
Received June 30, 2021, accepted August 25, 2021, date of publication August 27, 2021, date of current version September 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108475

Developing a Multicore Platform Utilizing
Open RISC-V Cores
HYEONGUK JANG 1,2, KYUSEUNG HAN 1 (Member, IEEE), SUKHO LEE1, JAE-JIN LEE 1,2,
SEUNG-YEONG LEE3, (Student Member, IEEE), JAE-HYOUNG LEE3, (Student Member, IEEE),
AND WOOJOO LEE 3, (Member, IEEE)
1Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
2Department of ICT, University of Science and Technology, Daejeon 34113, South Korea
3School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Woojoo Lee (space@cau.ac.kr)

This work was supported in part (50%) by the Ministry of Science, ICT (MSIT), South Korea, through the Development of Ultra-Low
Power Intelligent Edge SoC Technology Based on Lightweight RISC-V Processor supervised by the Institute for Information and
Communications Technology Planning and Evaluation (IITP) under Grant 2018-0-00197, and in part (50%) by Chung-Ang University
Research Grants in 2019.

ABSTRACT RISC-V has been experiencing explosive growth since its first appearance in 2011. Dozens
of free and open cores developed based on this instruction set architecture have been released, and RISC-V
based devices optimized for specific applications such as the IoT and wearables, embedded systems, AI, and
virtual, augmented reality are emerging. As the RISC-V cores are being used in various fields, the demand
for multicore platforms composed of RISC-V cores is also rapidly increasing. Although there are various
RISC-V cores developed for each specific application, and it seems possible to pick them up to create
the most optimized multicore for the target application, unfortunately it is very difficult to realize this in
reality. This is mainly because most open cores are released in the form of a single core without cache
coherence logic, which requires expensive design effort and development costs to address it. To tackle this
issue, this paper proposes a method to solve the cache coherence problem without additional effort from the
developer and to maximize the performance of the multicore composed of the RISC-V core selected by the
developer. Along with a description of the sophisticated operating mechanisms of the proposed method, this
paper details the architecture and hardware implementation of the proposed method. Experiments conducted
through the prototype development of a RISC-V multicore platform involving the proposed architecture and
development of an application running on the platform demonstrate the effectiveness of the proposedmethod.

INDEX TERMS Multicore platform, RISC-V, system-on-chip (SoC), electronic design automation (EDA).

I. INTRODUCTION
Instruction set architecture (ISA) is the essential vocabulary
that allows hardware and software to communicate [1]. Over
the past two decades, two major companies, ARM and Intel,
have dominated ISA, and as a result, their microprocessors
are now embedded in all computing devices from smallest to
the fastest. However, after the recent rise of the RISC-V ISA
[2], all of this is changing, and the microprocessor industry
is turning upside down [3]. The RISC-V is a free and open
instruction set with well-structured modularity, providing a
very high level of flexibility at a very low cost and allowing

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

users to produce custom chips suited to specific applications.
As Linux gained popularity and acclaim in the operating sys-
tems, RISC-V pursues to become Linux in the processors [4],
and is beginning to be used in various commercial products
one after another.

As RISC-V is expected to be used in the design of new
and more specialized processor cores that will soon emerge
in wearables, home appliances, robots, autonomous vehicles
and factory equipment, the need for RISC-V based multicore
platforms is becoming increasingly urgent. Currently, there
are various types of RISC-V cores that have been released,
and by using them, it is ideally possible to configure them
as customized multicores for various applications. However,
in terms of practicality, building a multicore platform using

120010 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7539-0734
https://orcid.org/0000-0002-9151-3447
https://orcid.org/0000-0003-3260-1620
https://orcid.org/0000-0001-5736-4583
https://orcid.org/0000-0003-0810-1458


H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 1. Example of the cache coherence problem.

the open RISC-V cores, especially released as a single core,
poses unfortunately enormous challenges. This is mainly due
to the cache coherence problem. Without solving this prob-
lem, the correct operation of the multicore is not guaranteed,
or the expected performance is not exhibited. The currently
possible method to solve this problem is to implement the
cache coherence logic (CCL) for each multicore by the plat-
form developers themselves, but this has a critical limitation
that the design effort and development costs are very expen-
sive and sometimes impossible.

To address the difficulty of developing multicore platforms
utilizing RISC-V cores, we propose a method that solves
the cache coherence problem without CCL and maximizes
the performance of multicore regardless of which RISC-V
cores are used in the multicore platform. The main idea of
the proposed method is to avoid cache coherence problem by
disallowing caching on shared data by default, and to allow
temporarily caching on data that are obviously not shared for
a period of time in order to compensate for the performance
degradation caused by the inability to use the cache. We put
it into the role of the programmers to determine which data
are temporarily cached, but provide simple application pro-
gramming interface (API) functions to make it easier for the
programmers to apply this method when developing applica-
tions. In addition, we analyze and identify problems that may
arise when the proposed method is applied to existing cache
structure, and devise sophisticated behavior mechanisms of
the proposed method to address them. Next, we develop
the architecture to realize the proposed method in RISC-V
core-based multicore platform, and implement the necessary
hardware. We then build the proposed architecture into a
network-on-chip (NoC) responsible for IP-to-IP communica-
tion in system-on-chip (SoC), so even if the developer selects
any RISC-V cores and configures multicores, the proposed
method can be applied. Moreover, by including the proposed
architecture in the RISC-V-based SoC automatic design tool,
we try to increase the usability of the proposed method.
Finally, to verify the effectiveness of the proposed method,
we implement the RISC-V multicore prototype platform
including the proposed architecture on an FPGA, and develop
a camera input-based handwriting recognition program as
an application. Through the experimental work based on
the application running on the FPGA, we confirm that the
performance of the platform on which the proposed method
is applied shows a performance improvement of about 37%
over those on which it is not.

FIGURE 2. Solutions to the cache coherence problem: (a) simply
non-caching the shared data and (b) using CCL.

The main contributions of this paper may be summarized
as follows:

– As the most practical solution to the cache coherence
problem in multicore development with RISC-V cores,
a temporary caching (TC) method is presented.

– Along with the sophisticated operation mechanism of
the proposed TC, a detailed description of the hardware
and software development for TC is provided.

– Through prototyping of a RISC-V-based multicore plat-
form to which TC is applied and the development of the
application running on this platform, the effectiveness of
the proposed solution is verified.

The remainder of this paper is organized as follows.
Section II elucidates the cache coherence problem that
can occur when a multicore is configured based on the
RISC-V cores, and the existing solutions associated with
them. Section III introduces the main idea of the proposed
method and discusses problems that may arise from the
proposed method. Next in Section IV, a detailed descrip-
tion of the architecture and hardware implementation for the
proposed method are presented. Implementing the proposed
architecture on NoC and developing it to be automati-
cally designed are provided in Section V. Section VI is
to develop a prototyped RISC-V multicore platform and
applications as test benches and to provide experimental
results obtained from them. Finally, SectionVII concludes the
paper.

