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ABSTRACT With driver fatigue continues to cause serious and deadly car and motorcycles accidents,
the need for automatically recognizing driver fatigue and alerting the drivers is apparent. Although various
approaches that explore physiological and physical factors to classify driver fatigue have been developed,
the overall accuracy, recognition speed, distraction in the driving process and the cost of these systems still
need to be improved. In this paper, we present a low-cost driver fatigue level prediction framework (DFLP)
for detecting driver fatigue in its earliest stages. DFLP predicts drive fatigue based on eyes, mouth, and head
behavior cues using a non-physical contact sensor input (infrared radiation) (IR) camera. DFLP classifies the
level of drowsiness and attributes the level of altering accordingly. To validate the proposed fatigue prediction
framework, we conducted the experiment using real datasets under night and day illumination conditions.
The results of the experiment show that the proposed approach can predict the level of driver’s fatigue with
93.3% overall accuracy. The solution proposed in this paper, not only reduces the number of drivers fatigue-
related accidents but also addressed an area of sufficient interest for transportation, psychology and public
health experts and readers as well as automakers to develop an in-vehicle fatigue prediction system.

INDEX TERMS Drivers fatigue prediction, visual features, fatigue physiological features, fatigue level
prediction.

I. INTRODUCTION
Driver fatigue is one of the major contributors to serious and
deadly road accidents worldwide. According to the Transport
department of New SouthWales state in Australia, fatigue has
the same level of danger as drink driving [1]. Furthermore,
a study conducted by the Adelaide Centre for Sleep Research
has shown that drivers who have been awake for 24 hours
have an equal driving performance to a person who has a
blood alcohol content (BAC) [2] of 0.1 g/100ml and is seven
times more likely to have an accident [3]. Fatigue can often
affect the driving ability of the drivers long before the drivers’
even notice, furthermore, there is no standard rule to measure
the level of drivers fatigue other than paying attention to
fatigue signs [4]. Fatigue associated with accidents is often
more severe than others because driver’s reaction times are
delayed, or the drivers have failed to make any maneuvers to
avoid a crash.With unsafe and dangerous driving accounts for
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the death of more than one million lives and over 50 million
serious injuries worldwide each year [5], the need to address
this problem is quite obvious.

In order to reduce fatal road crashes caused by fatigued
drivers, a variety of systems that actively monitor drivers
physiological factors such as heart rate (HR) [6] brain
waves [7], electroencephalogram (EEG) [8] have been devel-
oped. Also, approaches that are based on physical factors
such as driver position [9], electromyography (EMG) [10],
and related image data [11] have also been put forward.
Other systems that focus on operating parameters such as the
strength of the pedal on the brake or accelerator [12] have
also been suggested. Although excellent advances in driver
fatigue detection have been made, they tend to be intrusive,
which creates an obstacle and distraction in the driving pro-
cess. Also, the overall accuracy is largely dependent on the
driving conditions such as time of the day (i.e., daytime or
nighttime) and the weather (e.g., clear, cloudy, rainy). The
detection speed may also be delayed due to numerous data
collection and analysis as well as reconciliation of data in
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cases where collected data exhibits differences. Last but not
the least, the cost of these systems still needs to be improved.
Therefore, there is a need to develop driver fatigue systems
with high accuracy, affordability, and less intrusive to reduce
fatigue-related road fatalities.

In this paper, we develop an approach for driver’s fatigue
level prediction framework (DFLP) for detecting driver
fatigue at an earlier stage. The approach is based on using
facial and head behavior information collected using standard
computer vision techniques [4]. The proposed approach is
low-cost and non-invasive as it uses an infrared camera that
will not be attached to the driver’s body. Furthermore, the pro-
posed approach does not have the complexity of setting up the
physical contact sensors.

The rest of the paper is organized as follows: Section II
overviews some related literature research about identifying
drivers’ fatigue, which is followed by the detailed explanation
of the methods used in the DFLP framework in Section III.
The different features used to determine the level of driver’s
fatigue are detailed in Section IV, which is followed by
the fatigue classification model in Section V. The perfor-
mance analysis, experiment setup and results are presented
in Section VI. Finally, the conclusion and future directions
are discussed in Section VII.

II. RELATED WORK
Driver’s fatigue has been an interesting subject of research
within the scientific and commercial arenas. According
to [13] the review of previous related studies, there are three
categories of methods that have been used for the analysis of
driver fatigue. The first category involves the use of physio-
logical data like heart rate (HR) [6], brain waves [7], elec-
troencephalogram (EEG) [8]. The second category involves
the use of physical data such as driver position [9], elec-
tromyography (EMG) [10], and related image data [11].
The third category includes operating parameters such as the
strength of the pedal on the brake or accelerator.

