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ABSTRACT Network congestion-related studies consist mainly of two parts: congestion detection and
congestion control. Several researchers have proposed different mechanisms to control congestion and used
channel loads or other factors to detect congestion. However, the number of studies concerning congestion
detection and going beyond into congestion prediction is low. On this basis, we decide to propose a method
for congestion prediction using supervised machine learning. In this paper, we propose a Naive Bayesian
network congestion warning classification method for Heterogeneous Vehicular Networks (HetVNETs)
using simulated data that can be locally applied in a fog device in a HetVNET. In addition, we propose
a centralized and dynamic cloud-fog-based architecture for HetVNET. The Naive Bayesian network
congestion warning classification method can be applied in this architecture. Support Vector Machine
(SVM), K Nearest Neighbor (KNN) and Random Forest classifiers, which are popular methods in
classification problems, are considered to generate congestion warning prediction models. Numerical results
show that the proposed Naive Bayesian classifier is more reliable and stable and can accurately predict
the data flow warning state in HetVNET. Moreover, based on the obtained simulation results, applying
the proposed congestion classification approach can improve the network’s performance in terms of the
packet loss ratio, average delay and average throughput, especially in the dense vehicular environments of
HetVNET.

INDEX TERMS Vehicular networks, congestion control, classification methods, network congestion
prediction, WAVE.

I. INTRODUCTION
A Heterogeneous Vehicular Network (HetVNET) enables
a connected vehicle to inform other smart vehicles on the
road by sending and receiving safety driving information
(e.g., the location, speed, direction, road hazards, road
traffic congestion, and road accidents) using Dedicated Short
Range (DSRC) and Long Term Evolution (LTE) technolo-
gies [1]. Minimum human reaction time is 500 ms [2]. Due
to network congestion, if an emergency message is received
with a delay of more than 500 ms, then the safety applications
are useless due to weak network performance.

In the literature, there are usually two phases of network
congestion: the first is the detection of congestion, and
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the second is the relief of congestion by the use of a control
method or a prevention mechanism. However, the approach
to solving the problem of network congestion has focused
mainly on controlling congestion, which is in the second
phase. For the first phase, the authors used assumptions
to determine the congestion, such as defining a threshold
for the channel busy level [2]–[4], and vehicle density
[5]–[7]. Although congestion detection is not widely consid-
ered in current studies, it is a key part of addressing network
congestion problems. If network congestion is not sensed and
detected, applying the controlling mechanism (phase two) is
meaningless. Indeed, to initiate the second phase, it is neces-
sary to meet the first phase, which is congestion detection [2].
The obtained results in the related literature [2], [8], [9]
demonstrate that congestion in a dynamic environment, such
as a vehicular network with a high number of vehicles, has
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not been completely controlled. Consequently, this limitation
could threaten the stability of the network performance, and
such instability is obvious in the published results. This
challenge needs to place greater emphasis on studying and
proposing novel intelligent methods, which are based on ana-
lyzing the network performance and establishing avoidance
mechanisms before congestion occurs in the network. With
regard to the importance of reaching a stable performance in
a highly dynamic network environment such as HetVNET,
we need to predict congestion in networks and then execute
an avoidance mechanism. In this paper, we propose an
intelligent mechanism for predicting congestion in such
networks to solve the problem of instability in network
performance in dense vehicular scenarios.

Applying machine learning (ML) methods in building
congestion management approaches (congestion prediction
and control) in a highly dynamic network such as a
vehicular network was considered in [10]–[12] to be an
open challenge and new future path toward centralized
and dynamic congestion network management. Recent
technologies, such as Software-Defined Networks (SDNs),
Network Function Virtualization (NFV) and fog computing,
provide programmable features along with high storage and
computing power to the networks. Relying on the advantages
of applying these technologies, predicting the behavior of
vehicular networks in terms of data flow, especially in
the case of congestion in the network, is a novel and
worthwhile research path. Referring to this open challenge,
as a contribution, we propose an intelligent and dynamic
network architecture using a Naive Bayesian classifier to
predict the warning state in the data flow situation in
HetVNET.

Generally, ML methods must analyze data and perform
computations to achieve accurate and reliable results. With
regard to this concern and many other advantages that will
be mentioned, fog computing is used in this work. Fog
computing technology changes the traditional architecture,
in which only clouds play key roles, by using powerful
objects close to devices in the network [13], [14]. Fog
computing supports mobility, location awareness, and real-
time interaction.Well designed and configured it can improve
metrics [14], [15]. Although the application of fog computing
technology has significant advantages, there is still a lack
of intelligent methods that use fog computing technology
to solve the HetVNET congestion problem in the literature.
With regard to computing, storage, data management and
analysis, in addition to network abilities of fog computing
units [16], a novel approach is to implement a robust,
supervised network congestion classifier method in fog
computing units with the aim of improving the performance
of HetVNET by providing a smooth data flow. The implanted
prediction model can be created and evaluated at the cloud
level. Thus, a fog congestion predictor unit can predict
congestion locally using the current information on the
parameters, which make up the prediction model. In fact,
data are sent to the fog devices that are close to the

vehicles, and any required computational process can be
performed at the fog devices. Making decisions using fog
devices that are close to vehicles in a time-sensitive situation
is advantageous, because the latency is reduced and the
reliability is improved [14]. Moreover, the data in a local and
limited area, such as traffic zones, are less than the big data
generated from unlimited vehicles located in different zones.
Processing data that are more local and smaller in volume
at fog devices is less time-consuming and more efficient
than processing and analyzing enormous amounts of data
remotely [2].

In addition, the proposed approach is compatible with both
the European Telecommunications Standards Institute (ETSI)
and the Wireless Access in Vehicular Environments (WAVE)
for V2V communication. Therefore, both standards can use
the result of the proposed congestion prediction, and then
in the case of the congestion warning state, ETSI or WAVE
specific controlling mechanisms can be applied.

In this paper, we went beyond detection, and we proposed
a classification congestion prediction method. Congestion
prediction using ML methods is a novel future path toward
creating intelligent congestion management in vehicular
networks [11]. Predicting congestion before it occurs in the
network and applying the controlling mechanisms in advance
can increase elasticity, sustainability and tolerance of such
a dynamic network as HetVNET. Based on the prediction
approach, network parameters can be modified with the
aim of preventing congestion in the future. Compared to
the literature, the proposed approach of this paper makes
significant contributions as follows:
• First, considering the importance of the congestion
detection phase in heterogeneous types of networks, pre-
dicting the warning state of network congestion (before
congestion occurs) in HetVNET using a supervised
machine learning classification method;

• Second, a centralized and dynamic cloud-fog-based
intelligent congestion prediction architecture of Het-
VNET is proposed;

• Furthermore, the proposed congestion prediction and
avoidance methods provide stability in the network
performance.

We will show that the main achievements, including these
contributions, are the precision and novelty of the proposed
HetVNET congestion classification approach in an intelligent
cloud-fog-based architecture, which is applicable in various
vehicular 5G and beyond-based scenarios.

The remainder of this paper is organized as follows.
Section II presents related work. Section III describes
the methodology and classification model. Data collection
and performance evaluation are presented and discussed in
Section IV, and Section V concludes the study and introduces
future work.