II. CACHE COHERENCY PROBLEM IN RISC-V MULTICORE
Cache coherency problem is a well-known problem on
multicore due to the caches being distributed across indi-
vidual cores. Since each core has its own cache, the copy
of the shared data in that cache may not always be the
most up-to-date version, resulting in data synchronization
failures that possibly crash the program or the entire com-
puter. FIGURE 1 shows a simple example of the cache
coherency problem. In the figure, there is a dual-core proces-
sor with Core1 and Core2, where each core brought amemory
block for the variable A into its private cache. And then
Core2 writes 0 to A. When Core1 attempts to read A from its
cache, it will not have the latest version, producing incorrect
results.

VOLUME 9, 2021 120011



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 3. Example of (a) conceptual diagram of temporary caching in
parallel processing and (b) its code.

To tackle the cache coherence problem in multicore,
tremendous research efforts have been continuing for
decades, and various solutions have been proposed. These
solutions can be divided into software-based and hardware-
based schemes. The software-based schemes refer to
approaches of caching and maintaining data coherency in
software by analyzing shared data [5]–[9]. These schemes
mainly solve the cache coherence problem by improving
the compiler, and sometimes by requiring special hardware
assist. Unfortunately, however, a compiler that completely
solves the cache coherence problem has not yet appeared on
the market [10].

The software-based scheme that can be used in practice
is to allocate all the shared data used by multiple cores
into a non-cacheable region at compile time. Then the cores
read the shared data directly from the main memory without
caching, which is described in FIGURE 2 (a). This scheme
has advantages in terms of practicality because the system
developer does not need to modify the existing compiler, and
it has the advantage in terms of programmability because
the program works correctly even if the software developer
does not consider the cache. Of course, the speed at which
the core accesses shared data is slowed, so performance
degradation is unavoidable with this scheme. In particular,
in the case of applications that have a lot of data access,
such as image processing, performance can be greatly
degraded.

Due to the shortcomings of software-based schemes
in terms of performance, hardware-based schemes are
widely used in typical multicore systems. By utilizing addi-
tional hardware to synchronize the data in the caches,
which is called CCL (cache coherence logic) as shown
in FIGURE 2 (b), the schemes achieve the high performance
of multicore platforms [10]–[13]. However, since the CCL is
closely related to the cache structure, adding the CCL to an
already-designed open source core is very expensive in design
effort and development cost unless the CCL is considered and
designed together when designing the core. Moreover, it is
very difficult and impractical to implement CCL that targets
several different cores rather than one kind of core.

Based on the above discussion, it may be very hard to solve
the cache coherence problem by using the hardware-based
scheme to develop a multicore platform using the RISC-V
cores. To more realistically examine the development of

TABLE 1. Features of the existing RISC-V cores.

a multicore platform using RISC-V cores, TABLE 1 lists
existing RISC-V cores. As shown in the table, most of the
RISC-V cores were released in the form of a single core
without CCL. In order to configure a multicore with them
while using a hardware-based scheme, platform developers
have no choice but to implement the CCL by themselves.
In the worst case, some cores do not provide readable RTL
code, making it impossible to add the CCL. In addition,
there are some RISC-V cores released as multicores and

120012 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 4. Memory access over time on Core1 for array A, when the TC is
(a) not applied and (b) applied.

they support CCL, but these RISC-V cores have a big limit
on scalability because they have a fixed number of cores.
Furthermore, there may be cases where platform developers
want to use existing RISC-V cores to construct heterogeneous
multicores, even in these cases, developers are still faced with
the problem of having to implement their own CCL. After all,
platform developers want to choose themost suitable RISC-V
core from the list, but the reality is that they will have a hard
time building a multicore platform by scaling regardless of
the cache coherence type.

III. TEMPORARY CACHING
A. MAIN IDEA
In this paper, as the most practical solution to develop mul-
ticore with RISC-V cores, we propose a new software-based
scheme that can compensate for the performance degradation
of the conventional software-based schemes without devel-
oping a new compiler or losing programmability. FIGURE 3
shows the motivation and main idea of the proposed scheme.
In software-based schemes, when a program has a consec-
utive array and the array is generally shared data that can
cause cache coherence problem, caching that array is strictly
not allowed. However, as shown in the figure, if the array
can be split into multiple pieces within a loop statement
and can be executed independently on each core, performance
can be improved if the programmer can temporarily allow
caching of this array during the loop statement. Of course,
after the loop is over, the caching for that array should be
disabled.

In other words, the main idea of the proposed scheme is to
allow the programmer to temporarily cache data when possi-
ble, i.e. we call this technique TC (temporary caching). The
proposed TC improves performance by making it possible
to dynamically cache data that originally had to be accessed
from the main memory. For example, if array A is shared
data as shown in FIGURE 4 (a), it must be accessed directly
from the main memory. However, if A is accessed only by
Core1 in a certain time, the programmer can program A to
be cached for that time. FIGURE 4 (b) conceptually shows
that the application of TC reduces the memory access time.
In applications such as deep neural network operations and
image processing where there is a lot of memory access and

FIGURE 5. Progamming example.

FIGURE 6. Mapping mechanism between memory map and main memory
for TC.

TC can be applied frequently, the benefits of TC can be
greatly appreciated.

In order for programmers to apply TC easily, we develop
an API with tc_malloc function to start TC and tc_free
function to end TC. FIGURE 5 shows an example of how to
apply TC to the original program code using the provided
API. In the original code, shown in FIGURE 5 (a), there
is a variable a. When TC can be applied to the variable a
in the program, as shown in the 5th line of FIGURE 5 (b),
the programmer calls tc_mallocwith the start address and
size of a as parameters. Then, the starting address of the new
variable x that can be cached while having the same data as
variable a is returned. More in detail, as shown in FIGURE 6,
tc_malloc creates x allocated the same size as a in the
space called TC heap in the cacheable region. For reference,
the TC heap is secured from address space in the cacheable
region in the memory map that is not actually mapped to
memory or MMIO and not for the space for instruction data
and read-only data. Then, tc_malloc dynamically sets the
memory map so that this x is mapped to the space of the main

VOLUME 9, 2021 120013



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 7. Problematic cases when adopting TC.

memory mapped with a. After that, instead of using a, x is
used in the code, allowing the core to fetch the same data as a
from the main memory, put it in the cache, and use it. Finally,
when it is no longer necessary or possible to cache the data,
the programmer calls the tc_free with the starting address
of x as a parameter, and tc_free flushes the cached TC
data from the cache, frees the space allocated for x from the
TC heap, and cut off the mapping to the corresponding main
memory.

