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ABSTRACT In this paper, we develop a new algorithm for centralized target detection in passive MIMO
radar (PMR) using sparse recovery technique. PMRs use a network of receivers and illuminators of
opportunity to detect and localize targets. We consider a widely separated PMR network assuming the
availability of reference channels. We first transform the collected information of all receivers to a common
space and combine them to attain a unified model. The problem of target detection in the extracted model is
equal to a block sparse recovery problem. Since employing the generic sparse recovery tools are impractical
due to the ultra-large dimension of the sensing matrix, we exploit the structure of the involving matrices
and propose a very efficient distributed algorithm which extracts all scatterers, including targets and clutter
simultaneously with a unified procedure. The proposed algorithm is highly efficient, and it does not require
a high bandwidth link to transfer raw data from nodes to the fusion center. Moreover, the algorithm
inherently benefits from parallel processing and distributes the extensive computations among receivers.
Our simulation results demonstrate that the proposed algorithm outperforms the popular PMR detection
algorithm, especially in the presence of interfering targets and any strong clutter residue.

INDEX TERMS Passive coherent location, passive MIMO radar, block sparse recovery, radar multitarget
detection.

I. INTRODUCTION
Passive radar as a sensor employs electromagnetic emission
of existing transmitters to detect and localize targets.
Some examples of these transmitters, which are called
Illuminators of Opportunity (IOs), are digital audio broadcast
(DAB) [1], Wi-Fi [2], and global system for mobile
communications (GSM) [3]. Among various communication
and broadcast transmitters, the FM radio [4] and digital video
broadcasting–terrestrial (DVB-T) [5] are more popular IOs
since they have widely spread stations with high power levels.
Passive radars have gained a lot of attention recently. They are
attractive as they do not need frequency allocation and do not
interfere with wireless communication [6]. Furthermore, they
can be inexpensive, reliable and can monitor the surrounding
space without signature. We can design widely separated
passive MIMO radar (PMR) by increasing the number of
receivers and employed IOs, in order to achieve a significant
diversity gain in the target detection and enhance localization
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accuracy. Such a system allows a target illuminated by
multiple sources from different directions and at different
frequencies and observed from different locations. Moreover,
this gain resists to the target fading which has similar effect
like spatial diversity in MIMO communication systems [7].
The PMR provides anti-stealth capability. Stealth targets are
designed to diffuse their reflected energy in directions away
from the direction of the impinging signals on them, in order
to be hidden from the monostatic radars. Since receivers of a
PMR are distributed in various directions, they enhance the
chance to detect these reflections [8].

In passive bistatic radar, the conventional approach to
detect targets and estimate their parameters is to use
matched filtering of the received signal with transmitted
waveform [1]. Since the transmitted waveform is a priori
unknown, a reference channel (equipped with a high gain
antenna steered toward the transmitter) is dedicated at each
receiver to extract a clean copy of the transmitted waveform.
The cross-ambiguity function (CAF) (between the outputs
of the surveillance channel and the reference channel) is
calculated and is compared with a threshold to detect targets.

121206 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5911-0202
https://orcid.org/0000-0002-8854-7902
https://orcid.org/0000-0003-4368-6682
https://orcid.org/0000-0003-2367-5863


H. Nikaein et al.: Multitarget Detection in PMR Using Block Sparse Recovery

Similar to active MIMO radar (AMR), centralized and
decentralized approachesmay be used for target detection and
localization in PMR. In the decentralized approach, each of
the bistatic (transmitter-receiver) pairs acts as an individual
passive radar and detects targets independently. Then, they
share and fuse their information across pairs by solving the
intersections of bistatic ellipsoids to localize targets in a
Cartesian space [9]. In the centralized approach, the received
signals of all bistatic pairs are jointly processed, and target
detection and localization are performed directly in Carte-
sian space. Hack et al. [10] showed that similar to AMR,
the centralized approach outperforms the decentralized target
detection.

Most existing studies on the centralized approach assume
a PMR without using reference channels which is mainly
the case of passive airborne radar, where the radar plat-
form moves and prevents establishing a stationary direct-
path between the transmitters and the receiver. In such
a circumstance, the cross-correlation between the received
signals of various receivers is used to detect and localize
targets [11]. For example in [12], a multistatic passive
radar was considered with a single transmitter and multiple
receivers without reference channels. Then a signal model
was formulated for a single target in the presence of
noise with known variance and a generalized likelihood
ratio test (GLRT) was derived for target detection. This
problem was extended in [13] to the case of unknown noise
power for which an GLRT-CFAR was derived. In these
papers, it was assumed that the direct-path signal had been
completely removed from the received signal. Unfortunately,
this assumption is not realistic in practice and the direct-path
is often a high power component of the received signal or
may have residues [14]. As remedy in [15], a new GLRT is
obtained by taking into account the direct-path.

