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ABSTRACT The joint video expert team (JVET) is currently developing a new video coding standard
called H.266/Versatile Video Coding (VVC). Compared with High Efficiency Video Coding (HEVC),
VVC has added a variety of coding tools. These tools have greatly improved video compression efficiency
and maintained a high level video quality. However, due to the increase in computational complex-
ity, the encoding time is much longer than HEVC. We propose a prediction tool based on DenseNet
(a convolutional neural network) to decrease the VVC coding complexity. We predict the probability that the
edge of 4 x 4 blocks in each 64 x 64 block is the division boundary by Convolutional Neural Networks
(CNN). Then, we skip the unnecessary rate distortion optimization (RDO) and speed up the coding by
probability vectors in advance. The proposed method can reduce the coding complexity of 46.10% in
VTM10.0 intra coding, while Bjgntegaard delta bit rate (BDBR) only increases by 1.86%. In the sequence
with a resolution greater than 1080P, the acceleration efficiency can be at 64.81%, the BDBR loss only

increased by 1.92%.

INDEX TERMS Versatile video coding, convolutional neural network, coding unit partition.

I. INTRODUCTION

Due to the increase in IP video traffic in recent years [1] and
the emergence of new video formats such as 4K, 8K, High
Frame Rate (HFR), Wide Color Gamut (WCG) and VR video,
the demand for video transmission bandwidth and storage
has exploded. At present, how to more effectively encode
new generation videos, such as ultra-high resolution and high
dynamic range, has become one of the research hotspots in the
world academia.

Some video coding standards have emerged, such as
H.264/Advanced Video Coding (AVC) and HEVC. How-
ever, the compression ratios that these standards can
achieve cannot keep up with the rapid growth in demand
for video data. The International Telecommunication
Union (ITU) and the ISO/IEC Moving Picture Experts
Group (MPEG) formed the JVET to develop new video
coding standards. In April 2018, the JVET officially named
VVC[2].

Compared with HEVC, the compression ratio of VVC has
been greatly improved, but its encoding time is also many
times that of HEVC. VVC uses a hybrid coding technology
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framework. Its image division has evolved from a single,
fixed division to a diverse and flexible division structure,
which can more efficiently adapt to the encoding and decod-
ing of high-resolution images. Among them, the QTMT
division scheme [3], [4] is used in VVC to obtain better
compression efficiency. The scheme has five division modes:
Quad-Tree (QT), Binary-Tree-Vertical (BTV), Binary-Tree-
Horizontal (BTH), Ternary-Tree-Vertical (TTV) and Ternary-
Tree-Horizontal (TTH), which are more than HEVC in two
ways, TTV and TTH, as shown in Fig.1. All five modes can be
used, but QT splitting cannot be used for sub-blocks in other
split modes. This segmentation scheme makes the segmented
sub-blocks more suitable for the texture distribution of the
image, which greatly improves the accuracy of the internal
prediction and reduces the prediction residuals. Compared
with HEVC [5], this change increases the coding efficiency
by 8.5%. However, due to the two additional partition types,
the computational complexity of RDO is much greater than
that of HEVC, resulting in its encoding time several times that
of HEVC.

An important direction of the current VVC video coding
research is how to reduce the coding complexity and increase
the coding speed without reducing the VVC coding efficiency
or with little loss.

119289


https://orcid.org/0000-0002-8533-7088
https://orcid.org/0000-0002-1322-2695
https://orcid.org/0000-0002-6338-4051
https://orcid.org/0000-0002-1282-9938
https://orcid.org/0000-0003-1390-399X

IEEE Access

Q. Zhang et al.: Fast CU Decision-Making Algorithm Based on DenseNet Network for VWC

QT BT_V BTH TT.V

FIGURE 1. Schematic diagram of QTMT split structure.
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Recently, the development of artificial neural networks has
provided a new direction for the development of fast video
coding.

In this paper, we design a DenseNet-based VIM10.0 inter-
nal encoder complexity reduction technique. We provide
CNN with a 64 x 64 pixel luminance Coding Unit (CU) to
predict a vector to represent the probability of an edge on the
4 x 4 boundary of the block. The encoder further uses this
probability vector to skip the low-probability segmentation.

Il. RELATED WORKS

The VVC video coding standard has five different CU par-
titioning methods. The attempts of different CU partitioning
methods during encoding occupy most of the encoding time.
Therefore, reducing the number of CU partitioning can sig-
nificantly reduce the encoding time.