Meanwhile, when applying TC, programmers must
take into account real-time computing, reliability, and
power/energy consumption resulting from cache usage. More
precisely, the use of cache in shared data can cause cache
interference issues between tasks, which can significantly
hamper the predictability and analysis of multicore real-time
systems [14], [15]. Recent studies on cache architecture and
cache coherence show that they have a significant impact
on system reliability [16], [17]. Additionally, cache archi-
tecture and operational policies are well known to have
a significant impact on overall system power and energy,
so optimizing them has been intensively studied for more
than a decade [18]–[20]. Furthermore, as the power density
of chips increases, thermal design power (TDP) has become
an important concern in modern chip designs [21], [22], and
some studies have pointed out that the leakage current of the

cache significantly affects the TDP of the overall system [23],
[24]. After all, when applying TC, the programmer must
optimize the target application with these factors in mind.
Fortunately, TC is a software based scheme, so programmers
can easily do this by trial and error using the provided TC
API. In addition, compared to the large power overhead of the
CCL [25], [26], which may adversely affect the TDP, TC is
advantageous for TDP because the CCL is not required.

B. LIMITATION DUE TO THE CACHE-LINE PROBLEM
In a function, shared data can be divided into N number of
short-term private data and a short-term shared data, where N
is the number of cores. Each private data can be temporarily
cached by each core, and we refer to these data collectively as
TC data, and define TCx data by attaching the index x of the
corresponding core to each. The short-term shared data still
accessed from main memory is called non-TC data. Then,
noting that data transfer between cache and main memory
is basically done on a cache-line unit, we can notice that a
fatal problem can occur if two or more types of TCx data or
non-TC data are on the same cache line. We call this problem
the cache-line problem and continue its detailed analysis.

First, when TC1 data is transferred to the cache, non-TC
data just located near the TC1 data can also be cached, result-
ing in the cache-line problem. In this case, if the core attempts
to access non-TC data, the data will be accessed from the
cache and not from the main memory. FIGURE 7 (a) shows a
detailed example of this problem, which can eventually cause
critical system errors.

Next, when two different TC data belonging to the
same cache-line, another cache-line problem can also occur.
FIGURE 7 (b) describes this case, where variable A and B are
TC1 and TC2 data, respectively. If A and/or B are modified
and written back to the main memory, the wrong value can be
stored in the main memory, due to the unintentionally-cached
data in each cache. This also can cause a fatal system error,
and there is no existing solution to prevent it.

The cache line problem puts a big limit on the use of
TC. For example, as shown in the 1st line of code in
FIGURE 8 (a), array a is shared, so it should not be cached
on the dual core platformwithout CCL basically. On the other
hand, as seen in the next for-loop in both codes, a is actually
used independently in each core, whereby a[0∼49] and
a[50∼99] are executed on each core. Therefore, to improve
performance, it is desired to apply TC for a in each code,
which is described in FIGURE 8 (b). However, since there
is a high possibility that some cache-lines of a[0∼49]
and a[50∼99] overlap, the programmer must never apply
TC as in the example in FIGURE 8 (b). In other words,
the programmer must conservatively apply TC only to data
that clearly does not share the cache-line, which is a huge
constraint on the use of TC.

C. PLAUSIBLE SOLUTIONS
To overcome the limitation of using TC, one can come upwith
a method of using a lock mechanism with TC. For example,

120014 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 8. Example codes for the false sharing problem.

as shown in the 5th and 12th lines in FIGURE 8 (c), a program-
mer codes to lock and unlock before tc_malloc and after
tc_free, respectively, so that a[0∼49] and a[50∼99]
are cached, updated, and flushed independently. In this way,
performance is improved in terms of data access speed due
to TC, but since programs are sequentially processed by
lock, significant performance loss may occur in terms of data
parallel processing, which may lead to overall performance
degradation.

Data allocation by the compiler is also a plausible approach
to think about, but in the end it is not appropriate. For
example, one might think that inserting the proper padding
between a[49] and a[50] would avoid the conflict, but
this is only possible if the address of the array elements
is linear, which is not possible in reality. On the other
hand, allocating one element per cache line size at compile
time will definitely prevent the two TC groups from mix-
ing into the cache line. However, this approach not only
increases memory usage extremely, but also significantly
reduces performance by removing the spatial locality of the
cache.

We may also consider a way to fundamentally block two
or more TCx data and/or non-TC data belonging to one
cache-line by copying each TC data to new data and using
it. However, this method violates the aim of TC to improve

FIGURE 9. Example of assigning a new variable to TC Heap: the TC Heap
is from 0 × 0 to 0xFFF, the cache-line size is 0 × 20, and the start address
and size of the original variable are 0 × 10001068 and 0 × 40,
respectively. The green part is the space allocated for the new variable,
and the blue part is for the actual TC data.

performance, as it incurs memory resource waste and signif-
icant time overhead for copying data. Meanwhile, instead of
the software-style approaches discussed above, we may think
of a hardware-based solution that supports variables whose
addresses are unaligned to the cache-line size. This method is
ideally possible, but none of the existing core architectures,
including the RISC-V cores, support this structure.

After all, all of the above solutions have fatal weaknesses.
In particular, the problem is exacerbated by the inability to
modify the RISC-V cores themselves. Under the conclusion
that a solution based on software or hardware alone is dif-
ficult, we try to solve the cache-line problem through an
approach that considers both software and hardware. Further-
more, to find the most practical solution, we considered the
following issue in the software/hardware co-design approach:
no matter how easily the developed software is available
on the platform, if it is difficult to configure the platform
using the necessary hardware with the software, this cannot
be a practical solution. In the following sections, we will
introduce our software/hardware co-design solution in detail
and explain how to make this solution the most practical by
implementing a way to automatically generate a multicore
platform with the proposed hardware.

IV. TEMPORARY CACHING ARCHITECTURE
A. OVERVIEW
The cache-line problem can be solved by making the
addresses of TC and non-TC data not consecutive. To do
that, we introduce the concept of virtual addresses. The use
of virtual addresses has the same effect as the copy-based
solution discussed in Section III-C, which copies TC data
to a new memory location, but the copy overhead can be
avoided by mapping a virtual address to the original TC data.
To realize this concept, it is necessary to develop system
software that allocates virtual addresses and hardware that
supports address translation, which is one of the major topics
in this section.