In contrast to passive multistatic radar, most existing
studies on the passive bistatic radar employ a reference
channel which is assumed to provide an exact copy of the
transmitted waveform [16], [17]. Analogously in this paper,
we consider a PMR with distributed receivers which are
equipped with reference channels. Furthermore, we assume
that IOs transmit over a non-overlapping frequency spectrum.
The authors in [10] considered the same assumptions and
derived a GLRT for a single target in additive white Gaussian
noise with known variance. As we will see in the simulation
section, this extracted GLRT has very limitations, and when
we have interfering targets with high SNR, it fails to
detect the target properly and generate many false alarms.
Based on this detector, another GLRT is derived in [18]
for the same conditions but colored noise with unknown
covariance matrix. In this GLRT, training samples are utilized
to estimate covariance matrix of noise. In the extraction of
these detectors, it is assumed that clutter and direct-path are
entirely removed before target detection. Unfortunately, this
is not always a realistic assumption [14], [19], and the high
power of clutter and direct-path residue can cause excessive
false alarms in the output.

To remedy these limitations, we use the sparsity of the
radar scene and propose an algorithm for target detection
employing sparse recovery tools in the Compressed Sens-
ing (CS) framework. Recently, the CS has gained attention
in various radar literature, such as in synthetic aperture
radar [20], [21] Through-the-Wall Radar Imaging [22], and
range-Doppler (RD) map generation [23]. In several papers,
the CS and sparse recovery have been employed for signal
processing in passive radars. A high-resolution algorithm
in [24] is proposed to use sparse recovery for RD map
generation. It reduces the sidelobes of the cross ambiguity
function (CAF) by exploiting the sparsity of the scene in
passive bistatic radars. In this method, the integration time
is divided into multiple batches, and some of them are
randomly selected to reduce computational complexity by
using CS. For a multi-receiver Wi-Fi passive radar in [2],
an off-grid sparse recovery algorithm is presented to achieve
high resolution in localization. An algorithm is proposed
in [17] for detection of targets using DAB as IO in a passive
radar. This algorithm exploits the structure of the OFDM
waveform and employs sparse recovery tools to yield a higher
resolution in localization. A GLRT is proposed in [25] for
a passive multistatic radar with one transmitter and multiple
receivers without reference channels assuming that the IO
waveform is sparse in the frequency domain. In [26], a CS
approach is employed for the fusion of information collected
from bistatic pairs of a passive multistatic radar. Such a CS
framework is also used for MIMO radars in other works.
For example in [27], a three-dimensional channel estimation
algorithm is proposed by using the special structure of the
OFDM waveform for an OFDM-based passive MIMO radar
with co-located receivers. The estimator in [27] includes
time delay, Doppler frequency, and angle of arrivals. The
use of CS allows reducing the number of measurements
of the observation matrix. In [28] a block sparse Bayesian
learning method is used to localize targets in an active MIMO
radar. In [29], an off-grid approach is employed to reduce
the number of Grid Points (GPs) for a co-located MIMO
radar. This approach allows to derive an accurate localization
algorithm using target sparsity which is solved by a block
sparse recovery method. The CS is used for target estimation
in [30] for a widely separated active MIMO radar, where a
low complexity algorithm is proposed for sparse recovery
employing the alternating direction method of multipliers.

In this work, we propose a new algorithm for the detection
of targets in PMR.We use a centralized approach to formulate
the received signals for all bistatic pairs. Then we use
the sparsity of the scene and propose to employ block
sparse recovery tools to extract direct-path and all scatterers,
including targets and clutter. The excessively large dimension
of the sensing matrix demands an unacceptable computation
complexity. Thus, we exploit the block-diagonal structure
of the involving matrices and propose a computationally
efficient algorithm with several orders of magnitude reduc-
tion in complexity. Distributed processing is an important
advantage of the proposed algorithm. Furthermore, as the
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main part of the algorithm is done locally in the receivers,
we did not require high bandwidth links to transfer raw
data from receivers to the fusion center (FC). In contrast to
many passive radar methods, our proposed algorithm does
not require the elimination of direct-path and clutter before
target detection. It extracts all scatterers simultaneously in a
unified procedure, andwe can use post-processing algorithms
to classify results. Thismethod allows us to detect targets with
small Doppler frequencies, whereas lower frequencies are
usually eliminated in the interference cancellation part of the
competing algorithms. Our simulation results demonstrate
the superiority of the proposed algorithm over the popular
PMR detection algorithms, especially in the presence of
interfering targets and strong clutter.

The remainder of this paper is organized as follows.
Section II presents a unified block-sparse model for received
information at all bistatic pairs of a PMR. In Section III,
we show that extracting targets is a block sparse recovery
problem that requires an unacceptable order of computational
complexity. As a remedy, we propose a very efficient
distributed algorithm. We evaluate our proposed algorithm in
Section IV via extensive simulation results. We finally draw
conclusions in Section V.