II. RELATED WORK
The lack of use of intelligent methods in the case of
congestion avoidance and control in vehicular networks
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and, more specifically, in HetVNET is evident in the
current literature [17]–[20]. The authors in [19] proposed
a congestion game to avoid congestion based on scheduling
the required services for safety-related applications in
HetVNETs. In [2], the authors used a clustering technique
as an unsupervised machine learning method for controlling
congestion in a Vehicular Ad hoc Network (VANET). In this
method, named ‘‘Machine Learning Congestion Control
(ML-CC)’’, the k-means technique was applied to cluster
messages based on the size, type and validity of the messages.
Then, ML-CC assigned appropriate values for the Content
Window (CW), data transmission rate, Arbitration Inter-
frame Spacing (AIFS) and transmission range to each cluster
of messages. In this method, a Road-Side Unit (RSU) should
cluster all of the generated messages and set the values at the
same time. It could be difficult to perform these tasks before
time-out of the messages, considering the high dynamicity of
the network, the increasing number of vehicles, and the large
number of generated messages. This issue negatively affects
the performance of the network in high density scenarios,
and could make an unstable network. In [21], the proposed
‘‘Dynamic Congestion Control Scheme (DCCS)’’ is based
on the channel usage level and the amount of CW. The
authors considered three levels of 30%, 70% and 90% for
channel occupation. Then, based on these three thresholds,
the value of CW decreases (for the channel busy level
of 30%) or increases (when 70% or 90% of the channel
is occupied). In [18], congestion avoidance strategies were
executed without prediction. Even if no congestion occurs,
message priority and message scheduling will run by default
during no-pick time, as well as when the traffic density is low.
In [19], the authors proposed an architecture built on SDN
and the concept of edges as a service to solve a congestion
problem with no intelligence mechanism for congestion
prediction. The proposed prediction in [19] is mainly based
on the pattern of user demands during different times of
the day. The Internet Service Provider (ISP) provides clients
with the required resources based on the pattern. Therefore,
in some intervals during a day, the demand for resources
can be higher than other times of the day; thus, the ISP will
then adjust the resource allocation to maintain the network
performance at an excellent level. The results show that the
authors could improve the quality of the service and propose
an efficient mechanism in resource allocation. Nevertheless,
an intelligent method could significantly improve the per-
formance of the proposed mechanism. In [20], the authors
worked on a prediction method for controlling congestion in
VANETs. They proposed a new adaptation method for the
transmission power and data rate based on vehicle density
prediction. However, the authors did not apply intelligent
methods in the proposed prediction method and relied solely
on the information they received from the vehicles in front
of the targeted vehicles. This prediction is not accurate for
scenarios in which there is amalicious vehicle node in front of
the targeted vehicles. In [22], the authors proposed a dynamic
vehicle clustering mechanism based on the estimation of

the network density and the speed of the vehicles to avoid
congestion in VANETs. They could use a deep learning
regression method to predict the density and speed of
the vehicles. Vehicle density estimation was used in [23]
to propose an approach for controlling congestion using
dynamic transmission power control. In [24] a predictive
control model was used by a control agent to define the
optimum transmission rate for vehicle nodes in vehicular
networks. Prediction is a major task of machine learning
methods, and it is not applied in the proposed predictive
control model in [24].

Moreover, the number of proposed methods for controlling
congestion problems using a fog computing-based archi-
tecture is very low in the current literature on vehicular
networks. In [5], the results show good efficiency, high
packet delivery, and a low channel busy ratio. Vehicles
in decentralized congestion controlling mechanisms must
monitor and analyze a large number of messages to detect
and control congestion with a low delay (much less than
500 ms, which is the human reaction time). Therefore,
in such a decentralized approach, too many computations
must be performed by the vehicles using the information of
each beacon received from the surrounding vehicles. Most
safety services even need less than 100 ms of latency; for
example, the maximum latency in precrash warning services
is 50 ms [1]. Therefore, an emergency safety message must
receive with a delay lower than 50 ms; otherwise, vehicular
networks and applying safety applications could not do
anything to save a human life, especially in the presence
of road hazards. In decentralized congestion controlling
mechanisms, vehicles must monitor and analyze a large
number of messages to detect and control congestion with
a delay of less than 50 ms. Moreover, distributed methods
require high vehicle cooperation. Exchanging a substantial
number of messages between the vehicles causes overhead
and significant delay. In the case of low cooperation among
vehicles, the delay increases even more. In addition, the cal-
culations needed to find the closest and furthest ahead and
behind vehicles must be done within a limited period of time.
Having a time restriction for running multiple computations
is therefore a challenging task for the proposed method in [5].
These challenges exist in all of the proposed decentralized
(or distributed) congestion control mechanisms, such as [5]
and [25]. In [25], based on the proposed distributed approach,
all of the calculations (especially for predicting the value
of the utility function, which makes use of the Markov
chain method) require computational resources and are
time-restricted for a vehicle. Since the information changes
dynamically and quickly in vehicular networks, calculations
must be made before a new information update is received,
which is a major task for vehicles in a short period of time.
In [26], data offloading from vehicles to infrastructure was
proposed to control congestion in an SDN-based vehicular
network environment. The authors used a controller to make
decisions on offloading the data load from vehicles to each
of the RSUs or Base Stations (BSs) of the cellular network.
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They could use a fog device as a controller to locally manage
the data offloading process.

Network performance and Quality of Service (QoS)
metrics are critical in HetVNET. These metrics are highly
related to the network congestion levels. If we consider
two levels of safe (no congestion) and congestion for data
flow in HetVNET [27], then the network performance
and QoS will drop when the network data flow shifts
from safe to congestion level. The approach that will
be explained in the next parts of this paper is a novel
solution to avoid a drop in the network performance and
QoS to a low level. In this solution, we define a warning
level (before the congestion level) and predict this warning
state of the network data flow. An accurate prediction
method that uses the computing and storage power of fog
devices can locally predict congestion before it occurs in
a dynamic HetVNET. Therefore, targeted HetVNETs have
time to execute congestion control/avoidance mechanisms
(phase two) to prevent congestion. Accordingly, network
performance and QoS will remain at an acceptable level.

Considering the discussed issues of instability in the
performance of the network by increasing the number of
vehicles and applying Artificial Intelligence (AI) methods
in HetVNET congestion-related works and the absence of a
congestion avoidance mechanism using fog computing tech-
nology in HetVNET-related literature, we propose a novel
approach to predict congestion warnings using a supervised
machine learning classification method in a centralized and
dynamic cloudy-fog-based architecture.

III. METHODOLOGY AND CLASSIFICATION MODEL
Congestion in the network leads to a reduction in the data
delivery ratio. This metric is considered in vehicular network
congestion-related work to detect congestion [11], [28].
However, packet loss could also accrue due to weak signals.
It is necessary to be certain that congestion is the only reason
for packet loss. Therefore, in this paper, we consider the Data
Delivery Ratio (DDR) and Received Signal Strength (RSS)
to interpret the congestion situation in HetVNETs.

Moreover, due to the strong capacity of neural networks
and deep learning methods to generate complex models,
these methods have recently been widely used in a variety
of research fields and problems. Deep learning methods are
worthwhile in applications to problems that have a high-
dimensional dataset that contains enormous amounts of data,
while our problem in this paper is not in this category.
We therefore decided to use a supervised machine learning
classification algorithm.

A. CLASSIFYING THE DATA FLOW
This paper aims to predict the warning state in terms of
network congestion in HetVNETs. If we have knowledge
about a warning state for a data flow situation, then we can
save time by executing an avoidance mechanism to prevent
the network situation from attaining a critical state. DDR
is the ratio of the amount of data successfully received at

destination points to the amount of data sent by source nodes
in the network. Therefore, DDR can have a value between
zero and one.

RSS is the power of the received signal at the receiver side.
The RSS can be measured by adding the transmit power and
antenna gain minus the path loss [29]. The value of RSS
in network congestion is higher than the value of RSS in
situations in which path loss is the cause of packet loss in
the network. Therefore, defining a threshold for the value of
RSS can be useful for assuring that congestion is the reason
for the packet loss. On this basis, if the value of RSS in the
received packet is more than a predefined threshold (RSSth),
then the packet loss is due to network congestion.

Based on the definition of DDR and RSS, the data flowing
warning situation is defined based on three thresholds for
the minimum value of DDR (DDRminth), for the maximum
value of DDR (DDRmaxth), and for RSS (RSSth)which are just
for the warning state. Accordingly, we define two classes of
warnings and nonwarnings in this work:

Data flowing classes=



Warning, if:
DDRminth≤DDR ≤ DDRmaxth
and,
RSSth ≤ RSS
Nonwarning, otherwise

(1)

The amount of DDRminth, DDRmaxth and RSSth can be
defined by the network management unit (in whichDDRminth
andDDRmaxth ∈ (0, 1) are not equal). In this way, the network
management can change the value ofDDRminth andDDRmaxth
& any time and based on the network situation. Thus, this
method provides tolerable congestion management approach
that can define different congestion warning intervals over
time and is based on the network’s situation. For example,
if the network management unit assigned −96.26 dBm for
RSSth, 0.4 as a value for DDRminth and 0.6 as a value for
DDRmaxth then it is a warning state while the data is flowing,
when DDR ∈ [0.4, 0.6] and the value of RSS is more than
−96.26 dBm [28].

B. PROPOSING NAIVE BAYESIAN NETWORK
CONGESTION CLASSIFIER
Naive Bayesian classifier is a powerful ML method for
solving current real-world classification problems, such as
spam filtering and text classification. This classifier is very
fast compared to other classification algorithms. Moreover,
it does not necessarily require a large amount of training
data for good prediction. Thus, it is widely used in many
scientific studies and in research today. Considering Bayes
theorem, the Naive Bayesian classifier provides minimum
error using independent features [30]. The Naive Bayesian
classifier calculates the probability that the hypothesis is true
when the given data are used and is called the posterior
probability.