Unfortunately, the introduction of virtual addresses alone
cannot solve the cache-line problem because cache lines still
have unintentionally-cached dummies. In other words, using
a virtual address prevents the use of dummies, but cannot
prevent them from being included in the cache-lines. There
seems to be no problem because read/write does not directly
take place on such unintentionally-cached dummies during

VOLUME 9, 2021 120015



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

the program execution. However, the moment a write to TC
data occurs, the entire cache line containing the TC data is
changed to dirty, which means dummies can also be written
to the memory during the write-back process, resulting in
inconsistency. As a solution to this problem, we propose a
method that uses a speculative approach to cache all data in
the cache line containing TC data and ensure that these data
work correctly when they are written back to memory, which
is another major topic in this section.

B. VIRTUAL ADDRESS MAPPING
Virtual address mapping requires three components, the
TC-MMU, TC heap, and TC APIs. First, the TC-MMU is
a hardware unit that translates virtual address to physical
address. It is similar to MMU for page table processing, but
much simpler since direct translation is its only function.
Next, the system software prepares the TC heap at compile
time, which is a memory space in the cacheable region but
does not contain actual data. It has a start address and an
end address, but it does not include a compiled binary that
is identical to the original heap used for dynamic memory
allocation. Lastly, the TC API functions, tc_malloc and
tc_free, are designed to perform the virtual address map-
ping internally. tc_malloc issues a virtual address when a
physical address and the size of the target variable are given.
When a programmer calls this function with the two parame-
ters, the function allocates a specified amount of memory in
the TC heap and returns its address. At the same time, it also
configures the TC-MMU with the original address and new
address by writing some registers. The description of these
registers is given in Section IV-D, which presents detailed
description of the hardware for TC.

During the heap allocation, the issued address must be
aligned to the size of the cache line. This is to prevent
problems that may occur due to cache-line overlap between
different TC data in the TC heap. Moreover, we allocate
memory in the way that the cache-line-offset of the virtual
address is the same as that of the original physical one. The
cache-line-offset refers to a value of the lower bits that are
smaller than the size of the cache-line among all address
bits. This approach will reduce the complexity of address
translation logics in TC-MMU.

FIGURE 9 shows an example of assigning a new variable
to the TC heap, where the start address and the size of the
variable are 0 × 10001068 and 0 × 40, respectively, and the
size of the cache-line is 0× 20. As shown by the blue part in
this figure, the start address of the new variable becomes 0×8
and the last address becomes 0× 47, and the space allocated
to the variable is larger than that, which is from 0×0 to 0×60
as shown in green in the figure.

When it is no longer possible to apply TC, the programmer
executes the tc_free to flush the TC data in the cache
and to release the allocated space for the variable in the
TC heap. Since other variables can be allocated to the same
address of current TC data in the future, tc_free must
invalidate all the caches whether cache policy is write-back

or write-through. The corresponding TC-MMU registers are
also initialized, eliminating the mapping between the new
variable and original data in the memory map. tc_free
also contains a garbage collection process since the mem-
ory space for the TC heap is not infinite. The process can
be implemented simply without any complex algorithm by
tracking the number of alive TC variables in the two APIs;
tc_malloc increases the number and tc_free decreases
it. If the number becomes zero after the decrement,tc_free
initializes a TC heap pointer, which is the variable to assign
the next virtual address, to the start address of the TC heap.
This initialization almost always takes place at the end of
the function, so tc_malloc can now repeatedly issue the
virtual address.

C. BYTE LEVEL MANAGEMENT
The basic idea to prevent the side effect of unintentionally-
cached dummies is as follows: we stick with the traditional
way that cache data is moved on a per-cache-line basis, but
when data from the cache is written back to main memory,
the dummies must not be written back to the main memory.
For example, FIGURE 10 shows an example of the proposed
method. In the figure, each TC data to is displayed in blue
and orange, respectively, and the gray areas indicate the
unintentionally-cached dummies. As seen in the figure, when
writing back the data in main memory, only the blue and
orange areas excluding the gray areas should be written.

To realize this idea, we propose a byte-level management
method that exploits the byte enable signal, which is used to
determine the validation of data in the conventional bus pro-
tocol [27]. In the bus protocol, data read or write is performed
in units of data bus width, which is the size of data transferred
per clock. If data smaller than the data bus width is transferred
for the write operation, an unintended value may be written
to the memory. To prevent this, a byte enable bit is placed for
each byte in a byte lane to determine the validity of the data.
Therefore, as many byte enable bits are used as the number of
bytes of the data bus width. Meanwhile, in the case of a read
operation, when reading data smaller than the data bus width,
no byte enable bit is needed because there is no problem even
if the data is not used except for the required part by taking
the data as much as the data bus width.

In the proposed byte level management, only the byte
enable bits of the part corresponding to the TC data are set
to 1, and the rest are set to 0. For instance, in FIGURE 10,
only the byte enable bit corresponding to the blue and orange
data becomes 1, the rest becomes 0, and then only the
part with the corresponding byte enable bits 1 is written
back to main memory. Along with the byte-level manage-
ment mechanism, we have designed optimized hardware
for this, and thanks to this hardware support, the system
itself ensures that there are no data inconsistency due to the
unintentionally-cached dummies, allowing the programmer
to actively and conveniently use TC without worrying about
the cache-line problem.A detailed description of the designed
hardware is provided in the following section.

120016 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 10. Proposed solution to the problem of unintentionally-cached
dummies.

D. TEMPORARY CACHING UNIT
We have developed hardware that supports the virtual address
mapping (i.e., TC-MMU) and byte level management func-
tions, which we call a temporary caching unit (TCU). The
TCU is written in Verilog hardware description language
at register-transfer level, and is verified on a Xilinx FPGA.
We first paid attention to the bus interface for communication
between the core and the memory, and designed the TCU
targeting the most commonly used AXI protocol [28], [29].
For reference, the AXI protocol consists of multiple channels
of a read address (AR) channel, a write address (AW) channel,
a read data (R) channel, a write data (W) channel, and a write
response (B) channel, each of which works independently.
Of the multiple AXI channels, the TCU is designed to imple-
ment the virtual address mapping function by controlling the
signal of the AR/AW channel, and the byte level management
function by controlling the signal of the W channel. The R
and B channels in the AXI protocol are transmitted without
any control from the TCU. The proposed architecture of the
TCU is illustrated in FIGURE 11, and as shown in the figure,
the TCU is largely composed of a block (on the left side of
the figure) that takes the transfer of the AR/AW channel as an
input, and a block (on the right side of the figure) that takes
the transfer of the W channel as an input.