II. REPRESENTATION OF RECEIVED INFORMATION
Consider a widely separated passive MIMO radar with
Mt non-cooperative IOs and Mr receivers. This provides
Mt × Mr bistatic radar pairs. We aim to detect targets in an
FC by using these pairs. We assume that IOs transmit over
non-overlapping frequencies, and receivers are equipped with
filter banks separating their signals. We express N samples
of the received signal zij ∈ CN from the output of the jth
filter of ith receiver tuned at the frequency of the jth IO as
follows [31]:

zij = Sijaij + nij 1 ≤ i ≤ Mr , 1 ≤ j ≤ Mt , (1)

where nij ∈ CN is the additive white Gaussian noise,
and the entries of aij = [aij,1, aij,2, . . . , aij,M ]T are the
complex amplitudes of either direct-path, targets returns,
or clutter returns in the ijth bistatic pair. Each column of the
N × M matrix Sij , [s1,ij, s2,ij, · · · , sM ,ij], i.e., sm,ij
represents samples of returned signal from jth IO signal to
ith receiver related to the mth scatterer. We can express it as
follows

sm,ij = 3�mPnmsRij . (2)

where sRij is the received signal in the reference channel
of ith receiver related to the jth transmitter and (nm, �m)
is the pair of bistatic delay and Doppler frequency of mth
scatterer.3�m = diag(1, ej�m , · · · , ej(N−1)�m ) is theDoppler
shift operator with frequency �m, and the N × N unit delay
matrix P is defined by

[P]i,j =

{
1 i = j+ 1
0 otherwise,

i, j = 1, 2, . . . ,N . (3)

In order to detect targets, we need to determine M
and estimate the set of dependent unknown parameters,
i.e. {(nm, �m)}m=1,··· ,M and aij from (1). This nonlinear
problem is NP-hard due to dependency of sm,ij in (2) to the
unknown parameters. As remedy, we propose to combine the
information of all bistatic pairs in a common coordinate.

To make this solution more practical, we treat this problem
as a network of Mt × Mr distributed sensors and deem
the bistatic pairs as sensors. In the FC, we combine the
data of these sensors in a Cartesian coordinate. For this
fusion, we denote the location and velocity parameters
of a target by triplets (x, y, z) and (ẋ, ẏ, ż), respectively.
We propose to discretize the search space for (x, y, z) and
(ẋ, ẏ, ż) respectively, with an expected range and velocity
resolutions. This quantization of the search space creates a
finite set of GPs [29]. A GP is a six-dimensional vector:
[xk , yk , zk , ẋk , ẏk , żk ] for k = 1, · · · ,NG, where NG is the
total number of GPs. Let [xRi , y

R
i , z

R
i ] and [x

T
j , y

T
j , z

T
j ] denote

the locations of ith receiver and jth transmitter, respectively.
For a potential target in kth GP, the Doppler shift and delay
for ijth bistatic pair are

�ij,k =
fj
Cfs

( [ẋk , ẏk , żk ]δRi,k
‖δRi,k‖2

+
[ẋk , ẏk , żk ]δTj,k
‖δTj,k‖2

)
, (4)

nij,k =
fs
CTs

(
‖δRi,k‖2 + ‖δ

T
j,k‖2
− ‖δRTi,j ‖2

)
, (5)

where C is the wave propagation speed, fs is the sampling
frequency, and fj is the carrier frequency of jth IO signal and

δTj,k
1
=

 xkyk
zk

−

xTj
yTj
zTj

 , δRi,k
1
=

 xkyk
zk

−
 x

R
i

yRi
zRi

 ,

δRTi,j
1
=

 x
R
i

yRi
zRi

−

xTj
yTj
zTj

 . (6)

Now, we enlarge Sij and aij in (1), to include reflected
signals and related complex coefficients of all GPs. Thus,
we rewrite (1) as follows

zij = 8ijbij + nij, 1 ≤ i ≤ Mr , 1 ≤ j ≤ Mt (7)

where 8ij , [φij,1,φij,2, · · · ,φij,NG ] ∈ CN×NG and φij,k =
3�ij,kPnij,k sRij , also (nij,k , �ij,k ) is the pair of bistatic delay and
Doppler frequency of kth GP in ijth bistatic pair. Moreover,
bij ∈ CNG contains complex coefficients of reflected signals
from GPs in ijth bistatic pair. We combine the information of
all pairs in a single equation by concatenating zij in (7), which
yields

z = 8b+ n, (8)

where

z = vec[z11, · · · , zMtMr ]∈C
MtMrN ,

n = vec[n11, · · · ,nMtMr ]∈C
MtMrN ,
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8 = diag(811, . . . ,8MtMr )∈C
MtMrN×MtMrNG ,

B = [b11, · · · ,bMtMr ]∈C
NG×MtMr ,

b = vecB∈CMtMrNG . (9)

Since N � NG, the problem in (8) is heavily under-
determined. Thus we need a regularization constraint to solve
it. We know that all entries of bijs are zero except for
GPs, which contain scatterer. Therefore, since the number
of scatterers, i.e. M is much less than the number of GPs,
bijs are sparse vectors with the same sparsity pattern. This
means onlyM rows ofB are nonzero, and wemay exploit this
block sparsity constraint to solve b from (8) by using one of
the existing block-sparse recovery algorithms. Unfortunately,
the existing algorithms are impractical for this problem
because of the enormous size of 8ij.