A. IDENTIFYING DRIVERS’ FATIGUE USING
PHYSIOLOGICAL AND PHYSICAL DATA
The work of [13] proposed and designed a Driver Fatigue
Prediction Monitoring System, which uses different sen-
sors such as Percent eye-closure over a fixed time window
(PERCLOS) and Heart rate variability (HRV) to detect the
driver’s level of fatigue. Their experimental results showed
that for HRV data, using Back Propagation Neural Networks
(BPNN) is superior to Long short-term memory (LSTM),
because of the true positive rate (TPR) and accuracy of
BPNN is 24% and 17%more accurate than that of the LSTM,
respectively. On the other hand, for PERCLOS data, LSTM
is capable of improving the TPR by 14% as compared to
the BPNN. The method proposed in their study is capable
of detecting fatigue a one-time step ahead, or 3 to 5 minutes
prior to drowsiness. In conclusion, the authors proposed to
focus on designing a method with a longer prediction time of
fatigue and higher accuracy for different ages and genders in

their future work. In addition to this, they presented a method
of heterogeneous sensor data fusion that can increase the reli-
ability of data and make the input method of the driver fatigue
prediction module easier. In another study [14], the authors
suggested using physiological and physical information for
fatigue recognition. They recorded the time of driving and
how the drivers behave while driving as well as the driving
performance. artificial neural network (ANN) models were
used to test the most suitable feature to be used for the pur-
pose of detecting and predicting drivers’ fatigue. The results
concluded that driver behavior information comes first before
the physiological followed by the driving behavior to obtain
the best performance. However, the shortcoming of this work
is the difficulty to record the head and eyelid movement in
a real car, driving behavior and driving performance-based
model should be improved.

B. IDENTIFYING DRIVERS’ FATIGUE USING
PHYSIOLOGICAL DATA
In another study, Hajinoroozi, Zhang [15] introduced deep
covariance learning methods with the aim of classifying the
mental states of drivers (alert or drowsy). They used EEG
epochs data for the experiment. Their experimental results
revealed that the performance recorded for all the deep covari-
ance learning methods was better than that of 244 shallow
learning methods like spatial-temporal convolutional neural
networks (STCNN) and Riemannian methods. Among the
deep covariance learning methods, the Convolutional Neural
Network (CNN) model performed best in terms of classifi-
cation, and it was applied on the spatial sample covariance
matrices using EEG epochs. In addition, the CNN model
improved the Area under the curve (AUC) of the best shallow
algorithm (logistic regression + Log-Euclidean Metric) by
12.32% from 70.96% to 86.14%.

Liu, et al. [16] explained that the brain dynamics of
humans are mercurial and time-variant, and as such, extreme
fluctuations are experienced in the degree of EEG signals
during driving. To this end, researchers have made efforts to
improve EEG signals for real-life applications. To achieve
this, they presented a real-time brain-computer interfaces
(BCI) system that uses an online algorithm for the prediction
of fatigue. The BCI system was designed with pre-event EEG
that allows the evaluation of the mental state of a driver when
driving. Furthermore, in their study, the memory capacity
for adaptive noise cancellation of the proposed system was
increased using recurrent self-evolving fuzzy neural work
(RSEFNN). The results of their experiment revealed that
the proposed system performed remarkably well in terms of
predicting drivers’ fatigue while driving.

In [17] Hajinoorzi, et al. proposed new deep learning (DL)
algorithms like channel-wise convolutional neural network
(CCNN) and CCNN-R (which is a CCNN variation that uses
Restricted Boltzmann Machine to replace the convolutional
filter) to enable the prediction of a driver’s state (alert or
drowsy). In the algorithms, raw EEG data characteristics are
used together with the CCNN and CCNN-R classifiers to
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achieve better and robust performance than DNN and CNN
alongside other non-DL algorithms that use raw EEG data.
The authors who investigated the performance of the pro-
posed deep learning and bagging classifier also compared
it with the performance of the CNN, DNN, CCNN-R and
CCNN in terms of classification. RawEEG data and Indepen-
dent Component Analysis (ICA)-transformed EEG features
were considered as inputs for different methods. An evalua-
tion of cross-session prediction was carried out for each of
the cases. The case is simulated by a cross-session prediction
which involves using the data of a session that is not the
same as the training epoch for prediction. The performance
was evaluated using cross-validation. For the training and
validation, a total of seventy sessions were used, out of which
ten sessions were used for validation and training of the
hyper-parameters, and the other sixty sessions, the classifier
is trained using fifty sessions, and then the classifier is tested
using ten sessions. The performance is measured using the
area under the curve or the Az score. Based on the results
obtained, the CNN demonstrated great potentials for use in
another EEG-based signal classification.