In this paper, we consider five parameters, the number of
vehicles (v), data transmission rate (dr), DSRC transmission
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power (tpDSRC ), LTE transmission power (tpLTE ), and LTE
bandwidth (b), to propose a Naive Bayesian classifier.
Therefore, x= [x1, x2, . . . , xn] is a set that contains n
features, which corresponds to x= [x1, x2, x3, x4, x5] =
[v, dr, tpDSRC , tpLTE , b] (n = 5). Additionally, let us consider
c= [c1, c2, . . . , cm] to show a set of classes that contains m
(m = 2) different classes.

We consider two types of classes: w0, which is a class
for no congestion warning in HetVNET, and w1, which is a
class for having congestionwarning inHetVNET; hence, here
c= [c1, c2] = [w0,w1]. Therefore, the posterior probability,
where class ci is true using x= [v, dr, tpDSRC , tpLTE , b],
is calculated as follows:

P(ci|x) =
P(x|ci)P(ci)

P(x)
(2)

The Naive Bayesian algorithm calculates as follows:

P(w0|v, dr, tpDSRC , tpLTE , b)

=
P(v|w0)P(dr|w0)P(tpDSRC |w0)P(tpLTE |w0)P(b|w0)P(w0)

P(v, dr, tpDSRC , tpLTE , b)
(3)

and

P(w1|v, dr, tpDSRC , tpLTE , b)

=
P(v|w1)P(dr|w1)P(tpDSRC |w1)P(tpLTE |w1)P(b|w1)P(w1)

P(v, dr, tpDSRC , tpLTE , b)
(4)

where P(w0 | v, dr, tpDSRC , tpLTE , b) is the probabil-
ity of a no-congestion warning using input data of x=
[v, dr, tpDSRC , tpLTE , b], and P(w1 | v, dr, tpDSRC , tpLTE , b)
is the probability that a congestion warning situation is true
using input data of x= [v, dr, tpDSRC , tpLTE , b]. Since the
value of the prior probability is the same for all given data
of the dataset, it can be removed, and (2) can be written
as (5):

P(ci|x) ∝ P(ci)
n∏
j=1

P(xj|ci), (5)

i = 1, . . . ,m.
The Naive Bayesian classifier selects the maximum

posterior as output, which is a class with a higher probability
of being true. There, if we assume ŷ = ci as output of the
Naive Bayesian classifier, then we have following:

ŷ = argmaxP(ci)
n∏
j=1

P(xj|ci), (6)

where n and m equal to five and two, respectively.

C. CENTRALIZED AND DYNAMIC CLOUDY-FOG
INTELLIGENT CONGESTION
PREDICTION ARCHITECTURE
In a centralized and dynamic cloudy-fog intelligent con-
gestion prediction architecture of HetVNET, as shown
in Fig. 1, a Fog Congestion Predictor Unit (FCPU) is placed

FIGURE 1. A centralized, dynamic and intelligent cloudy-fog congestion
prediction architecture of HetVNET.

between the cloud and end users like a skillful intermediary,
to locally and efficiently predict the warning state in the data
flow using a prediction model. A Centralized Management
Unit (CMU) is connected to the FCPUs to orchestrate them
and make decisions, such as setting the warning interval
using (1) by defining the values of DDRminth, DDRmaxth and
RSSth. Therefore, Fig. 1 shows a centralized and intelligent
architecture in which FCPUs locally and dynamically analyze
data that came from vehicles and BSs. In this cloudy-
fog architecture, there are five types of connections, as
follows:

• Cloud2fog: communication between a cloud and a fog
device (FCPU);

• CMU2fog: communication between CMU and a fog
device (FCPU);

• Fog2I: communication between a fog device (FCPU)
and an infrastructure such as the BS of the cellular
network;

• V2I: communication between a vehicle and a BS,
using LTE;

• V2V: communication & between & two & vehicles,
using DSRC.

As Fig. 2 shows, each of the FCPUs is connected to the CMU,
other FCPUs and cloud. The CMU is responsible for the
following tasks:

• Defining the size of the segments, the amount of1t and
j, and the value of RSSth, DDRminth and DDRmaxth to be
used by the FCPU;

• Assigning segments and BSs to the FCPUs.

According to Fig. 2, we divided the street area into several
segments with equal lengths of r meters, and an FCPU was
assigned to a maximum number of segments s, where s ≥ 1.
In addition, we assumed that we had z FCPUs with z ≥ 1.
For each vehicle such as v in a segment, the corresponding
FCPU estimates the distance of vehicle v to a location in the
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FIGURE 2. Illustration of the intelligent congestion prediction architecture of HetVNET.

FIGURE 3. Congestion warning state in a HetVNET.

next time unit such as t using the following formula:

D(v) =
1
2
a(v)t2 + q(v)t, (7)

where q(v) is the velocity of vehicle v, a(v) is the acceleration
of v, and D(v) is the distance of v to the next location at
time t , where t = j1t and j ≥ 1. 1t has a preliminary
amount, and each time, the amount of j will be increased.
The preliminary value of 1t and the value of j are defined
by CMU. For example, if 1t = t1 and j = {1, 2, 3, . . . ,N },
then for j = 1 and for each vehicle, FCPU calculates the
value of D(v) with t = t1, and the next time, FCPU calculates
the value of D(v) with t = 2t1, and so on. Fig. 3 shows
how predicting a warning state of the network can save time
for executing congestion control mechanisms and preventing
congestion in the network. The proposed vision in a highly
dynamic network type such as HetVNET (and any other
type of vehicular network) can help the network management
system to have a dynamic and tolerable solution for any future
challenge in the network.

Since the estimation of D(v) is the distance to a location
where v will reach at a future time (next t) and we do not
have information of a(v) and q(v) during the next time t ,
the FCPU considers the average of both a(v) and q(v) from the
previous time t . The FCPU uses D(v) and the length of each
segment (r meters) to estimate the corresponding segment
that v will reach in the next time t . FCPU can estimate the

number of vehicles in each segment located in its coverage
area. Therefore, the vehicle densities of the segments at the
future time t are estimated by the corresponding FCPU. As an
example, Fig. 2 depicts the case when FPCU 1 estimates that
the red vehicle in segment 2 (blue dashed vertical line) will
leave the coverage area of FCPU 1 and arrive at segment 1 in
FCPU 2 (green dashed vertical line); then, FCPU 1 sends
the location information to FCPU 2. Therefore, the number
of vehicles in a segment at future time t is estimated using
the number of vehicles estimated by the corresponding FCPU
plus the number of vehicles estimated by a neighbor FCPU (if
applicable). Moreover, whenever a vehicle leaves an FCPU
coverage area, the velocity and acceleration during the last
time t must be sent by the FCPU to the new FCPU.

The traffic situation in such a highly dynamic environment
as HetVNET is changing fast and can even vary substantially
between segments of FCPUs. This variation can be due to
the specific conditions in the segments, such as holding
special events during rush time and locating high demand
places such as hospitals or airports in the segments. For any
change in the value of v, which is the number of vehicles
in a segment, the corresponding FCPU must perform Naive
Bayesian congestion prediction.

To apply the proposed Naive Bayesian classifier in the
centralized and dynamic cloudy-fog-based architecture of
HetVNET, as shown in Fig. 4, a reference database is needed,
which is prepared at the cloud level. In this approach,
information about five considered features, such as the
number of vehicles v, dr , tpDSRC , tpLTE , and b, must be
gathered, each as a record in a database. For each data
record, DDR and RSS have been calculated. This database
can be updated and matures with time. First, the FCPU
receives such a reference database from the cloud and
stores it. Then, based on the value of DDR and RSS and
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FIGURE 4. A Flowchart of the main steps in an FCPU.

using DDRminth, DDRmaxth, RSSth and (1), each data record
obtains a class of w0 or w1. Afterward, the FCPU calculates
D(v) using (7) and locally estimates v for each segment
at future time t . In the case of an update in the value of
v, the FCPU calculates P(w0|vnew, dr, tpDSRC , tpLTE , b) and
P(w1|vnew, dr, tpDSRC , tpLTE , b) using the updated value of
v, the current value of dr, tpDSRC , tpLTE , b and the database.
Then, based on the computation results, it predicts warning
or nonwarning state for data flowing in the target HetVNET
at a future time t . In Algorithm 1, the pseudocode of the
proposed Naive Bayesian classifier algorithm in an FPCU
is presented. The values of Pw0 and Pw1 can be calculated
using (3) and (4). Note that the task of the FCPU is to predict
the warning or nonwarning state of HetVNET based on the
data of five parameters: vnew, dr , tpDSRC , tpLTE , b. By this
approach, we can implicitly infer that independent variables
such as vnew, dr , tpDSRC , tpLTE , and b have an effect on
the value of DDR and consequently mitigate or intensify the
network congestion state of HetVNET.