III. TARGET EXTRACTION VIA BLOCK SPARSE RECOVERY
In order to exploit the row sparsity of B in (8)-(9), we solve
the following block sparse recovery problem

min
∑NG

k=1
‖bGk‖2 s.t. ‖z−8b‖2 ≤ ε, (10)

where ε is a regulating parameter and the set Gk = {p =
tNG + k|∀t = 0, · · · ,MtMr − 1} contains the indices
of the unknown vector b which are related to kth GP.
Thus, bGk is the transpose of kth row of B. It is ideal to
minimize the number of nonzero values for ‖bGk‖2 instead
of their `1-norm in (10). Unfortunately, the ideal `0-norm
problem is NP-hard. Several algorithms in CS literature
solve block sparse problems similar to (10), such as group
Lasso [32], block version of OMP (BOMP) [33]–[35], and
block- thresholding (BTH) algorithm [36]. Since the sensing
matrix 8 is ultra-large, we only consider the BOMP because
of its lower computational complexity.

Algorithm 1 summarizes the BOMP procedure for solving
(10). We initialize the residue vector rl at r0 = z and start
with an empty set for the selected GPs, i.e., F = {}. Then
in each iteration, we calculate the Euclidean norm of the
correlation between the residue vector rl−1 and columns of
8Gk for 1 ≤ k ≤ NG. Where columns of 8Gk are the related
columns of 8 to kth GP, i.e.,

8Gh = blockdiag
(
811,h, · · · ,8MtMr ,h

)
∈CNMrMt×MrMt

(11)

Then we select the GP with the maximum norm. We can
write this procedure for the lth iteration as:

hl = argmax
h∈{1,··· ,NG}

∥∥∥8H
Ghrl−1

∥∥∥2
2

(12)

Then, we append the selected GP hl from (12) at lth
iteration to F , i.e., F ← F ∪ {hl}. We can now optimize
b for F by solving the following problem:

b = argmin
bGk :∀k∈F

‖ z−
∑
k∈F

8H
GkbGk‖2. (13)

We obviously have bGk = 0 for all k 6∈ F . The solution
of (13) is given by

bF =
(
8H
F8F

)−1
8H
Fz, (14)

where the vector bF and the matrix 8F are obtained by
concatenating the vectors bGk and the matrices 8Gk for all
k ∈ F , respectively. We also update the residue rl as follows

rl = z−
∑
k∈F

8H
GkbGk . (15)

This BOMP procedure detects dominant scatterers one by
one and eliminates their signatures in each iteration from
z till a stopping criterion is reached, as summarized in
Algorithm 1.

Algorithm 1 BOMP Algorithm for Target Detection in
Passive MIMO Radar
1. Inputs: z,8.
2. Initialize: l ← 1, b← 0, r0← z, F ← {}.
3. Repeat until stopping criterion is met:

4. hl ← argmax
h∈{1,··· ,NG}

∥∥∥8H
Ghrl−1

∥∥∥2
2
,

5. F ← F ∪ {hl}.
6. bF ←

(
8H
F8F

)−1
8H
Fz,

7. rl ← z−8FbF
8. l ← l + 1
9. Output: Sparse representation F

A. DISTRIBUTED IMPLEMENTATION OF BOMP
The BOMP in Algorithm 1 has two main drawbacks. First,
all received signals shall be transferred to the FC for each
coherent processing time which requires a considerable
communication bandwidth. Second, the extremely large
dimensions of 8 lead to an unbearable computational
complexity.

To resolve these drawbacks, we propose to significantly
lower the computational complexity and the amount of data
transfer by exploiting the block-diagonal structure of 8 in
this problem. In particular, we propose to perform some of
the computations at receivers and limit the amount of data
transfers. In (14), the block diagonal matrix 8F contains
selected columns of 8, i.e., we have

8F = diag
(
811,F , · · · ,8MtMr ,F

)
, (16)

where the columns of 8ij,F are φij,k for all k ∈ F .
From the block diagonal structure of 8F and the definitions
of z and b in (9), we easily conclude that bij,F can be
calculated only by using8ij,F and zij. Therefor as in Step 6 of
Algorithm 1, we compute (14) in parallel at ith receiver for all
i ∈ {1, · · ·Mr }, j ∈ {1, · · · ,Mt } as

bij,F =
(
8H
ij,F8ij,F

)−1
8H
ij,Fzij, bij,F c

l
= 0. (17)
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Moreover, we partition r intoMtMr vectors of equal length
N , and break (15) (i.e., Step 7 of Algorithm 1) as follows in
order to compute them in parallel at ith receiver

rij,l = zij −8ij,Fbij,F ∀j ∈ {1, · · ·Mt }. (18)

Therefore by using (17) and (18), we can calculate rij,l and
bij,F locally at receivers in parallel. For these calculations,
only F and zij are needed at ith receiver without transferring
raw signals to the FC. However, we need to collect the
residue vector rij,l from all bistatic pairs to select the next GP
using (12). Therefore, the selection (12) shall be performed
in one location, namely the FC. We assume that the FC
broadcast the index of the selected GP, hl , to all receivers
using a feedback channel. From (11), we notice that 8Gh is a
block diagonal matrix. Thus for all h ∈ {1, · · · ,NG}, we have∥∥∥8H

Ghrl−1
∥∥∥2
2
=

∑
1≤i≤Mr , 1≤j≤Mt

∣∣∣8H
ij,hrl−1,ij

∣∣∣2 , (19)

where ith receiver can locally calculate the term
∑Mt

j=1∣∣∣φHij,hrij,l−1∣∣∣2 and transfer it to FC instead of rij,l’s. These
computed terms can be collectively compressed and trans-
ferred to the FC allowing to perform (12) using

hl = argmax
h∈{1,··· ,NG}

Mr∑
i=1

(∑Mt

j=1

∣∣∣8H
ij,hrij,l−1

∣∣∣2) . (20)

This procedure allows converting Algorithm 1 to a
distributed version as in Algorithm 2.