Similarly, in another work [18], the authors employed the
Riemannian measures in machine/deep learning models for
the classification of EEG data of the drivers in order to deter-
mine the driver’s state. The study also involved spatial and
temporal covariance matrices calculated from EEG epochs.
By using classification and visualization methods, it was
perceived that the temporal covariance matrices are more
discriminative than spatial covariancematrices. The results of
their experiments showed that the use of the temporal covari-
ance matrices with the shallow Riemannian measures pro-
duces better performance than that of the Euclidian measures
by 3.16%. The authors investigated the deep Riemannian
model (SPDNet), for classification by using both temporal
and spatial covariance matrices. The experimental results
showed that when the SPDNet is used with temporal covari-
ance matrices, it produces better performance than Euclidian
measures. The result also showed that the SPDNet improves
the classification performance for prediction by 6.02% and
2.86% compared to Euclidian and shallow Riemannian meth-
ods, respectively. Their result demonstrated that the novel
deep covariance learning model has great potential for robust
prediction of driver’s state using EEG, and as such efforts
should be channelled towards improving the model.

C. IDENTIFYING DRIVERS’ FATIGUE USING PHYSICAL
DATA
Cheng, et al. [19] carried out an investigation on the mental
fatigue of a driver, using the camera only data, including
Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR).
They attempted to assess the mental fatigue of a driver using
Facial Landmark Sequences. They conducted an experiment
where 21 students from the University of China have par-
ticipated. The experiment involved the collection of features
from the 21 participants at intervals of 1 minute. In addi-
tion, the authors used four machine-learning algorithms and

compared the performance of the algorithm. They proposed
an image-based method, and the method was found to have
many benefits with a comparatively high level of accuracy at
a very low cost, thereby contributing to the generalization and
commercialization of the method. The method demonstrated
the possibility of having high processing speed, given the
development of computing software and hardware. With high
processing capacity, the proposedmethod will be able to meet
the real-time requirement in the future. The experimental
results showed that the collected feature could be used as
indicators for fatigue detection.

Just like in cheng et al., the authors in [20] introduced a
new method for the recognition of fatigue in drivers. The
proposedmethod uses the eyes to determine fatigue in drivers.
In their work, they combined the convolutional layers with
LSTM units to design an end-to-end trainable network. The
LSTM units were used due to their ability to learn spatial
representations and model temporal dynamics. In their study,
infrared videos were captured using an infrared camera with
filters that were fixed towards the driver’s face. The purpose
of doing this was to reduce the effect of illumination. The
experimental data used in this study is the image of the eye
area obtained by using Multi-task Cascaded Convolutional
Neural Networks (MTCNN).

The authors used a residual learning module with SE
block and transfer learning [21] with the goal of accelerating
convergence and improving the accuracy of classification in
their designed network. They were able to achieve video-
level prediction of the feature in the time and space domain.
The effectiveness of their architecture was proven through
comprehensive experiments, which revealed that the perfor-
mance of the architecture in terms of sleepiness detection
is remarkable, without much input pre-processing and man-
ually designed features. Nevertheless, it was observed that
the clarity of a driver’s eyes is affected by reflective spots
when he/she is putting on eyeglasses. It was also observed
that the performance of the fatigue detection model is directly
affected by the accuracy of eye positioning, and as such must
be improved. In conclusion, they proposed to incorporate
yawn detection into the proposed model to enhance the per-
formance in their future work.

There are other methods to self-assess fatigue such as the
Fatigue Assessment Scale (FAS) [22], which consist of a
one paper questioner that includes 10 items scale evaluating
symptoms of chronic fatigue. However, this method does not
provide features to be captured, rather, it contains a self-
evaluation of all of the fatigue aspects (physical and mental
symptoms).

In summary, the literature review revealed how promising
results in terms of driver fatigue detection can be obtained
using different features and different methods (see Table 1 for
a summary of the related work). However, the most reliable
existing method of predicting divers’ fatigue is that which
uses physiological data or combines physiological and phys-
ical data. In this regard, the review of the literature revealed
a gap, which is the need for the attachment of sensors on
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TABLE 1. A summary of reviewed related work research.
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the driver to enable the use of such physiological data. The
attached sensors may serve as an obstacle in a sensitive
process like driving, therefore it may not be suitable for
all drivers as it may distract some drivers or may even be
uncomfortable for drivers to wear.

On the other hand, predicting drivers fatigue studies specif-
ically in currently conducted research suffer greatly from
being inconvenient for creating a standard driving situation.

For example, the work of [13], include using BPNN which
is known for its efficiency for computing gradient descent.
Using BPNN in the scope helps to get less error rate however
such a method is also known for taking extensive time for
training.Moreover, the biggest limitation in this study is using
input variables from attached sensors to drivers, which does
not create a comfortable driving environment.

Similarly [14], [18], the EEG data was gathered and evi-
dently, it is a reliable source for accurate results. In contrast,
sensors need to be attached to drivers and as we mentioned
earlier, it may create an uncomfortable environment.