In the centralized cloudy-fog architecture, we consider
LTE for V2I communications. Therefore, the required
information is exchanged between vehicles and FCPU using
LTE BSs. Large coverage and high downlink and uplink
capacity are the advantages of the LTE [1], which help to
provide requirements for necessary data transmission in the
proposed approach. However, if the proposed congestion
classification method is applied in a decentralized system,
then the vehicles should employ the Naive Bayesian network
congestion prediction method. In this case, and similar to
most decentralized methods, network can encounter high
overhead and delay. Applying the edge computing concept

Algorithm 1 Naive Bayesian Network Congestion Classifier
in a FCPU
Input 1: a reference database generated at cloud level and
contains values of v, dr , tpDSRC , tpLTE and b as features,
values of DDR and RSS, and ‘‘warning state’’ as output. For
each data record, the output column can have a value of w0
as a nonwarning or w1 as a warning state (based on DRR and
RSS, using (1)).
Information collection locally as x= [v, dr , tpDSRC , tpLTE ,
b] form HetVNET.
Calculate Dv and vnew.

if vnew 6= v then
Input 2: xupdated= [vnew, dr , tpDSRC , tpLTE , b]
Based on Input 1 and using Input 2, calculate:
Pw0 = P(w0|vnew, dr, tpDSRC , tpLTE , b)
Pw1 = P(w1|vnew, dr, tpDSRC , tpLTE , b)
if Pw0 < Pw1 then
it is a warning state.

else
it is a nonwarning state.

end if
end if

by clustering the vehicles and selecting cluster heads as
edge nodes, can be a potential solution. The edge nodes
are responsible for gathering and analyzing data, running
prediction functions, and distributing the result. To select
the cluster head vehicle, several metrics, such as available
computing and storage resource capacity, communication
reliability and accessibility (in terms of distance to another
vehicle in the cluster), can be considered.

D. ADVANTAGES AND CHALLENGES OF THE PROPOSED
CENTRALIZED ARCHITECTURE
The proposed cloudy-fog architecture is compatible with
current standards. ETSI applies Decentralized Congestion
Control (DCC) in the Media Access Control (MAC) layer.
DCC is a state machine-based approach that switches
between three states of relax, active and restrictive based on
the channel load. Most DCC-based algorithms, such as the
Linear Message Rate Integrated Control (LIMERIC) [31],
Dual-α DCC [32], and Dynamic Beaconing (DnyB) pro-
tocol [33], depend on the value of the Channel Busy
Ratio (CBR). Based on the literature, these algorithms
have the challenge of finding and setting optimum values
of the parameters [32]. An optimal value for the CBR
threshold can prevent the underutilization of the channel [4].
Thus, applying the congestion prediction method instead
of calculating the current channel busy level can help the
network management system develop policies for using the
channel to prevent congestion from occurring in the future.
In other words, the predicted warning state in terms of the
congestion problem can be a complementary feature for
dynamic and tolerant network congestion management. For
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example, based on the result of the proposed Naive Bayes
congestion prediction, if we have a congestion warning in the
area covered by an FCPU at time t , the congestion control
algorithm can switch between the states and change the value
of the data rate in a such manner that there will be no
congestion problem in the future.

Based on the literature, network congestion in VANET
has been considered more during the past decade, including
cross-layer approaches, event driven and priority-based
approaches, topology-based approaches, and dynamic and
adaptive approaches [11]. In the proposed WAVE based
congestion control algorithms, the solution part can be
applied when a warning state is predicted by the proposed
Naive Bayesian congestion prediction method.

Therefore, the network management system will have one
eye on the present and one eye on the future by using the
proposed congestion prediction result and creating policies
and applying them at the current timewith the aim of avoiding
congestion in the future.

Moreover, using multihop strategy instead of the proposed
architecture to send traffic states has other challenges. First,
in multihop methods, the distance between the nodes has a
direct effect on the delay. Applying n-hop communication to
transfer the data flow state to a far node increases the delay in
the network. In addition, there is a risk of unsuccessful data
delivery in multihop strategy due to fragile communication
links between those nodes that are in a long way from each
other. Furthermore, multihop communication increases the
overhead for the middle vehicles. The nodes must apply an
algorithm to choose the best next hop. In addition, implement-
ing, upgrading, and debugging centralized methods are easier
than decentralized methods.

On the other hand, the centralized system should have fault
tolerance ability. Otherwise, with any fault in the system,
it will crash. In case of failure in the system, the supporting
(back up) strategy must handle the situation and prevent
crashing the system. In the proposed centralized method,
the centralized system contains cloud, FCPUs, and CMU.
Therefore, we can have three possible failures:
• Failure in communication with the cloud: In this case,
FCPUs can use the last reference database until the
problem is solved.

• CMU Failure: In this case, the last update for the values
of 1t , j, DDRminth, DDRmaxth and RSSth from CMU
can be used until the problem is solved. Additionally,
the last assignment of segments and BSs to FCPUs can
be applied until the CMU can join the system again.

• FCPU failure: In this case, the CMU can assign the
coverage area of the failed FCPU to other neighboring
FCPUs until recovering the FCPU failure.

In addition to these suggested backup strategies, improving
the fault tolerance ability of the centralized methods should
be investigated more in the future.

Moreover, the part of assigning segments and BSs to
FCPUs can be studied in the future to find the optimum solu-
tion, especially in complex urban environments. For example,

in the most crowded parts of a city, it can be better to consider
a low number of segments for FCPUs to cut down the load of
the FCPUs and share it among a greater number of FCPUs.
In this scenario, communication between a BS and more than
one FCPU should be considered since it is possible to assign
a BS to several FCPUs.

IV. DATA COLLECTION AND PERFORMANCE
EVALUATION
A. DATA COLLECTION AND SIMULATION
The lack of datasets containing HetVNET information was
the reason why we generated a dataset using HetVNET
simulation scenarios. Since we generated the dataset and
we did not have a large amount of data (a limitation
in our work), we could not consider the deep learning
methods. Moreover, complex prediction methods are not
necessarily the best choice to use, and depending on the
conditions of the problem, we might obtain better results with
simpler and faster methods such as ML prediction methods.
Therefore, we study supervised ML classification methods.
Nevertheless, the proposed centralized and dynamic cloudy-
fog based architecture is compatible with more complex
prediction methods such as deep learning algorithms. Indeed,
the computation and storage power of FCPUs are suitable for
executing more complex prediction methods.

The dataset contains data records of five mentioned
parameters, which are effective in network congestion
problems. We generate our data using the Simulation of
Urban Mobility (SUMO) 0.26.0 [34] simulator and the
Veins LTE version 1.3 [35], both in Linux (Ubuntu 16.04).
The boroughs of Montreal city in Canada are considered
for simulating vehicular traffic and heterogeneous network
environment. ‘‘OpenStreetMap’’ [36] is used to extract the
map data related to a part of Montreal as an ‘‘.osm’’ file.
SUMO is used to generate urban vehicular traffic, and Veins
LTE is simultaneously used as a network simulator. Vehicles
are equipped with both LTE and IEEE 802.11p interfaces.
DSRC is used to exchange intragroup vehicle information.
LTE is used to exchange information on inter-groups of
vehicles. Moreover, an accident is defined to occur at a
specific time (t= 70 s) when running the simulation scenario
to generate extra load of data. The duration of each run
is 1000 s. The minimum path loss coefficient is 2 [37]
in the simulation scenarios. DCC (used in ETSI) is based
on changing the value of the data transmission rate and
transmission power [4], [31], [38]. Additionally, most of the
proposed congestion controls in WAVE standard are based
on adapting the transmission power and data transmission
rate [28], [39]–[41]. Therefore, in each run, we changed the
value of v, dr , tpDSRC , tpLTE and b according to Table 1, and
we calculated the values of DDR and RSS. The values of
DDRminth and DDRmaxth are 0.4 and 0.6, respectively [42].
The amounts of generated and transmitted data (during 1000 s
of running a simulation scenario) are used to calculate the
DDR.
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TABLE 1. Parameters and corresponding values used in the simulation
scenario.