Algorithm 2 The Proposed Distributed BOMPAlgorithm for
Target Detection in Passive MIMO Radar
1. Inputs: zij,8ij 1 ≤ i ≤ Mr , 1 ≤ j ≤ Mt
2. Initialize: l ← 1, bij← 0, rij,0← zij,F ← {}.
3. Repeat until stopping criterion is met:

4. hl ← argmax
h∈{1,··· ,NG}

∑Mr
i=1

(∑Mt
j=1

∣∣∣8H
ij,hrij,l−1

∣∣∣2) ,
5. F ← F ∪ {hl}.
6. for i = 1 : Mr and j = 1 : Mt , do

7. bij,F ←
(
8H
ij,F8ij,F

)−1
8H
ij,Fzij, bij,F c ← 0

8. rij,l ← zij −8ij,Fbij,F
9. end for
10. l ← l + 1
11. Output: Sparse representation F

In Algorithm 2, rl and b are not calculated at
the FC. Each receiver may calculate bij and rij,l and∑Mt

j=1

∣∣∣8H
ij,hrl−1,ij

∣∣∣2 locally and instead shall only send the

values of
∑Mt

j=1

∣∣∣φHij,hrij,l−1∣∣∣2 to the FC. The FC can add∑Mt
j=1

∣∣∣φHij,hrij,l−1∣∣∣2 and selects the next GP hl to maximize
the sum of these values using (20) as in Step 4 of Algorithm 2.
The matrix8ij has NG columns which is a very large number.
As a result, the calculation of correlation between its columns

and rij,l−1 demands a high computation power. Moreover,
the transmission of the results to the FC requires high
bandwidth. For example, using a passive radar employing a
DVB-T signal and 0.1 second of integration time, we have
N ≈ 106. For a cube search space with dimensions of
(20, 20, 5)Km and a lattice GP separation of 25m, we have
NxNyNz = 800 × 800 × 200 = 1.2× 108. In this example
let the maximum target speed of this radar be 1Mach, and
the velocity resolution be 3 m

sec , which leads to NvxNvyNvz =
100 × 100 × 100 = 106 velocity instances. Accordingly,
in this example, we have NG = NxNyNzNvxNvyNvz =
1.2 × 1014 GPs. Thus in this typical scenario, the matrix
8ij ∈ C106×1014 has ultra-large dimensions and cannot
be stored or manipulated easily. In other words, it is
impractical to calculate the correlation in (20). In summary,
Algorithms 1 and 2 are mathematically equivalent and are
both impractical for this application.

B. COMPUTATION OF CORRELATIONS OVER
DELAY-DOPPLER SPACE
To overcome this challenge, we notice that many GPs have
similar delay-Doppler for a given bistatic pair. Thus for each
pair, we propose to calculate the correlation over delay-
Doppler space first instead of GP space and transform the
results to the GP space. For this purpose, we consider the
maximum expected delay and Doppler in each bistatic pair
and quantize them to delay-Doppler cells [31]. We define
a matrix 9 ij ∈ CN×Nc where Nc is the number of cells,
and each column of 9 ij is a delayed and Doppler-shifted
replica of the reference signal for a given delay-Doppler cell.
The number of columns of 9 ij is considerably less than that
of 8ij as Nc � NG. Therefore, we need significantly fewer
computations to calculate the correlation between residue
vector rij,l−1 and columns of 9 ij. For instance, in the above
example, we have9 ij ∈ C106×105 , which reduces the number
of required complex multiplications with an order of 109

for calculating the correlation. Moreover, we exploit the
specific structure of 9 ij to further reduce the computational
cost by using fast algorithms [37]. In particular, such a
method utilizes FFT and does not require storing 9 ij in
memory. After calculating the correlation in the delay-
Doppler domain, we transform the results to the GPs
domain. This transformation is a mapping between GPs
and their related delay-Doppler cells and can be performed
either at receivers or at the FC. It is easy to see that,
we can substantially reduce the required communication
bandwidth between receivers and the FC by performing
these transformations at the FC. These modifications lead
to our proposed algorithm for target detection in passive
MIMO radar, which is implemented in parallel at sensors
and the FC with reasonable computation and communication
requirements. This algorithm is summarized in two parts,
where Algorithm 3 and Algorithm 4 summarize the details
executed at receivers and the FC, respectively.

Figure 1 shows the diagram of ith receiver of the proposed
distributed algorithm, and Figure 2 shows the block diagram
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FIGURE 1. The block diagram of one of the receivers of the proposed
algorithm.