The work of [17], used raw EEG signals data while consid-
ering the EEG data characteristics. The research in a similar
sense used data derived from attaching sensors to the driver’s
which could deem to be uncomfortable, it could create a
distraction in a sensitive process like driving.

In conclusion, most existing works on driver fatigue anal-
ysis are focused on real-time detection, with less emphasis
placed on the driver’s reaction time [23]. Therefore, real-
time driver fatigue warnings cannot guarantee traffic safety.
Instead, early warning or prediction may help save 2%–23%
of all crashes [24].

III. DFLP FRAMEWORK STRUCTURE
The framework of the proposed DFLP is shown in Fig. 1
DFLP uses eye, mouth and head orientation which are among
the common indicators of fatigue. The DFLP framework
consists of many stages including, frame extraction and
face detection. DFLP framework uses systematic steps of
computer vision techniques such as pre-processing steps to
clean the input data, and face detection to crop the face
region from the unwanted background. The input image
passes through the detector, and then it is subjected to image
upscaling, which increases the chances of detecting smaller
faces. However, upscaling has a substantial impact on the
computation speed. The output is in the form of a list of faces
with the (x, y) coordinates of the diagonal corners.

A. PRE-PROCESSING
The pre-processing operations are essential in the preparation
of the raw data, as they help in obtaining clear detection
features. The model’s prediction ability can be affected by
many factors such as different scenarios, gender, and skin
colour. In terms of the lighting condition of a given sce-
nario, the change of light intensity degrades the prediction by
up to 6%. Therefore, it is very important to normalize and
equalize the image. In order to minimize the environmen-
tal factors like light, skin color, sunglass and other similar

FIGURE 1. The proposed fatigue classification framework.

elements, the local histogram equalization is generally used
for the pre-processing of images. There are many types of his-
togram equalizations, such as global histogram equalization,
local histogram equalization, adaptive histogram equalization
amongst many other types. In the proposed model, the main
focus is the face region, while the rest of the regions are not
considered. In face images, the pixel colors are likely uniform
and global histogram equalization is not optimal. Moreover,
contrast and edges are more important than individual pixels
and color. Therefore, in this work, the use of local histogram
equalization is employed to enhance the image contrast and
to normalize color distribution. The color transformations are
calculated using the following equations:

Pi =
ni
n

(1)

Acci =
∑i

j=0
Pj (2)

Ti(n) = Acc−1i (n)× L (3)

where Pi : is the probability of pixel of color i in an image,
Acci, Acc−1 are accumulate and its reverse function of Pi
for histogram equalization, Ti: pixel and color transformation
function, L: is the maximum Pixel Brightness.

The DFLP framework uses the following pre-processing
tools: local histogram equalization [25], region of interest
(ROI) [26], and image equalization [27]. Based on the thresh-
old, there are many results and the tile size of local equal-
ization filter as can be seen in Fig. 2 for threshold 1 and,
Fig. 3 for threshold 2. There are 4 categories for each image
(upper – original, middle-upper – global equalization, middle
down – local equalization, down – adaptive equalization).
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FIGURE 2. Tile size 4, 8, threshold 1.

FIGURE 3. Tile size 4,8, threshold 2.

As seen in Fig. 3, the local equalization is better than other
equalizations, and the optimal parameters are tile size 4 and
threshold 2.

B. FACE DETECTION
The input for the proposed DFLP framework is video stream
or webcam video. The face is detected from every frame
of video by using OpenCV which has 2 models (OpenCV
Haarcascade and DNN) for face detection.

OpenCV Haarcascade performs the extraction of the
frontal face that is bigger than 80 by 80 pixels, and it can
even detect partial face images with a confidence value.
In a situation whereby, the drivers turned their heads or talk,
the OpenCV Haarcascade failed to detect the drivers’ faces.
This means that the classification performance is affected
by this factor. If there were many similar cases during the
analysis of the frontal image in training videos, then it would
be very difficult to determine whether the drivers are asleep
or not.

To overcome this problem, the framework uses OpenCV
DNN, which is a very useful tool for detecting frontal and
side view of a face in variable face sizes. However, the speed
of detection is slow. Driver’s drowsiness prediction in real-
time is not much important, because fatigue is the feeling of
exhaustion and can be determined by observing the behavior
of drivers within a time frame of (2∼3s).

C. FEATURE EXTRACTION
The DFLP framework extracts 3 features including, eye
blinking, mouth yawning and head movement from detected
faces as shown in Fig. 4 using Dlib. Dlib is a technique that
is used to locate points on any face, specifically 68 points to
locate the mouth corners and eyebrows as well as eyes.

There are always variations in the eye and mouth convex
points and center position, and as such, it is very difficult to
determine if the eyes and mouth are closed or opened. The
eye and mouth size and geometric features vary, depending
on gender, age, light condition, weather, wearing glasses and
even driver’s health.