In 2019, Tissier et al. studied the CU partition complexity
of video coding in [6]. They proposed that the computational
complexity of block partitioning in VVC can be reduced
to 3% of the original at most by predicting the correct CU
splitting method. So a lot of coding time can be saved.

At present, most block segmentation acceleration algo-
rithms reduce the computational complexity and save cod-
ing time by terminating unnecessary RDO in advance [5].
Algorithms are mainly divided into two categories, traditional
algorithms and applied machine learning methods. Tradi-
tional algorithms analyze the complexity of the texture by
extracting features, such as the variance and mean square
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error of the image, and set a threshold to determine whether
to terminate the RDO calculation early.

Reference [7] proposed a fast intra algorithm based on
variance and Sobel operator, where the variance and gradient
information of the CU is calculated to determine whether the
current CU should be split. Reference [8] used the Canny
operator to extract the edge information of the image, and
analyzed the edge information to determine the most likely
dividing direction of the current CU. A threshold is set when
the horizontal and vertical edge information. When the ratio
of the features is higher than the threshold, the horizontal
division is tried. When the reciprocal of the ratio is higher
than the threshold, try the vertical division. If the two con-
ditions are not met, try QT division. In [9], an algorithm
proposed to calculate the rate distortion (RD) cost of the
horizontal and vertical binary tree partitions. In the binary tree
splitting, the cost is smaller, and the cost is usually higher in
the MTT splitting. Reference [10] also uses the two features
of image variance and gradient to accelerate segmentation.
The method [11] uses Bayesian probabilities as features to
skip unnecessary splitting modes. Most traditional algorithms
only use one or two features, which can only filter out a small
amount of redundancy. Therefore, the acceleration effect of
block segmentation is limited.

Due to the rapid development of machine learning and
deep learning in the past two years, the combination of
block segmentation acceleration algorithms and machine
learning has gradually increased. The trained Support Vec-
tor Machine (SVM) in [12]-[15] is used to filter possible
segmentation strategies. In [12], 6 different SVM classifiers
are trained for blocks from 32 x 32 to 16 x 8 and 8 x 16
to adapt for the situation of CU division of different sizes.
In [13], two SVM classifiers are trained to divide the results
into three categories. These two types of data are segmented
and non segmented, and the error is small. The third type of
data is at the boundary of the two types, so it needs to be
calculated in the next step to determine whether to divide.
In [14], 11 features of the SVM training image are used to
determine whether the current CU needs to be segmented.
Reference [15] trained multiple support vector machines to
predict the probabilities of different partitioning methods
respectively, and skip the partitioning methods with lower
probability. Reference [16] used a decision tree to predict the
segmentation mode. Reference [17] used Bayesian classifiers
to speed up segmentation. Random forest classifiers are also
used for fast CU partitioning [18]—[20], which use its charac-
teristics to reduce the risk of division errors.

In addition to neural networks, other machine learning
methods need to manually design the way to extract fea-
tures. Neural networks can learn the required features through
gradient descent without manual intervention. Under the
appropriate training set, their learning speed and accuracy
are generally high in the way of manual design. Recently,
deep learning methods using neural networks have developed
rapidly in the field of video coding [21]. In deep learning,
the most suitable for processing image information is CNN
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FIGURE 2. DenseNet architecture demonstration.

that can learn image spatial information. Due to the irregular
shape and size of CUs, some methods based on CNN are used
on these CUs. [22], [23] use an adaptive pooling layer to solve
this problem. The adaptive pooling layer can compress fea-
ture maps of any size into a fixed size. References [24]-[26]
Directly input fixed-size blocks into the network to predict
the range of division depth, and terminate the RD calculation
early through the depth range. Reference [27] converted the
block structure into a hierarchical representation and directly
predict the division of the entire Coding Tree Unit (CTU).
Reference [28] trained three CNN classifiers to handle CUs
of different depths and sizes. Reference [29] divide the CU
into sub-blocks of the same size, and use CNN to predict
the probability of each sub-block boundary as the division
boundary to terminate the partial division mode early. In [30],
the explicit VVC features (EVF) and the derived VVC fea-
tures (DVF) that can be obtained during intra prediction are
input into a lightweight neural network to determine which
split modes to skip.