FIGURE 2. The block diagram of the FC part of the proposed algorithm.

Algorithm 3 The Portion of the Proposed Distributed
Algorithm Executed at ith Receiver for All j ∈ {1, · · · ,Mt }

1. Inputs: zij and sRij .
2. Initialize: l ← 1, aij← 0, rij,0← zij,F ← {}.
3. Repeat until stopping criterion is met:
4. for j = 1 : Mt , do:
5. Calculate cij,l ← 9H

ij rij,l−1 using FFT,
6. end for
7. Send values of [ci1,l, · · · , ciMt ,l] to the FC.
8. Receive hl from the FC.
9. for j = 1 : Mt , do:
10. Compute (�ij,hl , nij,hl ) of hl using (4)-(6) and

append it to Iij.
11. aIij ←

(
9H
ij,Iij9 ij,Iij

)−1
9H
ij,Iijzij, aij,Icij ← 0,

12. rij,l ← zij −9 ij,IijaIij ,
13. end for
14. l ← l + 1

of FC. In lth iteration of Algorithms 3, we first calculate
2D cross-correlation function cij,l = 9H

ij rij,l−1 ∈ C
Nc×1 for

all bistatic pairs. Then, entries of [ci1,l, · · · , ciMt ,l] are sent
to the FC (see Steps 4-7 of Algorithm 3). The FC receives

Algorithm 4 The Portion of the Proposed Distributed
Algorithm Executed at the FC
1. Initialize: l ← 1
2. Repeat until stopping criterion is met:
3. for i = 1 : Mr , do
4. Receive [ci1,l, · · · , ciMt ,l] from ith receiver,
5. for j = 1 : Mt , do
6. transform cij,l to GPs domain, i.e., wij,l ,
7. end for
8. end for
9. Select hl ← argmax

h∈{1,··· ,NG}

∑
1≤i≤Mr
1≤j≤Mt

∣∣[wij,l]h
∣∣2, and

El ← max
h∈{1,··· ,NG}

∑
1≤i≤Mr
1≤j≤Mt

∣∣[wij,l]h
∣∣2,

10. Broadcast hl to all receivers,
11. S ← S ∪ {(hl, El)}.
12. l ← l + 1
13. Output: Detected scatterers and their energy S

[ci1,l, · · · , ciMt ,l] from all receivers and transforms them to
wij,l ∈ C1×NG to represent the GPs domain (see Steps 4-7 of
Algorithm 4). Then using wij,l at the FC, we can compute
(20) in order to select the next GP as in Step 9 of Algorithm 4.
The index of selected GP, hl , is broadcasted to all receivers as
Step 10 of Algorithm 4. Then, it is appended to S accompany
with its energy, i.e., El . We compare El

‖rl−1‖
2
2

with a threshold

as a stopping criterion. In receivers, this newly selected point
is transformed to the delay-Doppler domain for each pair,
and appended to the set of selected cells, i.e. Iij (see Step 10
of Algorithm 3). The set Iij represents F and contains the
selected pairs of delay-Doppler for ijth bistatic pair. Then in
Steps 13 and 14, the relevant signals of these delay-Doppler
cells, i.e. 9 ij,Iij are eliminated from observation vector zij,
and the new residue vector rij,l is generated. Furthermore,
the vector aij, which contains the complex coefficients of
all delay-Doppler cells in ijth bistatic pair, are updated. This
algorithm yields similar results as Algorithm 1 while it has
several orders of magnitude less computation complexity.
Moreover, in this method, we do not need to transfer raw
signals (i.e., zij ∈ CN , sRij ∈ CN ) from receivers to the
FC; instead, we only need to send the dominant entries
of cij,l ∈ CNc , which yields less bandwidth requirement
between receivers and the FC. Furthermore, the main parts
of computations are distributed among all receivers, and we
can use parallel processing substantially.

IV. SIMULATION RESULTS
In this section, we use numerical simulations to illustrate the
performance of the proposed algorithm in target detection
for a passive MIMO radar with two transmitters and three
receivers. We consider DVB-T transmitters with 7.61MHz
bandwidth, 9.14MHz sampling frequency, 8K mode, and
cyclic prefix ratio of 1

8 . Transmitters carrier frequencies are
600MHz and 610MHz, and we choose an integration time
of 28ms. In this simulation, we consider two scenarios.
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FIGURE 3. Test statistic and output of AMR-GLRT and proposed algorithms in the single-target scenario with SNR = −49dB.

FIGURE 4. Test statistic and output of AMR-GLRT and proposed algorithms in the single-target scenario with SNR = −44dB.

TABLE 1. 2D coordinate (in meters) of 2 transmitters, 3 receivers and
3 targets for simulation setup.

The first scenario consists of a single-target in the presence
of Gaussian noise. The second scenario includes multiple
targets and clutter. In order to reduce the computation time of
simulation in our assessment and simplify our illustrations,
we perform our simulations over a 2-D plane and assume all
targets are stationary. The locations of transmitters, receivers,
and targets are given in Table 1. The search space of radar
covers a rectangle x ∈ [−5500, 5500] and y ∈ [−6000, 6000]
in meters. We quantize this space into a rectangular lattice
with 25 m distance between GPs.