FIGURE 4. Examples of distracted drivers in different orientations.

Fig. 4 shows that the driver’s normal face orientation is
slightly right forwarded and left or down in some cases, which
means that drivers are distracted or falling asleep. Hence,
the right eye images of drivers are less significant than left-
eye images because the left-eye images are clear and well
detected, but the right eye images are unclear and shadowed
in some frames. Hence, the detection of eye blink and its
duration based on the left eye is more accurate than the
detection based on both eyes.

The eye position varies according to the person’s features,
gender and age. To enhance left eye detection accuracy, it is
necessary to get the right position of the left eye from the face
image. Due to some variation in the center and size of the left
eye, it is important to use some techniques that can help in
minimizing the variation.

FIGURE 5. An example of defining the eye center ratio.

The figure below (Fig. 5) shows how the eye center posi-
tion varies depending on the person and scenario. Here,
the eye center ratio which is related to the width and height
of the face image is defined.

Rx =
X0
W

(4)

Ry =
Y0
H

(5)

As can be seen in Fig. 6, Ry is the ratio of all detected
face images. This is calculated byMATLAB based on the Rx,
Ry ratio on the face images detected by Dlib from Driver
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Drowsiness Detection Dataset by National Tsuing Hua Uni-
versity (NTHU) videos dataset [28].

FIGURE 6. RX, RY face images ratio plot by Dlib and Matlab.

Fig. 6 shows that the left eye’s ratio is varied 0.3-0.55 for
Rx axis and 0.52-0.76 for Ry axis. The mean and standard
deviation are as follow.

The mean value of this ratio is:

Rx0 = 0.42(±0.12)

Ry0 = 0.58(±0.15)

Let us suppose the left eye center is (xi, yi), then the eye
center, width and height are:

Centereye (i, j)

=

{(
Rx0,Ry0

)
if xi not ∈ Rx0, yi not ∈ Ry0

(xi, yi) otherwise
(6)

WH eye (i, j)

=

{
(0.12W , 0.15H) if xi not ∈ Rx0, yi not ∈ Ry0
(w, h) otherwise

(7)

where, w, h are the width and height of the face image,
while w, h are the width and height of the left eye.
It is also important to detect the mouth region when a driver

is in a normal state, talking or yawning.
Fig 4 shows that Dlib does not correctly detect the mouth

region when a driver is yawning. Therefore, the mouth region
must be detected based on the detected mouth and other fea-
tures. A look at the images shows that themouths are centered
between the noses and chins. Based on this, the mouth region
can be identified. In this case, the mouth region can be refined
based on facial landmarks.

Fig. 7 shows the facial landmarks obtained using Dlib. Dlib
defines 68 landmarks that identify the face. Some features
show the mouth, while others show the mouth, nose, chin,
jaw. These features are numbered from 1 to 68. The mouth
is in the range of 34 and 6, 12 in height, 7 and 12 in width.
Based on this, the mouth region can be defined as follows:

Centermouth (i, j)= (
dlib7x+dlib12x

2
,
dlib34y + dlib12x

2
) (8)

WHmouth (i, j)= (dlib7x − dlib12x , dlib34y − dlib12x) (9)

where, dlib34x , dlib34y are the x and y values of Dlib land-
mark 34. We can identify the eye and mouth region based on
the features, which is, is mouth: features 49 – 68, while left
eye: features 43-48. Therefore, feature 34 implies the nose
point 34.

FIGURE 7. The 68 landmarks that identify the face region.

After determining eye and mouth center position, it is
possible to extract the eye, mouth and head image approxi-
mately based on center position. The input face is not frontal;
therefore, it is challenging to get a clear image of the left and
right eyes. Moreover, it is impossible to get the images of the
mouth and left or right eye. Therefore, it might be a better
approach to extract the right eye image when a driver’s head
orientation is towards the right, while that of the left eye can
be extracted when the drivers’ head orientation is towards the
left.

There are small variations of eye and mouth region
detected byDlib, and this degrades the accuracy of prediction.
To get the right region of the eye and mouth, the moving
average should be used in obtaining center and width of the
eye and mouth, because the sequence frame does not change
much in eye andmouth position. The transformation equation
is given below:

ROI eye (i, j) = Centereye (i0, j0)+WH eye(i0, j0) (10)

Centereye (i0, j0) =
1
m

∑
Centereye (i, j) (11)

WH eye (i0, j0) =
1
m

∑
WH eye(i, j) (12)

ROImouth (i, j) = Centermouth (i0, j0)

+WHmouth (i0, j0) (13)

Centermouth (i0, j0) =
1
m

∑
Centermouth (i, j) (14)

WHmouth (i0, j0) =
1
m

∑
WHmouth(i, j) (15)

where, ROI eye is the extracted eye region of interest.
ROImouth present the extracted mouth region of interest.
Centereye (i0, j0) is center point of the eye, WH eye(i0,j0) is
width, height points of the eye.
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IV. FEATURE DETECTION
The following section will explain in detail the proposed
DFLP model. DFLP model based on three features mouth,
eyes and head information that defines the level of drivers’
fatigue, as explained in features models below:

A. EYES BLINKING CNN MODEL
The use of CNN model is employed for eye blinking. There
are lists of mouth talk and yawn (ground truth), and head
movement that can be used in the training video and annota-
tion text file, but there is none for eye blinking. Hence, using
only such output data to train eye blink is a difficult task.
Therefore, in this step, the model is pre-trained using the eye
open and close image (CEW) dataset [29].