The block responsible for the virtual address mapping
function of the TCU has dedicated hardware, called a TC
entry, for mapping each variable to which TC is applied to
its main memory address. The total number of TC entries in
the block is the same as the number of variables to which
TC can be applied at the same time, and platform developers
can adjust this number as necessary. Each TC entry has two
registers, each of which is to store the start address or the
last address of the variable received from the TC API in
order to determine whether the address accessed by the core
through the AXI interface is the address of the variable to
which TC is applied. Also, in the TC entry, there is a register
to store the offset that is received from the TC API, which
is used to convert the address of the TC variable to the
address pointed by the original variable. Meanwhile, unlike
TC entries, the mux-based control logic for each TC entry has
the same configuration and function with each other, so we
designed multiple TC entries to share one logic to reduce
unnecessary overhead.

The main operation of the block being described is as
follows. When an input address enters the TC entry from

the AR/AW channel, the Matched Decision Logic in the
TC entry compares the start address and the last address
stored in the registers to the input address, and generates a
Matched signal that can determine whether this address is
the address of the variable to which TC is applied or not.
At the same time, in the TC entry, the target address indicating
the address of the main memory to which the TC variable
is mapped is calculated by adding the value of the offset
register to the input address. That is, the target address in the
TC entry is calculated regardless of whether it is matched,
but the target address finally becomes the output of the TC
entry only when the Matched signal is 1 (cf. the Mux in
the TC entry uses the Matched signal as a selecting signal),
otherwise, the original input address will be the output of
the TC entry. Then, a bitwise OR operation is performed on
the Matched signals of all the TC entries, and the result is
called the TC signal. This TC signal is used as the selecting
signal of the next mux, which determines the final output
address.

The right side block of the TCU in FIGURE 11 implements
the byte level management function of the TCU. This block
consists of a FIFO that stores the information received from
the block on the left, a logic to create a burst address of TC
data (we call this the Burst Address Generator), and a logic to
control the byte enable signal (we call this theWSTRB1 Mask
Generator). The Burst Address Generator receives TC signal
and AW channel information from FIFO as inputs (cf. FIFO
Out1 in the figure), and generates the burst address as output.
Along with this burst address, the WSTRB mask generator
takes as input the TC signal, matched start addresses, matched
last addresses, and matched signals from the FIFO (cf. FIFO
Out2 in the figure), and outputs aWSTRBmask for byte level
management.

The main operation of this block is as follows. According
to the write operation of the AXI protocol, the write infor-
mation generated by the AW channel (cf. AW channel info.
in FIGURE 11) is stored in the FIFO of this block, and data
is currently entering this block from the W channel once or
several times in a certain size unit, depending on the data
transfer mode determined based on the AW channel info.
Then, when all addresses of the data correspond to TC data,
i.e., when the TC signal is 1, the Burst Address Generator
calculates the burst address of the corresponding data for each
data transfer by using the AW channel information from the
FIFO. Simultaneously, when the TC signal is 1, the WSTRB
Mask Generator compares the burst address with the matched
start address and matched last address to determine whether
the transmitted data is TC data in byte levels. The WSTRB
mask signal is then generated by setting the bit of theWSTRB
mask corresponding to TC data to 1, otherwise, the bit of
the WSTRB mask to 0. On the other hands, when the TC
signal is 0, meaning that the data is non-TC data and its
address belongs to the non-cacheable region, the WSTRB

1In the AXI protocol, the byte enable signal is called the WSTRB signal.

VOLUME 9, 2021 120017



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 11. The proposed TCU architecture.

Mask Generator instantly sets all bits of the WSTRB mask
to 1. Finally, a bitwise AND operation is performed between
the generated WSTRB mask signal and the input WSTRB
signal, and the converted output WSTRB signal is sent out
from the TCU.Owing to the converted outputWSTRB signal,
only the TC data excluding the invalid portion of the data is
written to the main memory as shown in FIGURE 10, so the
cache-line problem due to the unintentionally-cached data
does not occur.

V. EXPANSION OF TC CAPABILITY
A. EMBEDDING THE TCU INTO NETWORK-ON-CHIP
In order to answer question of where it is best to implement
the developed TCU in a multicore platform, we focused on
NoC, which plays a pivotal role of concurrent communication
between IPs in the platform. Owing to the ability of NoC
to overcome the limitations of the conventional bus-based
system interconnects (e.g., unbearable increasing density
and complexity induced by the system interconnect) [27],
[30]–[32], NoC is commonly used in the state-of-the-art
multicore platforms. FIGURE 12 (a) shows the conventional
NoC architecture, and the processor core in the platform
communicates with other IPs only through the dedicated
network interface (NI) of NoC [28], [33]. Therefore, since
the developed TCU operates independently between the core
and the network, if it is embedded in NI, TC can be realized
on the platform no matter what cores are used. In addition,
as shown in FIGURE 12 (b), the design of placing the TCU
inside the NoC does not require modification of the original
internal structure of NI, so adding a TCU to NI can be easily
designed without being limited to a specific NoC. In the
end, we propose to embed the TCU in the core-dedicated

FIGURE 12. Architectures of (a) the conventional NoC and (b) the
proposed NoC with the embedded TCU.

NI within the NoC as a general solution for TCU
implementation.

In this paper, we implemented the TCU in our own NoC
based on the presented architecture in [27], that is a com-
pactly designed NoC that supports various types of IP inter-
face conversion and has been silicon-proven in a fabricated
SoC. To embed the TCU in the NoC, we first designed the
TCU to have the advanced peripheral bus (APB) interface
to configure the start address register, last address register,
and the offset register in the TCU. This APB interface is
connected to the NoC as shown in FIGURE 12 (b), so that
the core can control the TCU using simple read/write memory
operations. Next, we placed the TCUbetween the core and the
existing NI, so that AXI data between the core and NI must
be processed through the TCU.

120018 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 13. TC enabled multicore platform.

B. ENABLING DESIGN AUTOMATION OF RISC-V
MULTICORE PLATFORMS WITH THE TCU
In a previously published paper [34], we introduced a new
electronic design automation (EDA) tool, RISC-V eXpress
(RVX), that allows the SoC developers to quickly and
easily create SoC platforms using a variety of RISC-V
cores. Indeed, there are many open source RISC-V cores
and it is not difficult to acquire them, but the process of
developing SoCs using such open source cores is very com-
plex, which requires a lot of time and effort with high
design skills and experience. To tackle this and ultimately
accelerate SoC development, the RVX is developed to gen-
erate Verilog RTL codes, an FPGA prototype, and software
development kit (SDK) for the target SoC, when the IPs
to be integrated into the SoC are given using a high-level
description.