As we noted in Section I, only a small number of papers
(see [10] and references therein) have considered PMR with
the existence of reference channels. The authors in [10]
derived two GLRT detectors for PMR and AMR, namely
PMR-GLRT andAMR-GLRT respectively. They showed that
the performance of the PMR-GLRT tends the performance of
the AMR-GLRT as the reference DNR increases (this appears
as an upper bound for that of the PMR-GLRT). Therefore,
we compare our proposed method with the AMR-GLRT as a

benchmark. The AMR-GLRT uses a matched filter for each
GP in all bistatic pairs. Then, the output of these matched
filters are integrated non-coherently to calculate a test statistic
as follows [10]:

ξGLRT =
1
σ 2

Mr∑
i=1

Mt∑
j=1

∣∣∣S̃Hij,hzij∣∣∣2 H1
≷
H0

η, 1 ≤ h ≤ NG (21)

where S̃ij,h is defined in [10] as ijth reference signal whose
delay and Doppler are compensated for hth GP, and σ is the
noise variance. For simplicity in our simulations, we assume
that all targets are observed with identical input signal-to-
noise ratios (SNRs) at all bistatic pairs, which are defined by
SNRi =

|αm|
2

σ 2
, where αm is the amplitude of received signal

related to mth target.
We first evaluate the single-target scenario with transmit-

ters, receivers, and target T1 in Table 1. We consider an input
SNR of−49dB for target T1 at all bistatic pairs. Fig. 3a shows
the test statistic of AMR-GLRT for all GPs in the search space
of radar, and Fig. 3b shows detected targets after applying
a threshold by using cell-average constant false alarm rate
(CA-CFAR) [38] to this test statistic. Furthermore, Fig. 3c
shows the output of our proposed algorithm using only one
iteration. We observe that both methods properly detect T1
without any false target.
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FIGURE 5. Detection performance comparison of AMR-GLRT and
proposed algorithm in the single-target scenario.

Fig. 4a shows the test statistic of AMR-GLRT for all GPs
for an increased input SNR at −44dB. We visibly observe
the constant bistatic range ellipses in Fig. 4a generated by
target T1 at various bistatic pairs. These ellipses intersect
in the location of target T1. They have high-level sidelobes,
which cause many false targets after applying of CA-CFAR
threshold. These false targets are shown in Fig. 4b, which
indicates an increase of a target SNR causes an increase of
false targets in AMR-GLRT. In contrast to it, Fig. 4c shows
that our proposed algorithm detects T1 without the generation
of any false target. Now we compare the performance of
AMR-GLRTwith the proposed algorithmmore precisely. For
this purpose, we set the detection threshold of both algorithms
to attain Pfa = 10−6 for noise-only conditions. Then we
change the input SNR (SNRi) of T1 and depict the detection
probability Pd versus SNRi for both algorithms in Fig. 5a.
We count the number of extra detected targets and divide it by
number of grid points and average the results over the number
of experiments in order to calculate the false alarm probability
Pfa versus SNRi as plotted in Fig. 5b. This figure shows that
the detection performance of these algorithms are similar,
whereas the Pfa of AMR-GLRT increases rapidly when the
target SNR increases.

Now, we consider a scenario with multiple targets to
evaluate the performance of the proposed algorithm in real

FIGURE 6. Test statistic of AMR-GLRT in the multitarget scenario.

FIGURE 7. Detected scatterers in the output of the proposed algorithm in
the simulated multitarget scenario.

situations. In this scenario, three targets, as listed in Table 1
are places in the search region of radar. The input SNR
for target T1, T2, and T3 is equal to −51dB, −39dB and
−44dB, respectively. Fig. 6 shows the resulted test statistic of
AMR-GLRT for all GPs in this scenario. We observe that the
constant bistatic range ellipses related to target T2 cover many
of GPs. That is because of its high SNR. Therefore, we cannot
expect easy detection of other targets. Applying an adaptive
threshold based on CA-CFAR to this test statistic causes a
large number of false targets. However, as seen in Fig. 7, our
proposed algorithm extracts all three targets without any false
target.

Now, we evaluate the detection probability of AMR-
GLRT and proposed algorithm algorithms in this scenario to
compare them quantitatively. In this procedure, we keep the
T2 SNR and T3 SNR as before and change the SNR of T1 and
depict Pd versus it. Fig. 8 shows the result of this test. As it
can be seen, our proposed algorithm has a higher detection
probability compare to AMR-GLRT. Furthermore, the Pfa of
our algorithm remains unchanged and is about 10−6, which
is set in noise-only conditions. At the same time, the Pfa of
AMR-GLRT is more than 10−2 for all SNR values of T1.
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FIGURE 8. Detection performance comparison of AMR-GLRT and
proposed algorithm in the multitarget scenario.

FIGURE 9. Detection of target T1 in the presence of strong clutter and
direct-path in the output of the proposed algorithm.

