in 1993 by Paielli and Bach [27], [28] for space-
craft attitude control.

For small rotations, the term EωTe Eωe is close to zero, qe0 is
close to one, Eωe × Eωc is close to zero and R(qe)T is close to
identity, which further simplifies the control law

Eu ≈ 2kpEqe + kd Eωe + Ėωr . (118)

Moreover, the orientation quaternion error and angular
velocity error vectors are approximate to the Euler angles
errors

Eqe =


ex sin

φe

2

ey sin
φe

2

ez sin
φe

2

 ≈

φe

2
θe

2
ψe

2

 , Eωe =

ωexωey
ωez

 ≈
φ̇eθ̇e
ψ̇e

 .
(119)

Substituting (119) into (118) yields a state regulator that is
equal to the one commonly utilized with Euler angles when
dealing with small rotations

Eu ≈

 kp(φr − φ)+ kd (φ̇r − φ̇)+ φ̈r
kp(θr − θ )+ kd (θ̇r − θ̇ )+ θ̈r

kp(ψr − ψ)+ kd (ψ̇r − ψ̇)+ ψ̈r

 . (120)

This means that, for small rotations, the derived nonlinear
control law of (117) is equivalent to a linear one dynamically
linearized at the reference position.

3) CONTROLLER GAINS
Substituting (117) into (100) and rewriting the first differen-
tial equation in terms of the Gibbs vector error and no longer
in terms of quaternions yields

Ėσe =
1
2

(
I3×3 − σ̃e + Eσe Eσ Te

)
Eωe

Ėωe = −2
(
kp −

1
4
EωTe Eωe

)
Eσe − kd Eωe.

(121)

When the Cubli is in its unstable equilibrium position, i.e.
Eσe = Eωe = Ėωr = E0, the closed loop linearized dynamics are[

Ėσe

Ėωe

]
=

[
03×3 1

2 I3×3

−2kpI3×3 −kd I3×3

][
Eσe
Eωe

]
. (122)

Its characteristic equation is(
s2 + kd s+ kp

)3
= 0. (123)

Comparing (123) with the characteristic equation of a
generic 2nd order system with two complex poles

s2 + 2ζωns+ ωn = 0, (124)

yields the following values for the controller gains in terms
of the desired closed-loop parameters ζ and ωn{

kp = ω2
n

kd = 2ζωn.
(125)
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FIGURE 23. The Cubli with state regulator and feedback linearization.

B. ATTITUDE AND WHEEL CONTROLLER
Since the Cubli is influenced by the acceleration of the reac-
tion wheels, it may happen that one reaction wheel velocity
saturates for a while. Moreover, the Cubli construction may
be imperfect, or attitude sensors may be misaligned, so what
seems to be an equilibrium position may not be, and the
reaction wheels will keep accelerating trying to maintain that
erroneous equilibrium. It is thus desirable to achieve the dual
goals of stabilizing the Cubli and keep the reaction wheels
velocities small.

1) STATE REGULATOR
To achieve this, the control law of (117) must be slightly
modified by also having feedback from the reaction wheels
angular displacements and velocities, such that

Eu =

Attitude feedback︷ ︸︸ ︷
2
(
kp −

1
4
EωTe Eωe

)
Eqe
qe0
+ kd Eωe

Attitude feedfoward︷ ︸︸ ︷
+ Eωe × Eωc + R(qe)T Ėωr

−kpw Eθw − kdw Eωw︸ ︷︷ ︸
Wheel feedback

. (126)

The full nonlinear control law (Fig. 23) is composed of
the feedback linearization from (99) and the state regulator
from (126).

Note that, if the objective is just to stabilize the Cubli, i.e.
Eωr = Ėωr = E0, the control law reduces to

Eu = 2
(
kp −

1
4
EωTc Eωc

)
Eqe
qe0
− kd Eωc︸ ︷︷ ︸

Attitude feedback

−kpw Eθw − kdw Eωw︸ ︷︷ ︸
Wheel feedback

. (127)

2) CONTROLLER GAINS
Substituting (126) into (100) yields

Ėσe =
1
2

(
I3×3 − σ̃e + Eσe Eσ Te

)
Eωe

Ėθw = Eωw

Ėωe = −2
(
kp −

1
4
EωTe Eωe

)
Eqe
qe0
− kd Eωe + kpw Eθw + kdw Eωw

Ėωw = −I−1w
(
Eωc ×

(
Īc Eωc + Iw Eωw

)
+ m̄cgl (G(q)0q)

+b
(
G(q)3q (G(q)3q)T

)
− Īc

(
2
(
kp −

1
4
EωTe Eωe

)
Eσe

+kd Eωw + R(qe)T Ėωr + Eωe × Eωc − kpw Eθw − kdw Eωw
))
.