In this paper, we have integrated the proposed TCU into
RVX, so that RISC-V-based multicore SoCs equipped with a
TCU can be automatically generated through the RVX. More
specifically, we have implemented the TCU-embedded NoC
in the RVX, allowing users to select this NoC as on-chip
communication IP in the target SoC platform that connects
the selected RISC-V cores and various necessary IPs.We also
have upgraded the RVX to support an interface that enables
users specify the number of TC entries per TC on the target
platform. Finally, by using the upgraded RVX, we prototyped
a TCU embedded RISC-V multicore platform and set up a
software development environment. A detailed description of
the experimental work performed using this is presented in
the next section.

VI. EXPERIMENTAL WORK
A. PROTOTYPING A RISC-V MULTICORE PLATFORM
To verify the function and effectiveness of the proposed
TC, we have implemented a complete verification system
including the TC embedded multicore platform. Especially,
the prototype platform was designed to have a quad-core,
and for this, four Rocket [35] cores based on the RISC-V
were implemented on the platform, each of which core was
created as a single core without CCL. Additionally, this
platform has a 512 MB DDR memory, video input/output

TABLE 2. Clock speed of each IP on the prototype multicore
platform (MHz).

TABLE 3. Resource consumption on the FPGA.

controllers (VIC/VOC), and peripherals including UART,
I2C, etc. Finally, all the IPs are interconnected with the
developed TCU embedded NoC, that NoC has four NIs for
each core, and each NI has a TCU with eight TC entries.
Clocks of IPs are summarized in TABLE 2.

To utilize video input/output, we designed a custom FPGA
board. It contains a Xilinx FPGA chip (Virtex UltraScale+),
DDR4 memories, a camera, and an LCD screen. FIGURE 13
shows the architecture of the developed platform, along with
a picture of the actual implementation prototyped on the
custom board.

The platform prototype was synthesized by using Xilinx
Vivado [36], and resulting resource consumption of the TCU
and the others are reported in TABLE 3. The four TCUs
consume 4,424 look-up tables (LUTs) and 3,644 flip-flops
(FFs), which takes only 3.9% and 3.1% in the entire platform.

B. DEVELOPING AN APPLICATION
We developed a handwriting recognition application based
on camera input as an application to verify the validity of
TC. In fact, the handwriting recognition applications are
commonly used as a basic example of the deep neural network
(DNN) [37], [38]. This basic handwriting recognition appli-
cation recognizes an image in which one of the numbers 0 to
9 is handwritten, determines which number the image is, and
shows the result. As theDDNarchitecture for this application,
an architecture consisting of two convolution layers, two max
pooling layers, and two fully connected layers was used,
as shown in FIGURE 14. For DDN training, MNIST [39],
the well-known handwritten image database, was used, and
the parameters of the DNN trained in a Linux PC using
TensorFlow [40], a deep learning framework, were applied
to the handwriting recognition application.

VOLUME 9, 2021 120019



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

FIGURE 14. Multi-processing of the handwriting recognition application.

The MNIST database is composed of images of handwrit-
ten numbers, each image is in the format of 8 bits grayscale
28 × 28 pixels, and the handwritten numbers in the images
are located at a certain size in the center of the image.
In addition, since the MNIST database was used for training
DNN, the input image of the DNN must be in the same
format as the image of the MNIST database, and to improve
the performance of DNN inference, the handwritten number
should be located in the center of the image at a certain size,
as do the images in the MNIST database.

In our target application that uses images taken by the cam-
era connected to the multicore prototype, not only the format
of the image obtained from the camera is different from that
of the MNIST database, but the handwritten number may not
be located in the center of the image. Therefore, to convert
the image received from the camera into the image format of
the MNIST database, and to place the number in the center
of the image, we needed to implement image pre-processing
such as contrast, bounding box, and resize (cf. yellow boxes
in FIGURE 14). Finally, including this image pre-processing
part, we have implemented the camera-input based handwrit-
ing recognition application by coding all of the inference
parts of the DNN in C language.

Using the developed handwriting recognition application
as a baseline, to experiment how much the performance
improves when TC is applied, we wrote a testbench that
applies TC to the baseline code that processes data in parallel.
More specifically, by coding the testbench that applies TC to
the image preprocessing process, we made the preprocessing
performed in parallel on 4 cores. After the pre-processing
process, the convolution layer and the max pooling layer of
the application are distributed to 4 cores in unit of feature
map, and multilayer perceptron (MLP) is distributed and
processed in parallel through implementation.

The developed testbench and baseline application were run
on a multicore platform consisting of four RISC-V cores

FIGURE 15. Measured execution time of the testbench running on the
TC-enabled quad-core platform.

prototyped on a custom FPGA, and the results of the experi-
ment are reported in detail in the following subsection.

C. PERFORMANCE IMPROVEMENT RESULT
The testbenches are set by varying the number of variables
to which TC is applied to the developed handwriting recog-
nition application code. Then, the program execution times
are measured by operating each testbench on the TC enabled
quad-core platform (cf. FIGURE 13). More specifically,
the number of variables to which TC is applied is 0 as the
baseline (ie, TC is not applied), 1 to 5, and the measured exe-
cution time of each case is reported in FIGURE 15. As seen in
the figure, the execution time continuously decreases as the
number of variables to which TC is applied increases. As a
result, when TC is applied to the five variables, its execution
time is greatly shortened compared to the baseline, achieving
a performance improvement of about 37%.

D. COMPARISON WITH THE OTHER APPROACHES
We evaluate how close the performance improvement of the
proposed TC is to that of a multi-core platform using CCL.

120020 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

TABLE 4. Comparison of quad-core platforms with different coherency
schemes implemented on the FPGA.

To this end, we used the Rocket [35] cores, which fortunately
also offers a 4-core version with a dedicated CCL along with
a single-core version. The results of comparative analysis for
the hardware-based approach using CCL, the software-based
approach that does not allow shared variable cache at all,
and the proposed TC are reported in TABLE 4 as HW,
practical-SW, and TC, respectively. As can be seen from the
table, the HW approach often presents a very high level of
difficulty in developing the CCL directly, so only limited
platform development is practically possible using only the
few types of cores that comewith the CCL. On the other hand,
practical-SW and TC approaches have low platform develop-
ment challenges, no matter which core is used to develop a
multi-core platform. Looking at the difficulties of developing
applications that work on the developed platform, the TC
approach provides an easy-to-use API, but it is still difficult
compared to the HW or practical-SW approach. Meanwhile,
in FPGA prototyping, the hardware resource consumption
results of CCL and TCU show that the HW approach requires
more hardware resources than the TC approach. In addi-
tion, for performance comparison, the HW approach has the
shortest application execution time as expected, but the TC
approach is also close. Of course, the performance of these
two is far better than the practical SW approach. In the end,
when developing multicore platforms using different types of
RISC-V cores, the proposed TC approach may be the general
solution, as it is flexible and easy, and the developed platform
has good performance.