The results of these simulations show that AMR-GLRT can
work properly in the single-target situation with low SNR
targets. However, it causes extra false alarms in multitarget
situations with high SNR targets. The same condition can
occur when direct path or clutter have not been removed
entirely before applying AMR-GLRT. In real situations,
clutter return and direct path cannot be omitted completely by
interference cancellation algorithms [19]. Therefore, the high
power residue of clutter or direct path can cause the failure of
AMR-GLRT.

Now, we illustrate the detection capability of our proposed
algorithm in the presence of interference. We consider the
previous single-target scenario and add heavy clutter and high
power direct-path to the input signal of bistatic pairs. In this
simulation, we consider a direct-path with a direct-to-noise
ratio DNRi of 60dB. Also, the variance of clutter amplitude
is based on clutter to noise ratio CNRi of 30dB. Fig. 9
shows the output of the proposed algorithm in this simulation.
As it is seen, our proposed algorithm simultaneously extracts
direct-path, clutter, and target with a unified procedure
without any prior knowledge about the location or statistics

FIGURE 10. Detection performance comparison of AMR-GLRT and
proposed algorithm in the presence of strong clutter and
direct-path.

of clutter. Therefore we can use post-processing algorithms
(such as clutter map) to classify extracted scatterers. This
method prevents eliminating of targets with low Doppler
frequency. Now, we evaluate the performance of the proposed
algorithm more precisely. For this purpose, we depict the Pd
versus SNRi for AMR-GLRT and our proposed algorithm
in this scenario in Fig. 10. As it can be seen, AMR-GLRT
completely fails to detect target. However, We observe that
the detection performance of our proposed algorithm is very
close to Fig. 5, where there is no clutter or direct path. This
means that proposed algorithm can easily detect targets in the
presence of strong clutter and direct-path.

Finally, we would like to investigate the computational
complexity of the proposed algorithm in terms of the number
of complex multiplications (CMs) and compare it with
AMR-GLRT. We show the total number of CMs for AMR-
GLRT with CAMR−GLRT , and for the proposed algorithm with
CProposed . In each iteration of Algorithm 3, Step 5 is related
to the calculation of the correlation between residue vector
rij,l−1 and columns of 9 ij for the ijth bistatic pair. Then in
Step 6 of Algorithm 4, these correlation is transformed to
the domain of GPs, and in Step 9 of this algorithm, they
are integrated non coherently for all GPs. This procedure is
equal to the calculation of test statistics for all GPs in AMR-
GLRT, and has the same complexity. We can use the Fourier
transform FFT approach in [37] to calculate correlations in
(21), which needs N [1+ log2(N )]Nbin CMs for each bistatic
pair, where Nbin is the total number of range bins. Thus
the total number of CMs for calculating AMR-GLRT is
approximatelyMtMr log2(N )NNbin, i.e.

CAMR−GLRT ≈ MtMrN log2(N )Nbin. (22)

In Step 10 of Algorithm 4, the selected GP is transferred to
receivers, and in Step 11 and 12 of Algorithm 3 its related
signal is removed from the received signal in all bistatic
pairs based on a least-square calculation. Since in the lth
iteration, the size of 9 ij,Iij is equal to N × l, the number
of CMs for implementation of Steps 11 and 12 is equal
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to
(
Nl2 + 2 Nl + l3 + l2 + N

)
. Now by considering that

l � N , the total number of CMs for all bistatic pairs in these
steps is approximately equal to MtMrNl2 in the lth iteration.
Consequently, the total CMs for our proposed algorithm in
the lth iteration is equal to CAMR−GLRT + MtMrNl2. If we
define the L as the number of all detected scatterers, including
targets and residue of clutter, the number of iteration will be
equal to L, and we have

CProposed ≈ LCAMR−GLRT + 2L3MtMrN/3. (23)

As many of range bins do not have any scatterers, we can
suppose L2 � log2(N )Nbin, and we can ignore the second
term in (23). Accordingly, the computation complexity of the
proposed algorithm is in the order of L times of AMR-GLRT.
This increase in the computation complexity provides an
essential improvement in the target detection in real situations
with multiple targets and strong clutter plus direct-path.

V. CONCLUSION
In this work, we considered a PMR with the existence
of reference channels. Then to detect and localize targets
by a centralized approach, we transformed the collected
information of all bistatic pairs to a common space and
fused them to attain a unified model. The problem of
target detection in the extracted model is equal to a block
sparse recovery problem. Due to the ultra-large dimension
of the sensing matrix, we could not use popular sparse
recovery tools such as BOMP for this problem. Therefore
we employed the particular structure of our model and
proposed a very efficient algorithm with significantly fewer
computations and memory requirements than BOMP. Our
proposed algorithm does not require a high bandwidth
link between the FC and receiver to transfer raw data.
Additionally, it can be distributed among receivers and
benefit from parallel processing. Our proposed algorithm
does not require removing clutter and other interference
before target detection. It extracts all scatterers including
targets and clutter, simultaneously with a unified procedure.
Provided simulation results, demonstrated that the proposed
algorithm outperforms the previous popular GLRT based
PMR detection algorithm, especially in the presence of
interfering targets and strong clutter residue.
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