Because the VVC division method is more complicated,
many methods that originally worked well on HEVC cannot
be applied to VVC. We have designed a new fast partitioning
method for coding blocks based on CNNss. This article divides
the method into two steps. First, we train a CNN network
to predict the probability that the edge of the 4 x 4 bright-
ness block is the segmentation boundary. Then, it is divided
according to the predicted probability.

Ill. PROPOSED METHOD

A. STRUCTURE OF CNN

Most existing algorithms combine the CNN network to only
calculate the probability of a single CU for the next segmen-
tation. The common problem of these algorithms is that the
network model needs to be called multiple times to make
predictions during the same CTU division process, which
will bring a large time overhead. Moreover, the shapes of the
CUs that need to be predicted vary greatly, which will bring
difficulties to the training of the network.

Because the 128 x 128 size CTU only allows QT division,
the proposed algorithm divides a CTU into four 64 x 64
blocks, which are used as a 4 batch input network. We use this
batch to predict the probability that the boundaries of all 4 x 4
blocks within each 64 x 64 CU are divided boundaries. Then,
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we determine the division situation based on these probabil-
ities, and make full use of vectorization to save the time that
the network needs to run. Each CTU only needs to call the
model once. The proposed network refers to DenseNet [31],
and the main part of the network is made up of sub-blocks
of DenseNet structure. The size of the feature map output by
each convolutional layer is the same.

The structure of the DenseNet block is shown in Fig.2.
DenseNet brings the idea of skip connection in ResNet [32]
into the mechanism. A large number of jump connections
make the propagation of features and gradients more effec-
tive, and alleviate the problem of gradient disappearance that
often occurs when the neural network is too deep. The input
of each convolutional layer in the DenseNet block comes
from the output of all convolutional layers before that layer.
These outputs are subjected to concatenation operation to
form a feature map with more channels, and then use 1 x 1
convolution to adjust the number of channels to 4 times the
number of output channels, and then pass through a 3 x 3
convolution layer, and use the rule function to activate later
as the output of this layer. Considering one 1 x 1 convolution
and one 3 x 3 convolution as one layer, and we use 6 layers for
each DenseNet Block. Concatenation the feature map output
by each layer as the output of the block. Due to the good
performance of the attention mechanism in various computer
vision tasks, we try to add an ECA attention module after
each DenseNet Block. ECA is a lightweight channel attention
mechanism, and its structure is shown in Fig.3. ECA attention
module can play a good effect in most computer vision tasks.
However, in the experiment of this task, it does not seem to
significantly improve the network performance. So in the end
we didn’t use it in the model.

It can be seen from Fig.4 that the blue block is a two-
dimensional convolution and Relu activation function with
a 3 x 3 convolution kernel. The orange block represents
DenseNet Block, which contains 6 convolutional layers using
1 x 1 and 3 x 3 size convolution kernels. The layers repre-
sented by red and green are collectively called the transition
layer, which is used to compress the amount of data. Red
represents the average pooling layer. Green represents the
convolution kernel with 1 x 1 convolutional layer and Relu
activation function. Gray represents the global pooling layer,
which is used to transform the feature map into a vector.
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FIGURE 3. Efficient channel attention, ® indicates that the corresponding channel is multiplied.
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FIGURE 4. Structure of the proposed model.

Purple represents the fully connected layer, which is used to
output the final result. The hyperparameters of the network
are shown in Table 1.

TABLE 1. Number of parameters in each layer of CNN.

Channel
output . of conv in
Layers . operation
size(wxHxN) dense
block(N)
convolution 64x64x16 3x3 conv
Densenet 1x1conv
64x64x208 X 32
block(1) 3 x 3 conv
.. 3x3 Avgpool
transition 21x21%208 .
stride3
layer(1)
21x21x104 1x1 conv
Densenet 1x1conv
21x21x392 X 48
block(2) 3 x 3 conv
.. 3x3 Avgpool
transition TxT7%392 .
stride3
layer(2)
7x7x196 1x1 conv
Densenet 1x1conv
TxTx484 X 48
block(3) 3 x 3 conv
» 2x2 Avgpool
transition 3x3x484 .
Stride2
layer(3)
3x3x242 1x1 conv
Densenet 1x1conv
3x3x530 x 6 48
block(4) 3 x 3 conv
3x3 global
1x1x530
FC layer avgpool
480 linear

Four 64 x 64 luma blocks are the input of CNN, and one
CTU is QT divided into fours CUs of 64 x 64 size. In order
to use vectorization, we input these four brightness blocks
into the network as a batch to speed up the prediction. The
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output is a probability vector corresponding to 4 x 4 block
boundaries of four 64 x 64 CU partitions. The input sizes
of CNN correspond to the maximum luminance conversion
block (64 x 64) in the “All Intra” configuration. Fig.5 shows
the matching of the CU partition and the probability vector.
For example, the first value of the vector corresponds to the
right boundary of the 4 x 4 block in the upper left corner, and
the second value corresponds to the right boundary of the next
4 x 4 block. The 241st value represents the lower boundary
of the first 4 x 4 block in the upper left corner.