(128)

When the Cubli is in its unstable equilibrium position, i.e.
Eσe = Eθw = Eωe = Eωw = Ėωr = E0, the closed loop linearized
dynamics are


σ̇e

Ėθw

Ėωe

Ėωw

 =


03×3 03×3 1
2 I3×3 03×3

03×3 03×3 03×3 I3×3

−2kpI3×3 kpw I3×3 −kd I3×3 kdw I3×3

−2Kw − 2kpI−1w Īc kpw I
−1
w Īc Bw − kd I−1w Īc kdw I

−1
w Īc



σe
Eθw
Eωe
Eωw

 ,
(129)
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where

I−1w Īc =
1
3

β + 2γ β − γ β − γ

β − γ β + 2γ β − γ

β − γ β − γ β + 2γ

 ,
Kw =

δ

3

 2 −1 −1
−1 2 −1
−1 −1 2

 , Bw =
ε

3

1 1 1
1 1 1
1 1 1

 , (130)

and

β =
Īcxx + 2Īcxy

Iwxx
, γ =

Īcxx − Īcxy
Iwxx

,

δ =
m̄cgl
√
3

Iwxx
, ε =

b
Iwxx

. (131)

Its characteristic equation is

Yaw closed-loop dynamics︷ ︸︸ ︷
s
(
s3 +

(
kd − βkdw

)
s2 +

(
kp − βkpw − εkdw

)
s− εkpw

)
(
s4+

(
kd − γ kdw

)
s3+

(
kp − γ kpw

)
s2+δkdws+ δkpw

)2
︸ ︷︷ ︸

Roll/Pitch closed-loop dynamics

= 0.

(132)

Note that, by varying just the controller gains kp, kd , kpw
and kdw , it is possible to freely allocate yaw or roll and pitch
closed-loop poles, but never both simultaneously.What could
be done is to allocate the roll and pitch poles in the desired
locations and just ensure that the yaw dynamics remains
stable. However, even this is not possible. Due to the negative
sign in term εkpw , reaction wheel gain kpw would need to
be negative to make yaw dynamics stable, but then roll and
pitch dynamics would become unstable. There is no way out.
Physically speaking, gravity acts as a non-restorative force in
the roll and pitch dynamics, whereas surface friction acts as a
restorative force in the yaw dynamics. This inversion of signs
is exactly what makes the system not controllable.

However, there is a way to at least mitigate this problem.
If the parameter ε or controller gain kpw are equal to zero,
the yaw dynamics would be marginally stable. So, two things
can be done: first is to position the Cubli on a smooth surface
with the least possible friction to make b, and consequently ε,
small; second is to reduce kpw the maximum, but without
compromising the roll and pitch dynamics.

Comparing the roll and pitch terms of (132) with the
characteristic equation of a generic 4th order system with
two complex poles and two repeated real poles, given by(
s2 + 2ζωns+ ω2

n
)
(s+ αζωn)2 = 0, which is equivalent to

s4 + 2ζωn (1+ α) s3 + ω2
n

(
1+ αζ 2 (4+ α)

)
s2

+

(
2αζω3

n

(
1+ αζ 2

))
s+ α2ζ 2ω4

n = 0, (133)

yields the following values for the controller gains in terms
of the desired closed-loop dynamics ζ , ωn and α and

FIGURE 24. Experiment 1 - Disturbance rejection (short time window).

parameters β, γ and δ

kp = ω2
n
(
1+ αζ 2 (4+ α)

)
+ γ

α2ζ 2ω4
n

δ

kd = 2ζωn (1+ α)+ γ
2αζω3

n
(
1+ αζ 2

)
δ

kpw =
α2ζ 2ω4

n

δ

kdw =
2αζω3

n
(
1+ αζ 2

)
δ

.

(134)

Note that, if α = 0, the controller gains kp and kd are equal
to those ones derived in (125), whereas the controller gains
kpw and kdw are equal to zero. By choosing a small enough
value of α, one guarantees that the reaction wheel dynamics
would be slow enough to not interfere in the Cubli dynamics.
In other words, the Cubli roll and pitch closed-loop poles will
be sufficient faster than the reaction wheel closed-loop poles.

V. EXPERIMENTAL RESULTS
To validate the derived control law, experiments were car-
ried out with the Cubli prototype (Fig. 2). Its electronics
is composed of one STM32 NUCLEO-L432KC develop-
ment board (80MHz ARM 32-bit Cortex M4), one SparkFun
9DoF Sensor Stick inertial measurement unit (LSM9DS1),
three Maxon EC 45 Flat brushless motors with a Maxon
ESCON Module 50/5 dedicated motor controller each and
one Turnigy Graphene Panther 1000mAh 6S LiPo battery.
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FIGURE 25. Experiment 1 - Disturbance rejection (long time window).