VII. CONCLUSION
Considering that when developing multicore platforms using
various RISC-V cores, it is difficult to implement the ded-
icated CCL within each platform, resulting in a serious

performance degradation problem. As a solution of this prob-
lem, we proposed the TC, a method that improves the perfor-
mance of a multicore platform by enabling caching of data
that are definite to not be shared for a certain period of time.
Through a sophisticated operation mechanism, the proposed
TC achieves performance improvement of the multicore plat-
form while preventing the problem that can occur when
TC data and non-TC data are on the same cache-line that
can cause a fatal system error. To implement the proposed
TC, we developed TC API for programmers and TC dedi-
cated hardware, TCU, for platform developers, and detailed
descriptions of each implementationmethodwere provided in
this paper. Especially, since the TCU operates independently
of the core, it is possible to develop a TC-enabled multicore
platform no matter what RISC-V cores are used. In addition,
we proposed a method of embedding and implementing TCU
in NoC in a multicore platform to facilitate the convenience
of platform developers. Finally, in order to verify the effec-
tiveness of the proposed TC, we implemented a quad-core
platform equipped with TCU on the FPGA, and developed
a handwriting recognition application with TC applied as a
testbench. Through experimental work, we demonstrated that
by applying TC, the performance of a multicore platform can
be improved up to about 37% compared to the performance
of a platform without TC.

ACKNOWLEDGMENT
(Hyeonguk Jang and Kyuseung Han contributed equally to
this work.)

REFERENCES
[1] J. L. Hennessy and D. A. Patterson, ‘‘A new golden age for

computer architecture,’’ Commun. ACM, vol. 62, no. 2, pp. 48–60,
Jan. 2019.

[2] RISC-V. Accessed: Feb. 23, 2020. [Online]. Available: https://riscv.org/
[3] S. Greengard, ‘‘Will RISC-V revolutionize computing?’’ Commun. ACM,

vol. 63, no. 5, pp. 30–32, Apr. 2020.
[4] D. Patterson, ‘‘50 years of computer architecture: From the mainframe

CPU to the domain-specific tpu and the open RISC-V instruction set,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 27–31.

[5] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and
A. Gatherer, ‘‘Implementing OpenMP on a high performance embedded
multicore MPSoC,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
May 2009, pp. 1–8.

[6] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh,
‘‘Parallelism via multithreaded and multicore CPUs,’’ Computer, vol. 43,
no. 3, pp. 24–32, Mar. 2010.

[7] Y. Kanehagi, D. Umeda, A. Hayashi, K. Kimura, and H. Kasahara, ‘‘Par-
allelization of automotive engine control software on embedded multi-
core processor using OSCAR compiler,’’ in Proc. 16th IEEE COOL Chips,
Apr. 2013, pp. 1–3.

[8] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao, A. Rao,
G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. B. Taylor,
‘‘The celerity open-source 511-core RISC-V tiered accelerator fabric:
Fast architectures and design methodologies for fast chips,’’ IEEE Micro,
vol. 38, no. 2, pp. 30–41, Mar./Apr. 2018.

[9] M. Strobel and M. Radetzki, ‘‘Design-time memory subsystem optimiza-
tion for low-power multi-core embedded systems,’’ in Proc. IEEE 13th Int.
Symp. Embedded Multicore/Many-Core Syst.-Chip (MCSoC), Oct. 2019,
pp. 347–353.

VOLUME 9, 2021 120021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

[10] M.Wang, T. Ta, L. Cheng, and C. Batten, ‘‘Efficiently supporting dynamic
task parallelism on heterogeneous cache-coherent systems,’’ in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), May 2020,
pp. 173–186.

[11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, ‘‘Cuckoo directory:
A scalable directory for many-core systems,’’ inProc. IEEE 17th Int. Symp.
High Perform. Comput. Archit., Feb. 2011, pp. 169–180.

[12] M. M. K. Martin, M. D. Hill, and D. J. Sorin, ‘‘Why on-chip cache
coherence is here to stay,’’ Commun. ACM, vol. 55, no. 7, pp. 78–89,
Jul. 2012.

[13] Y. Fu, T. M. Nguyen, and D. Wentzlaff, ‘‘Coherence domain restriction on
large scale systems,’’ in Proc. 48th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), New York, NY, USA, Dec. 2015, pp. 686–698.

[14] H. Kim, A. Kandhalu, and R. Rajkumar, ‘‘A coordinated approach for
practical OS-level cache management in multi-core real-time systems,’’ in
Proc. 25th Euromicro Conf. Real-Time Syst., Jul. 2013, pp. 80–89.

[15] M. Hassan, A. M. Kaushik, and H. Patel, ‘‘Predictable cache coherence
for multi-core real-time systems,’’ in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2017, pp. 235–246.

[16] S. Li and D. Guo, ‘‘Cache coherence scheme for HCS-based CMP and its
system reliability analysis,’’ IEEE Access, vol. 5, pp. 7205–7215, 2017.

[17] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat, D. Tullsen,
and R. Gupta, ‘‘Reliability-aware data placement for heterogeneous mem-
ory architecture,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2018, pp. 583–595.

[18] A. Ros, M. E. Acacio, and J. M. Garcia, ‘‘DiCo-CMP: Efficient cache
coherency in tiled CMP architectures,’’ in Proc. IEEE Int. Symp. Parallel
Distrib. Process., Apr. 2008, pp. 1–11.

[19] I.-C. Lin and J.-N. Chiou, ‘‘High-endurance hybrid cache design in CMP
architecture with cache partitioning and access-aware policies,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 10, pp. 2149–2161,
Oct. 2015.

[20] U. Milic, A. Rico, P. Carpenter, and A. Ramirez, ‘‘Sharing the instruction
cache among lean cores on an asymmetric CMP for HPC applications,’’
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2017,
pp. 3–12.

[21] G. G. Shahidi, ‘‘Chip power scaling in recent CMOS technology nodes,’’
IEEE Access, vol. 7, pp. 851–856, 2019.

[22] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali, ‘‘Meeting
thermal safe power in fault-tolerant heterogeneous embedded systems,’’
IEEE Embedded Syst. Lett., vol. 12, no. 1, pp. 29–32, Mar. 2020.

[23] S. Chakraborty and H. K. Kapoor, ‘‘Exploring the role of large centralised
caches in thermal efficient chip design,’’ ACM Trans. Design Autom.
Electron. Syst., vol. 24, no. 5, pp. 1–28, Oct. 2019.

[24] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel,
‘‘Power- and cache-aware task mapping with dynamic power budget-
ing for many-cores,’’ IEEE Trans. Comput., vol. 69, no. 1, pp. 1–13,
Jan. 2020.