0.1

0.9 (e

0.5

| I

FIGURE 5. Mapping of probability vectors to 4 x 4 block boundaries. The
first 240 elements of the probability vector correspond to the probability
of all vertical boundaries, and the last 240 elements correspond to the
probability of the horizontal boundary.

B. DIVISIONAL JUDGMENT

According to the coordinates and shape of the upper left
corner of the current block, we can obtain the vector values
corresponding to the five dividing lines in the block. The
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probability of BT division is determined by the average value
of the corresponding vector. The probability of QT division is
the average of BT divisions in two directions. The probability
of TT division is the larger of the corresponding two dividing
line probabilities.

The probability of BTV is calculated as:
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where x and y are the coordinates of the upper left corner of
the current CU in the 64 x 64 block, and / and w are the height
and width of the current block. P;; is the value of the element
with index j + i in the processed probability vector.

The threshold we use is dynamic. When the size of the CU
is larger, more vectors are involved in the calculation, and
a small amount of prediction error causes less impact, so a
higher threshold is used. When the size of the CU is small,
there are fewer vectors involved in the calculation, so there
is a greater risk, so a lower threshold is used. The size of a
CU is usually related to its depth. A deeper CU usually has a
smaller size. For the convenience of calculation, the threshold
is set as below:

T =0.7—-0.1 x depth ®)

where depth represents the depth of the current CU, which can
be obtained from the currDepth property of the Partitioner
class in the VITM. It is numerically equal to the sum of
QtDepth and MtDepth.

The process of embedding in VIM software is shown
in Fig.6.

After the encoder divides each frame of image into CTU,
it performs CNN prediction on the CTU currently to be
encoded. After entering the CU encoding stage, try vari-
ous encoding methods including 5 partitioning modes for
the current CU. When trying the segmentation mode, the
probabilities of various segmentation methods are calculated
according to the area attributes of the current CU. If the
probability of the currently tried segmentation mode is greater
than the threshold, an attempt is made, otherwise the attempt
of the segmentation mode is skipped. In order to reduce more
coding time, we also skipped the case where the probability
difference between the horizontal split and the vertical split
in the BT and TT splits is large.

C. TRAINING
Because the value to be predicted is between [0, 1], we use
the cross-entropy loss function, which is defined as:

1 m n
Loss = ——3 % plxi)) log(g(xi ) 6)

i=1 j=1

where m is the number of samples in a batch, n is the
number of elements in each sample, p(x; ;) is the true value
of the j — th vector of the i — th sample, g(x;;) is the
corresponding predicted value. Adam optimizer is used [34]
to perform gradient descent on CNN. The training process
uses the pytorchl.7.0 framework in the python3.7 environ-
ment, and the learning rate adjustment strategy selects the
cosine annealing strategy (CosineAnnealingWarmRestarts).
We trained 20 generations on GTX1650 GPU. Batchsize
is 16.

For the input data set of 64 x 64 luminance blocks and
their corresponding label vectors, 100 images are extracted
at equal intervals from the 800 HR samples of the Div2k [35]
dataset used to train the super-resolution network, and these
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FIGURE 6. Process of skipping CU split, CNN means using a trained CNN model for prediction .Pqt, Pbth, etc. represent the probability of the
corresponding split mode. T is the preset threshold. Other modes indicate prediction modes other than CU split, such as intra prediction, inter
prediction, and so on. After executing the Split operation, it will enter the sub-CU and repeat all operations after CNN (not including CNN

inference).

images are divided into 64 x 64 blocks as data set. The
luminance signal of the 64 x 64 luminance block is obtained
from the VTM when the picture in the data set is encoded.
These data sets consist of static images, because the proposed
solutions are mainly used for “AI” configuration. This has
better diversity than the video sequence dataset. In order to
test the generalization ability of the network and the effect
of real coding, we did not use the common test conditions
(CTC) [36] sequence for training. The input data set is coded
by the VITM 10.0 software under the “All Intra” configu-
ration to establish the corresponding label. QTMT partition
information is collected for each 64 x 64 CU and convert
it to the output format of CNN. The label consists of a
one-dimensional vector of 480 elements consisting of 1 (for
splitting boundary) and 0 (not for splitting boundary). The
partition information comes from the code stream analysis
tool (DecoderAnalyserApp) in VITM.