In [28], the authors proposed an RSS cutoff value for V2V
communication, in which if the RSS is higher than the cutoff
value, then the packet loss is due to network congestion.
They provide simulation results and technical discussions to
support this issue. In [28], the threshold value for RSS is
−96.26 dBm for data rates of 3, 6 and 12 Mbps. On this
basis, the value of RSSth is −96.26 dBm in this paper. Based
on the amount of DDR and RSS in each simulation scenario
and using (1), each data record belongs to a warning or
nonwarning class. In other words, among the simulated data
gathered in the dataset, the data records that their DDR value
is in a warning range and the RSS value is greater than a
threshold value such as−96.26 dBm were labeled by w1 as a
warning state.

For the implementation, we used Python version 3.6 with
well-known libraries, such as Scikit-learn, NumPy, Mat-
plotlib, Pandas, and others, to generate the proposed Naive
Bayesian network congestion classifier and evaluate and
compare its performance with the performance of the Support
Vector Machine (SVM), K Nearest Neighbor (KNN), and
Random Forest using the same data. Moreover, normalization
is performed on the data since the data extracted from the
simulation scenario vary in unit and range. Normalizing
data helps with accurate prediction models. In addition,
the training dataset is balanced.

B. PERFORMANCE EVALUATION OF THE CONGESTION
CLASSIFICATION METHOD
Table 2 is prepared to clarify the relationship between the
actual and predicted classes [43].

If our target HetVNET is in a warning congestion situation
but the predicted result incorrectly shows a nonwarning state
that is introduced as False Negative (FN) in Table 2, then
it will have undesirable and unexpected consequences for
vehicular users. Therefore, the cost of FN prediction in our
proposed problem is higher than the cost of False Positive
(FP). In the latter case, the actual state of congestion in
the network is nonwarning, but it is predicted as a warning
case. Although this case is a fault in the performance
of the proposed prediction model, vehicular users do not
experience the result of the side-effects of this error as

TABLE 2. Relationship between the actual and predicted classes.

much as the bad consequences from FNs. Regarding this
issue, the recall factor helps us to evaluate the proposed
prediction classification model more efficiently. High recall
values show that most of the warning cases are correctly
predicted and that the number of warning states that are
incorrectly predicted as a nonwarning state is low. Precision
considers only positive predictions, both those that are truly
predicted warning state (TP) and those that are falsely
predicted warning state (FP). Therefore, for the proposed
problem in this work, the recall factor is more important
than the precision because the costs of FP and FN vary
for vehicular users. The False Positive Rate (FPR), which
indicates the ratio of states, accounts for the warning states
but does so incorrectly. If it is not a warning case and it
is predicted truly, then we have a True Negative (TN) in
our results. The True Negative Rate (TNR) is called the
specificity. The FPR is 1− specificity [44].

Regarding the abovementioned discussion, we evaluated
the performance of the proposed Naive Bayesian classifier.

We used Receiver Operating Characteristics (ROC), which
is a common graphical tool, to measure the performance of
binary classifiers and the Area Under the Curve (AUC).

As shown in Figs. 5 and 6, the ROC curve plots the
True Positive Rate (TPR), which is the recall against the
FPR for binary classification models. In the ROC curve,
the x axis shows the FPR, and the y axis illustrates the
TPR. Each of the TPR and FPR can be equal to a value in
[0,1]. In a Roc curve, when both the TPR and FPR are zero
(i.e., (0,0)), it indicated that the classification model predicts
negative output in every prediction. Therefore, this outcome
indicates in our problem that the predictionmodel will predict
nonwarning state for every input data of x. Indeed, such a
prediction model is useless since its performance means that
there is no warning state at any time. Thus, a nonwarning
state can be considered regardless of the value of the predicted
variables every time. In other words, there is no warning at all
about the congestion that makes us worry.We know, however,
that this circumstance is not true in the real world. On the
other hand, when the TPR and FPR are equal to one (i.e.,
(1,1)), this case designates that the prediction model predicts
positive for every input data of x, regardless of whether it
is truly predicted or not. In other words, the probability of
true positives and the probability of false positives are the
same. If the model predicts the warning state for every input
data point, with a probability of 0.5, it is correct, and with a
probability of 0.5, it is false. The diagonal line that connects
the two points (0,0) and (1,1) shows a random classifier at
which the probability of truly predicting a warning state is
equal to the probability of falsely predicting it. The AUC in a
random classifier model is 0.5 [44].
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FIGURE 5. ROC curve for SVM and KNN congestion warning classifiers of
HetVNET.

FIGURE 6. ROC curve for Random Forest and Naive Bayesian congestion
warning classifiers of HetVNET.

Regarding the time sensitivity of the problem, we choose
machine learning methods that are stable and accurate but
not complex. High levels of complexity in the methods mean
more time for training and predicting. Therefore, we apply
SVM, KNN, Random Forest and Naive Bayesian algorithms
to the data using k-fold cross validation technique [45], with
k=10. The entire data is divided into 10 subsets or folds.
We considered one of the folds as the test data and the
other 9 folds as the training data. Then, the classification
algorithm uses training data to generate themodel. Afterward,
the performance of the generated model is evaluated using the
test fold. At this step, the ROC curve was plotted, and
the AUC was computed. We iterate this procedure 10 times,
and in each round, one of the 10-fold is selected as the
test fold and the other remaining 9 subsets as the training
folds. Therefore, every fold was considered a test subset one
time. As mentioned above, the ROC curve is a graph used

to illustrate TPR and FPR, and then, after 10 repetitions
of the procedure, the mean ROC curve shows the average
performance of themodel during theK=10 iterations in terms
of the TPR and FPR. Figs 5 and 6 show the mean ROC curves
of the 10 folds along with AUCs for SVM, KNN, Random
Forest and Naive Bayesian classifiers. In these figures,
the dotted lines show the ROC curves of the 10 fold. The black
diagonal dashed line shows the random classifier. The colored
area around the mean ROC illustrates the variance around the
mean ROC. The variance area indicates confidence intervals
of the models. The variance area, mean ROC curve and its
AUC help us to comprehend the stability of the classification
models. A perfect classifier has a ROC curve far from the
diagonal line toward its upper left side with an AUC value
equal to one [44].

In Fig. 5, SVM and KNN congestion warning classifiers
are compared with each other. From this figure, in terms of
having a higher AUC of the mean ROC, the KNN congestion
warning classifier shows better performance than the SVM.
In addition, the variance area (red light area) around the
ROC mean curve for the KNN congestion warning classifier
is smaller than the variance area for SVM (green area),
which indicates that the predicting behavior of the KNN
congestion warning classifier is more stable than that of the
SVM congestion warning classifier. AlthoughKNN performs
better than SVM in predicting congestion warning states
of HetVNET, its performance is slightly weak compared
to the Random Forest classifier, as shown by the AUC
value in Fig. 6. However, from the variance area of KNN
in Fig. 5 and Random Forest (pink area) in Fig. 6, it is likely
that the KNN congestion warning classifier is more stable
than the Random Forest congestion warning classifier, with
larger variance area. Due to the Random Forest progression
mechanism, which is based on extending the tree randomly,
the algorithm is less stable than the KNN and Naive Bayes
classifiers.

The farthest point from the random classifier is at the top-
left corner of the ROC curve plot, where the recall is one
and the FPR is zero. When the FPR is zero, 1 − specificity
equals zero; consequently, the specificity is one. Therefore,
at this point of the curve (top-left corner), both the recall
and specificity have their best values that can be obtained,
and in this case it is one. The blue line in Fig. 6 shows
the mean ROC curve of the Naive Bayesian congestion
warning classifier. As illustrated in the figure, among the four
classifiers, the mean ROC curve of Naive Bayesian classifier
is farther from the random classifier and closer to the top-left
corner compared to the mean ROC curves of Random Forest,
KNN and SVM (using Fig. 5). As a result, the Naive Bayesian
congestion warning classifier has the highest AUC value
of 0.94 compared to SVM, KNN, and Random Forest with
AUC values of 0.77, 0.81, and 0.82, respectively. In addition,
in Fig. 6, the small light blue area around the mean ROC
of the Naive Bayesian classifier demonstrates its stability,
which is more than the SVM, KNN, and Random Forest
classifiers.
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TABLE 3. Confusion parameters.