The eyesmodel consists of 9 layers modified fromLeNet-5
CNN layer as can be seen in TABLE 2.

TABLE 2. Eye model layers that contain 9 CNN layers.

There are many layers ranging from ZeroPadding2d lay-
ers (as input layer) to Dense layer (as output layer). The
input of this model is a gray scale eye image with the size
of 24 × 24 pixels, whereas the output of this model is a
1D vector of (eye close, eye open). ZeroPadding2D layer is
used for input 2D array extension for getting more features.
The eye images of the open and closed eyes are similar, but
it is very difficult to differentiate between closed eyes and
open eyes. Thus, the feature parameters can be extended by
using Zero Padding 2D. The Convolution2D layer is used
for feature extraction based on different criteria. MaxPool-
ing2d layer is used in reducing the feature parameters and
minimizing the effect of noise and relevant pixels or regions.
This layer contains several heat maps that are very vital for

the classification of the image. The dense layer is used to
find the feature parameters and connected feature relations,
while the Dropout layer randomly selects the parameters and
dropouts so that the model does not encounter the problem of
overfitting.

B. MOUTH AND HEAD MOVEMENT CNN MODELS
CNN models for mouth yawn detection and head movement
are similar to eye blink detection. The difference between eye
and mouth models is that there is no ZeroPadding2D layer
because the yawn, talk and closed mouth are quite different.
The input of this model is also a 2D gray image of 24x
24pixels, and the output is a 1D vector of (close, yawn, talk)
for mouth model, and (normal, falling sleep, distraction) as
can be seen in TABLE 3.

At this step, it is necessary to identify the driver’s state
based on the outputs of CNNmodels. For example, the output
of the eye blink CNN model shows if the driver’s eye is
opened or closed but does not show the fatigue level. There-
fore, there is a need to identify the driver’s state based on
observation of these values. Based on this model, the eye
blinking ratio can be identified. In general, normal eye
blinking duration is less than 300 ∼ 500ms, and fatigued
500 ∼ 1000ms and falling sleep are longer than 1s. Thus,
the blinking ratio can be defined as the moving average of
eye blink over time. Sometimes, the blinking ratio can be
1 or 2 sec, which includes the whole eye blinking process).
Here, there is a need to classify all cases including falling
asleep, therefore the time duration is about 1 ∼ 1.5second.

TABLE 3. Mouth and head movement CNN models that contains 9 layers.

The moving average parameters that were used in this
work are divided into three different thresholds: Eye blinking
model is 300-400ms, normal blinking time, and blink period:
3 ∼ 4s. The Moving average size is 50 frames. The weighted
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class value is: 1 for class 0 (open), 10 for class 1(closed), and
the threshold:> 300/3000 ∗ (1+11)= 0.11. As for themouth,
the yawn duration is> 5∼ 6s, and 1.5s in some cases (Hence
2s < optimal < 6s). The Moving average size is 80 frames,
while theWeighted class value is 1 for class 0 (closed), 10 for
class 2 (talking), and 30 for class 1 (yawning). The threshold
is 5 < talking < 15, yawning > 15. For the head, the nodding
notification time is> 1s, while theMoving average size is 30,
and the Weighted class value is 1 for class 0 (normal), 10 for
class 2(turn left or right), and 30 for class 1 (falling asleep).
The threshold value is 5 < turning < 15, falling asleep > 15.

Avgeye =
1
n

∑n

i=0
Eye(i) (16)

where Eye(i) is the status of the eye at the frame i, And the
fatigue level is like the following:

Peye =


normal if Avgeye < 0.3
early fatigue else if Avgeye < 0.1
fatigued otherwise

(17)

We can use the samemethod to identify themouth yawning
and head movement.

Avgmouth =
1
m

∑m

i=0
Mouth(i) (18)

Avghead =
1
k

∑k

i=0
Head(i) (19)

And the fatigue level is identified as the following:

Pmouth =


closed if Avgmouth < 0.1
talking else if Avgmouth < 0.5
yawning otherwise

(20)

Phead =


normal if Avgmouth < 0.1
distraction else if Avgmouth < 0.7
nodding otherwise

(21)

In the first case (eye blink), if the time duration is set at 1.5
sec, the frame size must be n= 1.5 / (1/30)= 45 frames pro-
vided that the frame speed is 30fps. k and m are the frame size
for mouth yawning and head movement, then specific time
duration is cited in the next section (result and comparison/
Moving average parameters), and Avg is the moving average,
mean value; any notation can be found for that variable and
parameters.