[25] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, ‘‘DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,’’ in Proc. Int. Conf.
Parallel Archit. Compilation Techn., Oct. 2011, pp. 155–166.

[26] J. Cai and A. Shrivastava, ‘‘Software coherence management on non-
coherent cache multi-cores,’’ in Proc. 29th Int. Conf. VLSI Design, 15th
Int. Conf. Embedded Syst. (VLSID), Jan. 2016, pp. 397–402.

[27] K. Han, J.-J. Lee, and W. Lee, ‘‘Converting interfaces on application-
specific network-on-chip,’’ J. Semicond. Technol. Sci., vol. 17, no. 4,
pp. 505–513, Aug. 2017.

[28] H. Jang, K. Han, S. Lee, J.-J. Lee, and W. Lee, ‘‘MMNoC: Embedding
memory management units into network-on-chip for lightweight embed-
ded systems,’’ IEEE Access, vol. 7, pp. 80011–80019, 2019.

[29] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin,
and M. B. Taylor, ‘‘BlackParrot: An agile open-source RISC-V mul-
ticore for accelerator SoCs,’’ IEEE Micro, vol. 40, no. 4, pp. 93–102,
Jul. 2020.

[30] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, ‘‘Power punch:
Towards non-blocking power-gating of NoC routers,’’ in Proc. HPCA,
2015, pp. 378–389.

[31] K. Han, J.-J. Lee, J. Lee, W. Lee, and M. Pedram, ‘‘TEI-NoC: Optimiz-
ing ultralow power NoCs exploiting the temperature effect inversion,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 2,
pp. 458–471, Feb. 2018.

[32] K. Han, S. Lee, J.-J. Lee, W. Lee, and M. Pedram, ‘‘TIP: A temperature
effect inversion-aware ultra-low power system-on-chip platform,’’ in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), Jul. 2019,
pp. 1–6.

[33] M. Schoeberl, L. Pezzarossa, and J. Sparsø, ‘‘A minimal network interface
for a simple network-on-chip,’’ in Architecture of Computing Systems.
Cham, Switzerland: Springer, 2019, pp. 295–307.

[34] K. Han, S. Lee, K.-I. Oh, Y. Bae, H. Jang, J.-J. Lee, W. Lee, and
M. Pedram, ‘‘Developing TEI-aware ultralow-power SoC platforms for
IoT end nodes,’’ IEEE Internet Things J., vol. 8, no. 6, pp. 4642–4656,
Mar. 2021.

[35] K. Asanović et al., ‘‘The rocket chip generator,’’ Dept. EECS, Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2016-17, Apr. 2016. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-17.html

[36] Xilinx. Vivado 2016.4. Accessed: Feb. 23, 2020. [Online]. Available:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/
downloadNav/vivado-design-tools/2016-4.html

[37] D. Ciresan, U. Meier, and J. Schmidhuber, ‘‘Multi-column deep neural
networks for image classification,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3642–3649.

[38] B. Hutchinson, L. Deng, and D. Yu, ‘‘Tensor deep stacking networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1944–1957,
Aug. 2013.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[40] M. Abadi et al., ‘‘TensorFlow: A system for large-scale
machine learning,’’ in Proc. 12th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), Savannah, GA, USA, Nov. 2016,
pp. 265–283. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi

HYEONGUK JANG received the B.S. and
M.S. degrees in electrical engineering from
Gyeongsang National University, Jinju, South
Korea, in 2013 and 2015, respectively. He is cur-
rently pursuing the Ph.D. degree with the Uni-
versity of Science and Technology. He has been
with the SoC Design Research Group, Electronics
and Telecommunications Research Institute. His
research interests include network-on-chip and
system software in embedded systems.

KYUSEUNG HAN (Member, IEEE) received
the B.S. and Ph.D. degrees in electrical engi-
neering and computer science from Seoul
National University (SNU), Seoul, South Korea,
in 2008 and 2013, respectively. At SNU,
he researched on computer architecture and design
automation. Since 2014, he has been working with
the Electronics and Telecommunications Research
Institute (ETRI), Daejeon, South Korea. He cur-
rently belongs to the SoC Design Research Group

as a Senior Researcher. His current research interests include reconfigurable
architecture, network-on-chip, and ultra-low-power techniques in embedded
systems.

SUKHO LEE received the Ph.D. degree in
information communications engineering from
Chungnam National University, Daejeon, South
Korea, in 2010. He is currently a Principal
Researcher with the SoC Design Research Group,
Electronics and Telecommunications Research
Institute, Daejeon. His current research interests
include ultra-low-power system-on-chip design,
embedded system design, video codec design, and
video image processing.

120022 VOLUME 9, 2021



H. Jang et al.: Developing Multicore Platform Utilizing Open RISC-V Cores

JAE-JIN LEE received the B.S., M.S., and Ph.D.
degrees in computer engineering from Chungbuk
National University, in 2000, 2003, and 2007,
respectively. He is currently a Group Leader with
the SoC Design Research Group, Electronics and
Telecommunications Research Institute, and also a
Professor with the Department of ICT, University
of Science and Technology. His research interests
include processor and compiler designs in ultra-
low-power embedded systems.

SEUNG-YEONG LEE (Student Member, IEEE)
received the B.S. degree from Chung-Ang
University, Seoul, South Korea, in 2020, where he
is currently pursuing the M.S. degree in electrical
and electronics engineering. He is currently a
Beneficiary Student of the High-Potential Individ-
uals Global Training Program. His research inter-
ests include low-power design, SoC architecture,
and embedded systems.

JAE-HYOUNG LEE (Student Member, IEEE)
received theB.S. degree fromMyoungji University,
Yong-In, South Korea, in 2020. He is currently
pursuing the M.S. degree in electrical and elec-
tronics engineering with Chung-Ang University.
He is currently a Beneficiary Student of the
High-Potential Individuals Global Training Pro-
gram. His research interests include low-power
design, SoC architecture, and embedded systems.

WOOJOO LEE (Member, IEEE) received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2007,
and the M.S. and Ph.D. degrees in electrical
engineering from the University of Southern
California, Los Angeles, CA, USA, in 2010 and
2015, respectively. He was with the Electronics
and Telecommunications Research Institute, from
2015 to 2016, as a Senior Researcher with the SoC
Design Research Group, Department of Electrical

Engineering, Myongji University, from 2017 to 2018, as an Assistant Pro-
fessor. He is currently an Assistant Professor with the School of Electrical
and Electronics Engineering, Chung-Ang University, Seoul. His research
interests include ultra-low-power VLSI and SoC designs, embedded system
designs, and system-level power and thermal management.

VOLUME 9, 2021 120023