In classification-related problems, other metrics, such as
the accuracy, precision and F1 score are used together with
the recall and ROC curve. We also evaluated the performance
of the proposed Naive Bayesian congestion warning classifier
in terms of the mentioned metrics. For each of the 10 folds
in the SVM, KNN, Random Forest, and Naive Bayesian
congestion warning classifiers, the accuracy, precision, and
F1 score are calculated, and then, the average values of the
10 folds belonging to each metric are listed in Table 3. The
proposed Naive Bayesian congestion warning classifier with
a mean accuracy value of 91.87% is more accurate than
the SVM, KNN and Random Forest classifiers. In terms of
the mean precision, the KNN, Random Forest, and Naive
Bayesian classifiers have close values, and SVM has the
least mean precision value. The merging of the mean recall
and the mean precision gives the mean F1 score. Indeed,
the F1 score is the weighted harmonic mean of the recall
and precision. The best value for the F1 score is one,
which signifies high precision and recall. With a mean
F1 score value of 0.875, the Naive Bayesian congestion
warning classifier shows better performance than the SVM,
KNN, and Random Forest classifiers. The obtained results
in Table 3 affirm that the performance of the proposed Naive
Bayesian congestion warning classifier in almost all of the
mentioned parameters is better than that of the other three
classifiers.

CPU time is another metric that must be considered
in machine learning related works. If a method has good
performance in terms of accuracy but requires high CPU
time for processing, this trend could be a significant weak
point for that method, especially in time sensitive problems.
Therefore, we evaluate the performance of SVM, KNN,
Naive Bayes and Random Forest classifiers in terms of
CPU time in microseconds. As shown in Fig. 7, the CPU
requires more time to execute KNN, SVM, and Random
Forest, respectively than the Naive Bayesian classifier. KNN
needs time to calculate the distance between new data and
each existing data record. Accordingly, the CPU time for the
KNN classifier is higher than that of the other classifiers
(using Fig. 7). In contrast, Naive Bayes does not require a
large dataset for estimations. Moreover, it assumes that the
predictors are independent. Therefore, as correctly shown
in Fig. 7, Naive Bayes is a faster learner classifier than SVM,
KNN, and Random Forest.

Finally, considering the discussion about the results
related to mean ROC curves, which are demonstrated by
Figs. 5 and 6, the obtained performance results in Table 3
and the required CPU time indicate that the proposed Naive
Bayesian congestion warning classifier could accurately

FIGURE 7. CPU time in microseconds for four classifiers.

FIGURE 8. Variation in the packet loss ratio using the CNCC mechanism
with the numbers of vehicles for various values of the data transmission
rate.

predict the network congestion warning state in a target
HetVNET.

Unfortunately, similar work could not be found in the
HetVNET-related literature to make a comparison between
the proposed Naive Bayesian congestion classifier and the
legitimate benchmark or state-of-the-art. This issue confirms
the novelty of this work. Therefore, we compared the Naive
Bayesian congestion classifier with three other well-known
and powerful supervised classification algorithms, SVM,
KNN, and Random Forest.

C. PERFORMANCE ANALYSIS OF THE PROPOSED
APPROACH
To show how the proposed congestion classification approach
positively affects the data transmission in the network,
we perform a controlling mechanism named Centralized
Network Congestion Classification (CNCC), when a warning
result is made by the prediction model. In this mechanism,
in nonwarning situation, the value of CW is 15, which is a
minimum allowed amount in DSRC, as mentioned in [19],
[45], and the data transmission rate is 3 Mbps. This low
data rate is selected to prevent noise and interference [28].
Moreover, based on a study presented in [47], in a moderate
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FIGURE 9. Variation of the average throughput using the CNCC
mechanism with the numbers of vehicles for various values of the data
transmission rate.

channel load, data transmission rate of 3 Mbps has a higher
average reception rate than other transmission values. In the
CNCC mechanism, when the result of the Naive Bayes
prediction is a warning state, the value of CW is set to
1023, which is a maximum allowed value [19], [46], and
the value of the transmission rate increases. To determine
how much the value of the data transmission rate must be
increased, we investigate the performance of the CNCC using
a range of allowed data transmission rates in DSRC. Figs. 8
to 10 show the variation in the packet loss ratio, the average
throughput and average delay of the CNCC using 3 Mbps,
6 Mbps, and 12 Mbps as the data rate. According to the
presented results in Figs. 8, 9 and 10, CNCC outperforms
when we applied a 6 Mbps data transmission rate. The aim
of increasing the value of the data rate is that the data
that might have waited for a while (because of the large
value of CW) could be transferred quickly. Based on these
figures, with an increase in the number of vehicles that
results in a high channel load, a data transmission rate
of 6 Mbps is the best selection. According to Figs. 8, 9
and 10, in the dense vehicular environment, applying a higher
data transmission rate such as 12 Mbps, could increase
noise and interference and have a negative impact on the
network performance.Moreover, this circumstance can create
a critical network congestion situation because increasing the
value of the data rate requires an increase in the transmission
power, which can escalate channel collisions in a dense
environment.

In CNCC, the result of the Naive Bayes prediction model
is announced by the FCPUs to the corresponding vehicles in
their range. In a predicted warning case, the vehicles must
apply the new values of CW and data rate (CW=1023 and
6 Mbps for data rate) until they receive the new nonwarning
result of the prediction from FCPU. Then, the vehicles can
apply CW= 15 and 3 Mbps data rate.

In this architecture, the BSs are the gateway nodes
that provide the required information for the FCPUs and
the prediction results for the vehicles. The FCPUs have
information on the current values of the predictors, vehicle

FIGURE 10. Variation in the average delay using the CNCC mechanism
with the numbers of vehicles for various values of the data transmission
rate.

FIGURE 11. Packet loss ratio of the four considered mechanisms with
various numbers of vehicles.

ID, location, average speed, and average acceleration of
every vehicle via gateways. FCPUs are well equipped with
enough memory, storage, and processing cores to analyze
large amount of data and predict the network congestion state.
For example, to implement the proposed ML classification
method and make predictions, advanced hardware such
as Graphics Processing Unit (GPU) can be employed in
FCPUs [48]. The FCPU computes D(v) and vnew and predicts
the congestion state using (6). Then, the prediction result
must be sent via a gateway node to the vehicles located in the
corresponding segment. Based on the prediction result, if the
vehicles receive w1, they apply CW=1023 and dr=6Mbps to
avoid congestion in the network, and if the vehicles receive
w0, there is no need for the vehicles to change the values of
the parameters.

In this paper, we compare the performance of the CNCC
to contention window-based methods such as CSMA/CA,
ML-CC and DCCS. The results of the packet loss ratio are
presented in Fig. 11. Applying CNCC could significantly
improve the packet loss ratio compared to CSMA/CA.
Moreover, the variation in the value of the packet loss ratio
in the CNCC is lower than that in the ML-CC and DCCS
with an increasing number of vehicles. Therefore, based on
Fig. 11, CNCC could improve the packet loss ratio compared
to CSMA/CA, ML-CC and DCCS.
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FIGURE 12. Average delay of the four considered mechanisms with
various numbers of vehicles.

FIGURE 13. Average throughput of the four considered mechanisms with
various numbers of vehicles.

Fig. 12 shows the results of the average delay (in ms)
for the four considered congestion controlling mechanisms.
Congestion in the network can increase end-to-end delays
in data transmissions. Based on Fig. 12, the CNCC could
improve the average delay, especially in dense vehicular
environments. According to the results shown in Fig. 12,
the performance of the CNCC in terms of the average
delay is much better than that of CSMA/CA and DCCS.
Moreover, in comparison to ML-CC, the CNCC could reduce
the average delay in scenarios with over 100 vehicles.With an
increase in the number of vehicles, the CNCC shows stability
in the results that is due to applying the prediction method
before congestion occurs in the network.