IV. EXPERIMENTAL RESUTS
This section introduces the experimental setup in detail and
compares our results with several advanced technologies.

A. EXPERIMENTAL SETUP
All experiments are carried out under the *“All Intra”
configuration, and the VITM 10.0. Each encoding and CNN
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prediction is performed individually on an Intel i5-8500 pro-
cessor running at 3.00GHz on the windows operating system.
The test set consists of 25 sequences with different resolu-
tions. It contains a wide range of resolutions, textures, bit
depths and motion. The test sequence is divided into seven
categories: Al (3840 x 2160),A2 (3840 x 2160), B (1920 x
1080), C (832 x 480), D (416 x 240), E (1280 x 720) and
F (832 x 480 to 1920 x 1080). They are encoded accord-
ing to four quantization parameter (QP) values: 22, 27, 32,
and 37.

The coding quality is measured by BDBR and complexity
reduction, and the coding time saving rate (AT) is determined
as:

AT =1 Toc —Tsc
4 0P=22,27,32,37

x 100% @)

ocC

Among them, Tpc is the reference coding time of the
VTM10.0 anchor point, and Tsc is the coding time of
our algorithm. We counted the inference time during the
test phase of training the network. When the network
runs on the CPU and the input size is 4 x 64 x 64,
the inference time of the network is about 0.18 seconds.
Due to the different performance of different platforms,
this time does not count the time spent by the neural
network.
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B. RESULTS AND ANALYSIS

Because VITM 4.0, VITM 5.0 and VTM 10.0 use the same
CU splitting scheme, our comparison with [11] and [19] is
reasonable. We conducted experiments on the role of the ECA
module in the proposed algorithm, as shown in Table 2. AT
in Table 2 does not include CNN inference time.

TABLE 2. Experimental data with or without ECA module.

Class Sequence Our process(add ECA)  Our process(No ECA)
BDBR(%) AT(%) BDBR(%)  AT(%)
Campfire 221 71.34 1.94 70.72
Al FoodMarket4 2.10 77.05 1.88 76.26
Tango2 241 76.53 223 76.34
CatRobot 2.85 75.11 2.71 75.08
A2 DaylightRoad2 1.93 77.78 2.00 77.83
ParkRunning3 0.85 69.85 0.79 69.45
BasketballDrive 2.07 62.73 2.03 63.74
MarketPlace 1.49 81.10 1.39 80.86
B RitualDance 2.30 76.06 2.12 75.69
BQTerrace 1.52 51.61 1.55 52.37
Cactus 1.93 58.98 1.88 58.39
BasketballDrill 228 34.40 232 35.49
BQMall 1.58 36.82 1.64 37.61
¢ PartyScene 0.76 27.34 0.76 27.73
RaceHorses 1.02 39.39 1.03 39.43
BasketballPass 0.98 23.50 1.03 25.54
D BlowingBubbles 0.419 16.60 0.56 18.61
BQSquare 0.41 17.94 0.58 17.85
RaceHorses 0.66 23.21 0.80 23.13
FourPeople 2.69 54.98 2.67 55.10
E Johnny 3.32 55.54 3.25 55.13
KristenAndSara 242 50.79 243 50.87
BasketballDrill Text 1.93 33.03 2.06 32.92
F SlideShow 231 33.10 2.74 56.22
SlideEditing 1.86 37.13 2.50 42.42
Mean 1.77 51.34 1.79 51.79

According to the data in Table 2, it can be seen that
whether the ECA module is used has no obvious impact on
the final performance. On BDBR, the scheme using ECA
module only reduces the average loss by 0.02%. In most high-
resolution sequence tests, the BDBR loss of the scheme using
the ECA module is higher than that of the scheme not using
this module. In the coding time comparison that does not
consider the network model inference time, the scheme using
the ECA module does not show obvious advantages. Even if
the ECA module is a lightweight attention module, the global
average pooling operation will still take a lot of time. After
experiments, the ECA module will increase the inference
time of CNN by about 10% when performing calculations on
the CPU. In summary, the ECA module is not suitable for this
solution.