V. CLASSIFICATION MODEL
After the models of eye, mouth and head have been trained,
there is a need to classify the driver’s state. The process of
the classification involves classifying the driver’s state into
normal and fatigued. When the drivers are not sleeping or
distracted, they are classified as normal, but when the drivers
are asleep, feel exhausted or are distracted from driving,
they are classified as fatigued. Therefore, a logical model is
built for the classification of the fatigue level based on eye
blinking, mouth yawn and head movement.

Fatigue = f 1(head,f 2(eye,mouth)) (22)

where, f 1 is the function that classifies fatigue and normal
state of drivers where f 2 is the function that drivers are falling
asleep, distracted from driving, or in a normal state.

FIGURE 8. The logical model that contains f1, f2 function that classifies
the fatigue.

The logical model in Fig.8 is presented in the following
equations:

P (Fatigue) = P (head and f 2) = P (f 2)×P (head | f 2)

= P (f 2)P ((normal, nodding, distracting) | f 2)

= P(f 2)× (P (normal | f 2)+ P (nodding | f 2)

×P (distracting | f 2)) (23)

P (f 2) = P (eye,mouth) = P (eye)× P (mouth | eye)

= P (eye)×P ((closed, talking, yawning) | eye)

= P(eye)× (P (closed | eye)+ P (talking | eye)

+P (yawing | eye))) (24)

P (eye) = P(eyeblinking, eyeblinkingrate,

blinkingspeed) (25)

where P (eye), means all status of the eye, that is, eye state
while blinking, eye state while talking, and eye state while
yawing.

Based on P (Fatigue), we can identify the driver’s fatigue
level. P (Fatigue) is the fatigue level calculated by the
equation f 1(head,f 2(eye,mouth))- meaning 0 – normal, not
sleeping, 0.5 –early fatigued, 1.0 falling asleep.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
We have used Intel Core i5-6200U CPU, 2.3GHz with 8 GB
of RAM in our experiment. We proposed a framework for
driver fatigue level prediction.

B. DATASET
We used publicly available datasets for our experiment. The
main dataset was fromNational TsuingHuaUniversity which
was used in many recent publications including [30], [31].
NTHU dataset consists of 36 subjects from different ethnici-
ties including men and women, and the videos of the subjects
were recorded under night and day illumination conditions.
Moreover, the subjects were recorded in different simulated
driving scenarios such as barefaced, night-bare face, sun-
glasses, glasses, night-glasses as shown in Fig 9.

In every scenario, the subjects were recorded in two states
(sleepy/non-sleepy), and a total of 200 videos were obtained.
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Furthermore, the videos were converted to images to serve
as input in the proposed DFLP framework. A video with
a duration of 1.5-minute was produced; the video contains
a combination of drowsiness-based symptoms such as slow
blinking, nodding, and yawning and non- drowsiness-based
actions such as being distracted, laughing or talking.

FIGURE 9. Different driving scenarios of NTHU dataset [32].

The second public available dataset that we used in our
experiment was closed eyes in the wild, which was used for
driver drowsiness recognition by many researchers includ-
ing [33]. CEW dataset was used to train our eyes blinking
CNN model. The dataset contains unconstrained scenarios
of real-world applications, hence, it contains a variety of
different individuals with different ages, gender, background
as well as wearing different accessories, such as glasses and
hats. The dataset has images of different quality including
blurry, disguised, and occlusion under various lighting con-
ditions. More so, the dataset contains different view angles
and zooming levels. CEW includes 24 × 24 pixels centered
eye patches extracted from 100×100 pixels face images. The
total number of images includes 2423 subjects, out of which
1192 of them were closed eyes images and the remaining
1231 opened eyes images. Fig. 10 illustrates an example of
CEW dataset.

FIGURE 10. An example of CEW centered eye patches dataset.

As can be seen in TABLE 4, OpenCV DNN extracts more
faces than Haarcascade, Therefore, the classification would
be greater than OpenCV Haarcascade.

C. RESULTS AND DISCUSSION
Predicting drivers’ fatigue is more important than just detect-
ing fatigue, due to the fact that prediction could give a bigger
window for drivers to act upon a sudden hazard.

TABLE 4. The total extracted number of OPENCV DNN frames in
comparison with OPENCV HAARCASCAD.

[13] have presented fatigue classification method that into
two classifications: drowsy, and alert.