In Fig. 13, the average throughput results of the four
considered congestion controllingmechanisms are presented.
In a congested network, the amount of average data delivery
in seconds is low. Therefore, the results on the average
throughput can show how much the mechanisms control
congestion in the network. Based on the previous figures,
the ML-CC was successful in decreasing the packet loss
ratio and the average delay; however, it could not increase
the average throughput. As Fig. 13 shows, DCCS and
CNCC have better performance than ML-CC and CSMA/Ca.
In other words, the average amount of successfully received
data in a second in the CNCC mechanism is higher than that
in the other three methods.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a centralized and dynamic
cloudy-fog-based architecture of HetVNET. Moreover,
we have proposed a classification method using a Naive
Bayesian algorithm to predict the congestion warning state
in the data transmission of HetVNET. The proposed Naive
Bayesian classification approach can be applied in the
centralized and dynamic cloudy-fog-based architecture of
HetVNET, to accurately predict warning situations in data
flow. We used the data delivery ratio and the received
signal strength as metrics to categorize the congestion
warning and nonwarning states in HetVNET. We used
five features: the number of vehicles, data rate, DSRC
transmission power, LTE transmission power, and LTE
bandwidth to predict the congestion warning state of
HetVNET. In addition, SVM, KNN, and Random Forest
algorithms, which are widely used in current classification
problems, have been applied to generate prediction models.
Numerical results emphasize that the Naive Bayesian clas-
sification approach is not only more suited to the proposed
problem but is also more accurate than the other three
approaches.

The aim of this approach is to improve the stability in
the performance of the network. Employing a congestion
prediction model helps us to prepare a network before
congestion occurs. As the results indicate, by applying this
approach, we can make a network that is flexible with various
vehicle densities and shows stable performance. Based on
the obtained simulation results, applying the congestion
classification approach could improve the performance of
HetVNET in terms of the packet loss ratio, average delay and
average throughput.

We will consider the following open challenges as future
works:

• Applying the proposed method using real data and
evaluating the performance of the method in the real
environment of HetVNET;

• Considering other factors, such as the mobility model,
modulation technique, complexity of scenarios (urban,
rural, straight highway and so on), number of eNBs,
and number of resource blocks as predictors to generate
a more complex congestion prediction model for
HetVNET;

• A Recurrent Neural Network (RNN) method is imple-
mented in real time to analyze the sequential and time
series network data of the dataset traces.

REFERENCES
[1] K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, and Y. Zhou, ‘‘Hetero-

geneous vehicular networking: A survey on architecture, challenges, and
solutions,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2377–2396,
4th Quart., 2015, doi: 10.1109/COMST.2015.2440103.

[2] N. Taherkhani and S. Pierre, ‘‘Centralized and localized data congestion
control strategy for vehicular ad hoc networks using a machine learning
clustering algorithm,’’ IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11,
pp. 3275–3285, Nov. 2016.

122296 VOLUME 9, 2021

http://dx.doi.org/10.1109/COMST.2015.2440103


F. Falahatraftar et al.: Centralized and Dynamic Network Congestion Classification Approach for HetVNETs

[3] A. Rostami, B. Cheng, G. Bansal, K. Sjöberg, M. Gruteser, and
J. B. Kenney, ‘‘Stability challenges and enhancements for vehicular
channel congestion control approaches,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 10, pp. 2935–2948, Oct. 2016.

[4] N. Lyamin, A. Vinel, D. Smely, and B. Bellalta, ‘‘ETSI DCC: Decentral-
ized congestion control in C-ITS,’’ IEEE Commun. Mag., vol. 56, no. 12,
pp. 112–118, Dec. 2018.

[5] S. Zemouri, S. Djahel, and J. Murphy, ‘‘A short-term vehicular density
prediction scheme for enhanced beaconing control,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–7.

[6] B. Hassanabadi and S. Valaee, ‘‘Reliable periodic safety message
broadcasting in VANETs using network coding,’’ IEEE Trans. Wireless
Commun., vol. 13, no. 3, pp. 1284–1297, Mar. 2014.

[7] S. R. Kolte and M. S. Madnkar, ‘‘A design approach of congestion control
for safety critical message transmission in VANET,’’ in Proc. 4th Int. Conf.
Commun. Syst. Netw. Technol., Bhopal, India, Apr. 2014, pp. 298–301.

[8] A. Balador, C. Bai, and F. Sedighi, ‘‘A comparison of decentralized
congestion control algorithms for multiplatooning communications,’’ in
Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops (PerCom
Workshops), Kyoto, Japan, Mar. 2019, pp. 674–680.

[9] C. Chen, J. Hu, J. Sui, and Y. Zhou, ‘‘An information congestion control
scheme in the internet of vehicles: A bargaining game approach,’’ Comput.
Electr. Eng., vol. 58, pp. 282–298, Feb. 2017.

[10] S. Khatri, H. Vachhani, S. Shah, J. Bhatia, M. Chaturvedi, S. Tanwar,
and N. Kumar, ‘‘Machine learning models and techniques for VANET
based traffic management: Implementation issues and challenges,’’ Peer-
Peer Netw. Appl., vol. 14, no. 3, pp. 1778–1805, Sep. 2020, doi:
10.1007/s12083-020-00993-4.

[11] A. Paranjothi, M. S. Khan, and S. Zeadally, ‘‘A survey on congestion
detection and control in connected vehicles,’’ Ad Hoc Netw., vol. 108,
pp. 1–17, Nov. 2020, doi: 10.1016/j.adhoc.2020.102277.

[12] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘‘Machine
learning paradigms for next-generation wireless networks,’’ IEEEWireless
Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[14] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research
opportunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[15] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren,
‘‘Foggy clouds and cloudy fogs: A real need for coordinated management
of fog-to-cloud computing systems,’’ IEEE Wireless Commun., vol. 23,
no. 5, pp. 120–128, May 2016.

[16] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[17] C. Chen, T. Qiu, J. Hu, Z. Ren, Y. Zhou, and A. K. Sangaiah,
‘‘A congestion avoidance game for information exchange on intersections
in heterogeneous vehicular networks,’’ J. Netw. Comput. Appl., vol. 85,
no. 1, pp. 116–126, May 2017.

[18] N. Taherkhani and S. Pierre, ‘‘Prioritizing and scheduling messages for
congestion control in vehicular ad hoc networks,’’Comput. Netw., vol. 108,
pp. 15–28, Oct. 2016.

[19] R. L. Gomes, L. F. Bittencourt, E. R. M. Madeira, E. C. Cerqueira, and
M. Gerla, ‘‘Software-defined management of edge as a service networks,’’
IEEE Trans. Netw. Service Manage., vol. 13, no. 2, pp. 226–239,
Jun. 2016.

[20] S. Zemouri, S. Djahel, and J. Murphy, ‘‘An altruistic prediction-based
congestion control for strict beaconing requirements in urban VANETs,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 12, pp. 2582–2597,
Dec. 2019.

[21] K. N. Qureshi, A. H. Abdullah, O. Kaiwartya, S. Iqbal, R. A. Butt, and
F. Bashir, ‘‘A dynamic congestion control scheme for safety applications
in vehicular ad hoc networks,’’ Comput. Electr. Eng., vol. 72, pp. 774–788,
Nov. 2018.

[22] R. Regin and T. Menakadevi, ‘‘Dynamic clustering mechanism to
avoid congestion control in vehicular ad hoc networks based on node
density,’’ Wireless Pers. Commun., vol. 107, no. 4, pp. 1911–1931,
May 2019.

[23] F. Zhang, Y. Du, W. Liu, and P. Li, ‘‘Model predictive power control for
cooperative vehicle safety systems,’’ IEEE Access, vol. 6, pp. 4797–4810,
2018.

[24] F. Zhang, G. Tan, C. Yu, N. Ding, C. Song, and M. Liu, ‘‘Fair transmission
rate adjustment in cooperative vehicle safety systems based on multi-
agent model predictive control,’’ IEEE Trans. Veh. Technol., vol. 66, no. 7,
pp. 6115–6129, Jul. 2017.

[25] N. Cheng, N. Lu, N. Zhang, X. S. Zhang, X. Shen, and J. W. Mark,
‘‘Opportunistic WiFi offloading in vehicular environment: A game-theory
approach,’’ IEEE Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 1944–1955,
Jul. 2016.

[26] C.-M. Huang, M.-S. Chiang, D.-T. Dao, H.-M. Pai, S. Xu, and H. Zhou,
‘‘Vehicle-to-infrastructure (V2I) offloading from cellular network to
802.11p Wi-Fi network based on the software-defined network (SDN)
architecture,’’ Veh. Commun., vol. 9, pp. 288–300, Jul. 2017.

[27] F. Falahatraftar, S. Pierre, and S. Chamberland, ‘‘A multiple linear
regression model for predicting congestion in heterogeneous vehicular
networks,’’ in Proc. 16th Int. Conf. Wireless Mobile Comput., Netw.
Commun. (WiMob), Thessaloniki, Greece, Oct. 2020, pp. 93–98.