Our algorithm is only applied to a 128 x 128 CTU.
Our algorithm saves less time on low-resolution sequences,
because the proportion of the image area occupied by the
CTU with a size of less than 128 x 128 at the bound-
ary of the low-resolution image is larger than that of the
high-resolution image and our training set only images with
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2K resolution are included. But on the high-resolution A1 and
A2 sequences, the proposed algorithm saves 74.28% of
the coding on average, and only brings a 1.925% BDBR
loss. For the low-resolution C-D, the proposed method can
reduce the complexity by 27.39% and increase the BDBR
by 1.01%. The training database consists of 2K images,
so the proposed CNN performs better on high-resolution
sequences. At the same time, since the training set does not
contain pictures with text content, there is a higher BDBR
loss in the sequence where the main content is text in the
E class.

Table 3 shows how our method compares with other meth-
ods. The data of other algorithms are calculated from the
data given in their papers. Because the sequences adopted
in different papers are different, we only make comparisons
between classes. Compared with [11], our method can save
more coding time in most cases. In the higher resolution
sequences of Al and A2, even if the reasoning time of the
network is added, the time saved by our scheme is still
much higher than [11], and the BDBR loss gap is within an
acceptable range. When ignoring the network inference time,
our method outperforms [19] on high-resolution sequences.
When the reasoning time is added, our method is better
than [19] on the A2 class, and the time saving is very close
to [19], while the BDBR loss is significantly better than [19]
on the Al class. Our algorithm saves less time when the
resolution is lower because we only predict blocks that meet
the size of 128 x 128. In most of the sequences, we obtained
a time saving rate much higher than [30] under an acceptable
BDBR loss.

The method is divided into two parts: prediction and
decision-making. The running time of the decision-making
part is extremely short and can be ignored. The time for the
prediction part using the neural network is shown in Fig.7.
The running time of the prediction part occupies an average
of 6.5% of the original VTM encoding time. And this ratio
can be further shortened by means of model quantification or
graphics card acceleration.

Al

A2

C

o

E

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% A0.00% 70.00% &0.00% 90.00% 100.00%

® Running time of CNN m Other time in VTM encoder

FIGURE 7. Running time of the proposed MSE-CNN model and the VTM
encoder.
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TABLE 3. Comparison with other algorithms.

S. Park et al.

T. Amestoy et al.[19],VTM5.0(TABLE

S Park et al.[30], VTM4.0( TABLE

[11],VTM4.0(TABLE 5.) VIILMT,) IV, a=1/2) Our process,VTM10.0
Class AT(%)(Inclu
BDBR(%) AT(%) ngR AT(%) B?O/'SR AT(%) Bg/gR AT(%) ‘f;l}grgl‘g

time)
Al 0.67 32.00 3.06 65.10 0.34- 3233 202 7444 61.59
A2 1.07 33.00 1.91 62.90 0.45 2933 183 7412 68.03
B 0.98 33.75 2.60 62.48 0.53 26.00 179 6621 60.18
C 117 35.25 2.59 61.97 0.48 2475 144 3506 31.84
D 0.81 35.00 1.84 54.63 0.32 23.75 074 2128 19.22
E 134 33.67 1.82 54.95 0.61 25 278 5370 4454

V. CONCLUSION

This paper proposes a CU split acceleration scheme based
on DenseNet network. CNN is used to analyze the texture in
every 4 64 x 64 coded blocks, and predict the probability that
each 4 x 4 block in these blocks is a partition boundary. Start-
ing from the probability of the boundary, the segmentation
probability is derived and compared with the preset thresh-
old. Compared with the original encoding time of VTM,
the execution time of CNN is shorter. In the “All Intra” con-
figuration under VTM 10.0, the proposed solution reduces
the complexity by 46.10%, and BDBR slightly increases by
1.86%. When using high-resolution sequences, the acceler-
ation effect is higher, up to 64.81%, but requires 1.92% of
the BDBR overhead. These results prove the effectiveness
of the proposed method and motivate us to conduct further
research and analysis. Since the training set is small and
the network is not optimized to the optimum, the proposed
solution still has a lot of room for improvement. We will try
to use a larger data set for training and further optimize the
structure of the network. At the same time, we will also try
to improve the performance of our method on low-resolution
sequences.
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