The data was obtained from an HRV in the form of EEG
epochs. Their study concluded that deep covariance learning
methods reported better performance than shallow learning
methods and that was through using a CNN model. The
study has successfully improved upon the accuracy from
70.96% to 86.14%.

Similarly, the work of [14], has also been used to improve
the quality of the EEG data that was constructed from
the driver’s brain waves reading signals. A real-time brain-
computer interfaces system was developed using an online
algorithmwith pre-event EEG. One of the main achievements
in this study was to create a noise cancellation system that can
improve the prediction of driver’s fatigue. The drawback of
this study is similar to [13] in a sense of using attached sensors
data to drivers.

In the work [17], the characteristics of the EEG data was
considered to develop DL algorithms, CCNN and CCNN-R.
Raw data were used to achieve robust performance.

In addition, the work of [18] also included using EEG data.
The research achieved a performance increase of 3.16% com-
pared to Euclidian measures in classifying driver’s fatigue
when using temporal covariance matrices.

This experiment focused on measuring the accuracy of
eye blinking, mouth yawning, and head movement CNN
models. In the experiment, Video 1 includes drivers with
glasses (S1), Video 2 includes drivers with sunglasses (S2),
and Video 3 include drivers with a mixture of glasses and
sunglasses (S3).

TABLE 5. CNN model for eye blink, mouth yawn, and head movement
training and validation accuracy results.

The overall mathematical Model accuracy was gotten by
comparing the ground truth and the predicted list from our
mathematic model.
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TABLE 6. Test accuracy results of eyes blinking, mouth yawn, and head
movement CNN models.

TABLE 7. Our overall mathematical model accuracy score.

In this paper, we proposed DFLP framework that can
identify the level of driver’s fatigue through facial and
dynamic indications. We use a systematic methodology of
pre-processing, face detection and feature extraction to get
the maximum accuracy score. We used NTHU and CEW
datasets in our experiment. Drivers face images in each driv-
ing scenario were captured. For each face extracted image,
EARs, MARs and Head Pose were determined. Several CNN
algorithms were used to measure eye blink, mouth, and head
movement. We used the subjective annotation to assess the
level of fatigue and to play as the ground truth of the driver’s
fatigue level. The general block diagram of the proposed
methodology was shown in Fig. 8.

There are three findings of this study. First, we demonstrate
the fatigue level prediction assessed from subjective rates can
be predicted by eye, mouth and head movement feature with
high accuracy. The eyes, mouth and head features can be
predicted by CNN models using facial landmarks as input
features. In our study, the prediction accuracy for each feature
was more than 97%. Thus, there exists a great potential to
apply inexpensive nonintrusive in-vehicle cameras for the
purpose of driver’s fatigue monitoring and warning.

Second, our results demonstrate that the features extrac-
tion can be improved by a combination of global, local and
adaptive histogram equalizations. It was confirmed that the
various illumination conditions and accessories such as sun-
glasses create obstacles to obtaining eye features. However,
the feature extraction of EARs was greatly improved by the
use of CNN (over 86%). Furthermore, it is shown that the
moving average applied to the feature sequence stabilizes
the features greatly.

Third, we suggested a logical model for fatigue level pre-
diction based on eye blink, mouth and head movement. The
various states of the driver, talking, yawning, turning, and
falling asleep are determined and a final prediction is made
based on the driver’s state.

VII. CONCLUSION AND FUTURE WORK
This study shows using facial and head behavior images as
an only input source is effective for predicting the level of

fatigue. The advantage of this work is that it predicts and
measures the level of fatigue instead of detecting the driver’s
fatigue while using low-cost equipment for the input feed.
Moreover, the input sensors are detached from the driver
unlike using attached sensors that hinder the driving process
and may play as an obstacle for drivers. Furthermore, since
developed countries will use automotive cars, many develop-
ing countries have many trucks and other vehicles operated
by humans as an example, therefore we can use this work to
assist driver’s safety.

Our proposed framework can also be used as a baseline
for an engineered device that has an input sensor, and a
processing unit, alternatively a device that has the ability
to be connected online to a server in the cloud for online
processing. this device can be in a small size to be placed
on the dash of the car in Infront of the driver.

However, the limitation of this work is that it works
in simulated driving scenarios, hence, under uncontrolled
conditions, this framework may fail to capture the facial
landmark of drivers. Future work will tend to tackle this
obstacle potentially by using more advanced machine vision
techniques specifically (facial expression embedding and
sequence embedding) that can be used to calibrate the eye
and mouth parameters.

Another suggestion to tackle such limitation can be by
usingmore facial and behavioral features classifications, such
as drivers nodding behavior and drivers frown expressions
that occur during fatigue.

In addition, an alert can be added as an output to our DFLP
to advise drivers of their fatigue level. Such an alert can be
useful to take the necessary adjustments such as advising the
drivers to drive with caution or to not drive based on the level
of their fatigue.
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