[28] B.-M. Cho, M.-S. Jang, and K.-J. Park, ‘‘Channel-aware congestion
control in vehicular cyber-physical systems,’’ IEEE Access, vol. 8,
pp. 73193–73203, Apr. 2020.

[29] Z. Tang, Y. Zhao, L. Yang, S. Qi, D. Fang, X. Chen, X. Gong, and Z.Wang,
‘‘Exploiting wireless received signal strength indicators to detect evil-twin
attacks in smart homes,’’Mobile Inf. Syst., vol. 2017, pp. 1–14, Jan. 2017,
doi: 10.1155/2017/1248578.

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY,
USA: Springer, 2009.

[31] G. Bansal, J. B. Kenney, and C. E. Rohrs, ‘‘LIMERIC: A linear adaptive
message rate algorithm for DSRC congestion control,’’ IEEE Trans. Veh.
Technol., vol. 62, no. 9, pp. 4182–4197, Nov. 2013.

[32] I. Soto, O. Amador, M. Urueña, and M. Calderon, ‘‘Strengths and weak-
nesses of the ETSI adaptive DCC algorithm: A proposal for improvement,’’
IEEE Commun. Lett., vol. 23, no. 5, pp. 802–805, May 2019.

[33] C. Sommer, S. Joerer, M. Segata, O. K. Tonguz, R. L. Cigno, and
F. Dressler, ‘‘How shadowing hurts vehicular communications and how
dynamic beaconing can help,’’ IEEE Trans. Mobile Comput., vol. 14, no. 7,
pp. 1411–1421, Oct. 2014.

[34] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, ‘‘Micro-
scopic traffic simulation using SUMO,’’ in Proc. 21st Int. Conf. Intell.
Transp. Syst. (ITSC), Maui, HI, USA, Nov. 2018, pp. 2575–2582.

[35] F. Hagenauer, F. Dressler, and C. Sommer, ‘‘Poster: A simulator for
heterogeneous vehicular networks,’’ inProc. IEEEVeh. Netw. Conf. (VNC),
Paderborn, Germany, Dec. 2014, pp. 185–186.

[36] OpenStreetMap Contributors. Accessed: May 2021. [Online]. Available:
https://www.openstreetmap.org

[37] K. T. Herring, J. W. Holloway, D. H. Staelin, and D. W. Bliss, ‘‘Path-
loss characteristics of urban wireless channels,’’ IEEE Trans. Antennas
Propag., vol. 58, no. 1, pp. 171–177, Jan. 2010.

[38] B. Aygun, M. Boban, and A. M. Wyglinski, ‘‘ECPR: Environment- and
context-aware combined power and rate distributed congestion control
for vehicular communications,’’ Comput. Commun., vol. 93, pp. 3–16,
Nov. 2016.

[39] M. Joseph, X. Liu, and A. Jaekel, ‘‘An adaptive power level control
algorithm for DSRC congestion control,’’ in Proc. 8th ACM Symp.
Design Anal. Intell. Veh. Netw. Appl. (DIVANet), Montreal, QC, Canada,
Oct. 2018, pp. 57–62, doi: 10.1145/3272036.3272041.

[40] C. Navdeti, C. Giri, and I. Banerjee, ‘‘Distributed α-fair transmit power
adaptation based congestion control in VANET,’’ in Proc. 20th Int. Conf.
Distrib. Comput. Netw., Bangalore, India, Jan. 2019, pp. 253–260, doi:
10.1145/3288599.3288606.

[41] S. A. A. Shah, E. Ahmed, J. J. P. C. Rodrigues, I. Ali, and R. M.
Noor, ‘‘Shapely value perspective on adapting transmit power for periodic
vehicular communications,’’ IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 3, pp. 977–986, Mar. 2018.

[42] P. Ignaciuk, and A. Bartoszewicz, Congestion Control in Data Transmis-
sion Networks: Sliding Mode and Other Designs. London, U.K.: Springer,
2013, pp. 3–4.

[43] J. Davis and M. Goadrich, ‘‘The relationship between precision-recall and
ROC curves,’’ in Proc. 23rd Int. Conf. Mach. Learn. (ICML), Pittsburgh,
PA, USA, 2006, pp. 233–240, doi: 10.1145/1143844.1143874.

[44] A. Géron, Hands-On Machine Learning With Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelli-
gent Systems, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, 2019,
pp. 88–100.

VOLUME 9, 2021 122297

http://dx.doi.org/10.1007/s12083-020-00993-4
http://dx.doi.org/10.1016/j.adhoc.2020.102277
http://dx.doi.org/10.1155/2017/1248578
http://dx.doi.org/10.1145/3272036.3272041
http://dx.doi.org/10.1145/3288599.3288606
http://dx.doi.org/10.1145/1143844.1143874


F. Falahatraftar et al.: Centralized and Dynamic Network Congestion Classification Approach for HetVNETs

[45] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Sta-
tistical Learning: With Applications in R. New York, NY, USA: Springer,
2013, pp. 181–183.

[46] N. Taherkhani, ‘‘Congestion control in vehicular ad hoc networks,’’
Ph.D. dissertation, École Polytechnique de Montréal, Montreal, QC,
Canada, 2015.

[47] L. Delgrossi, and T. Zhang, Vehicle Safety Communications: Protocols,
Security, and Privacy. Hoboken, NJ, USA: Wiley, 2012, pp. 85–91.

[48] Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. S. Quek, and H. Shin, ‘‘Enabling
intelligence in fog computing to achieve energy and latency reduction,’’
Digital Commun. Netw., vol. 5, no. 1, pp. 3–9, Feb. 2019.

FARNOUSH FALAHATRAFTAR received the
B.Sc. degree in computer software engineer-
ing from the South Tehran Branch of Islamic
Azad University, Tehran, Iran, in 2009, and
the M.Sc. degree in computer engineering from
Eastern Mediterranean University, Famagusta,
North Cyprus, in 2013. She is currently pursuing
the Ph.D. degree with École Polytechnique de
Montréal, Montreal, QC, Canada. Her research
interests include controlling congestion in hetero-

geneous vehicular networks using machine learning and deep learning
methods, SDN, network slicing, and virtualization in 5G and beyond.

SAMUEL PIERRE (Senior Member, IEEE)
received an Honorary Doctorate degree from the
Université du Quebec à Trois-Rivieres (UQTR),
in May 2014, and an Honorary Doctorate degree
from the Université du Quebec en Outaouais
(UQO), in November 2016. He is currently a
Professor with the Department of Computer and
Software Engineering, Polytechnique Montreal,
and the Director of the Mobile Computing
and Networking Research Laboratory (LARIM).

He has authored or coauthored more than 550 technical publications,
including articles in refereed archival journals, textbooks, patents, and book

chapters. His research interests include wired and wireless communications,
mobile computing and networking, cloud computing, and e-learning. He is a
fellow of the Engineering Institute of Canada, in 2003, and the Canadian
Academy of Engineering, in 2008. He was appointed as a member of
the Order of Canada, in December 2011. He has received several awards,
including the Prix Poly 1873 for Excellence in Teaching and Training,
in 2001 and 2005, and the Knight of the National Order of Quebec, in 2009.
In 2017, he received the El Fasi Prize from the Agence Universitaire
de la Francophonie (AUF) to highlight the action of a person who has
exerted a significant influence through the quality of his expertise and the
innovative nature of his achievements at the international level in the fields
of research, training, development and international cooperation, governance
and/or transfer of knowledge or skills. In 2020, he received the Grand Prize
for Professional Excellence from the Order of Engineers of Quebec (OIQ).
In 2021, he received the Gold Medal from Engineers Canada.

STEVEN CHAMBERLAND (Member, IEEE)
received the Electrical Engineering degree and
the Ph.D. degree in operations research from the
École Polytechnique de Montréal, Montreal, QC,
Canada, in 1994 and 1998, respectively. From
1998 to 1999, he was with the Network Architec-
ture Group, Bell Canada, and from 1999 to 2001,
he was a Professor with the École de Technologie
Supérieure, Montreal. Since 2001, he has been
an Assistant Professor and an Associate Professor

with the École Polytechnique de Montréal, where he is currently a
Full Professor of computer engineering. His research interests include
telecommunication network planning and design and network architecture.
He is amember of theAssociation for ComputingMachinery (ACM).He also
serves on the Editorial Board for Computers and Operations Research and
as an Associate Editor for Information Systems and Operational Research.

122298 VOLUME 9, 2021