The microcontroller runs ARM Mbed OS open-source oper-
ating system, communicates with the IMU with I2C serial
communication protocol and with the motor controllers
with PWM, for current set-point, and analog signals, for hall
sensor readings.

A dedicated PCB was built to interface all these compo-
nents. The mechanical parts were made in laser cut aluminum
and 3D printed ABS.

To estimate the Cubli orientation and angular velocity,
a quaternion based complementary filter was developed that
fuses the accelerometer readings, which has high-frequency
noise due to centripetal and tangential accelerations, with the
gyroscope readings, which has low-frequency noise due to a
constant bias being integrated over time. Each wheel angular
displacement and velocity was obtained from a dedicated
2nd order state observer, which takes into account not only the
applied torques as well as the motors hall sensors readings.

Results were obtained adopting ζ =
√
2
2 , ωn = ωn0

and α = 0.2 for the controller gains and setting the rota-
tion quaternion reference to the Cubli unstable equilibrium
position, i.e. qr = qu.

In the first experiment, presented in Fig. 24, the Cubli
was released around 10◦ from its equilibrium position and
it was stabilized in less than 1 second, as it can be seen from
its angular velocities quickly decaying to zero. The reaction

FIGURE 26. Experiment 2 - Sinusoidal tracking reference for the yaw
angle.

wheels angular velocities also decayed to zero, but at a much
slower rate of around 5 seconds. This makes sense since
α = 0.2, which means the Cubli dynamics should be 5 times
faster than the reaction wheel dynamics.

Two external disturbances were applied, one around
4.7 seconds in the inclination angle and another one around
7.3 seconds in the yaw angle. In both cases, the control system
quickly rejected the disturbance without oscillating too much
or saturating the actuators, which would happen for torques
above 0.5N.m.

Moreover, the Cubli did not stabilize at 0◦ inclination angle
but around 4◦. This probably happened due to construction
imperfections or sensor misalignment. However, because the
reaction wheels angular displacements and velocities are also
being feed-backed, the controller was able to find the real
equilibrium position.

The experimental data is practically noise free due to the
implementation and tuning of the state estimators previously
described.

Fig. 25 represents the same experiment but plotting data
for a much longer period. It clearly shows the controllability
problem. As it can be seen, although the Cubli has been stable
for almost 1 minute, the yaw angle and reaction wheels angu-
lar displacements are increasing in modulus. In addition, one
can see that the reaction wheels velocities are also increasing
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FIGURE 27. Experiment 3 - Disturbance rejection (linear controller).

inmodulus, whichmeans that at some point, theywill saturate
and the Cubli will lose its inclination stability.

Second experiment is presented in Fig. 26. By making the
reference follows a sinusoidal motion in the yaw axis, the yaw
angle and reaction wheels angular displacement still increase
in modulus, but now the reaction wheels angular velocities
stay bounded. This does not mean that the yaw angle will be
controllable, but at least it will remain marginally stable, not
leading to the inclination instability mentioned earlier.

Another experiment is a comparison between the derived
nonlinear controller, utilizing quaternions, with a linear con-
troller, utilizing Euler angles. To generate the same distur-
bance in both cases, a forced input was applied, i.e. a constant
torque of 0.2N.m for 0.2 seconds on the x and y motors.
Fig. 27 shows the result for the linear controller, while

Fig. 28 shows the result for the nonlinear controller. As it can
be seen, the forced input applied at 1 second caused an almost
10◦ disturbance in the inclination angle. While the nonlinear
controller managed to recover, the linear controller did not.
Note that this only occurs for large disturbances, where the
Cubli leaves its equilibrium position. For small disturbances,
not shown in the figure, the performance of both controllers
would be virtually identical.

A video of the real system, including the experi-
ments presented here and some other cases, is avai-
lable at https://youtu.be/AWEWNBDW6CM, while the

FIGURE 28. Experiment 3 - Disturbance rejection (nonlinear controller).

estimator and controller source code is available at
https://github.com/fbobrow/cubli-firmware.

VI. CONCLUSION
By utilizing quaternions instead of Euler angles, model-
ing and control design could be performed utilizing vec-
tor notation. Although somewhat complex at a first view,
in the end, the control law was quite compact and obtained
completely by hand, without the need for any mathematical
symbolic software. Moreover, its implementation is compu-
tationally inexpensive, which makes it effective even with
low-performance micro-controllers.

Computer simulations showed that the model is consis-
tent, whereas Poinsot trajectories presented a geometrical
approach that also validated the model.

The Cubli presented a controllability problem inherent to
its nature, which, although not solved, was mitigated with
a sinusoidal reference strategy. Experimental results showed
that the designed nonlinear control law is consistent andmuch
more robust than a linear one.
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