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ABSTRACT In this study, we propose an analog CMOS integrate-and-fire (I & F) neuron circuit with a
synaptic off-state current blocking operation. The proposed circuit prevents unintended potential changes in
the membrane capacitor owing to the off-state current of synaptic devices, thereby preventing a decrease in
the accuracy of the spiking neural network (SNN) inference system. Compared to the conventional I & F
neuron circuit, the basic I & F and synaptic off-current blocking operations of the proposed I & F neuron
circuit were confirmed in a circuit-level simulation. Furthermore, to verify the effect of the proposed circuit
on the neural network, a multi-layer SNN simulation was performed, and the accuracy of the inference
system was compared for the conventional and proposed I & F neuron circuits. The simulation and analysis
results demonstrate the robustness of the I & F neuron circuit to the drop in accuracy of inference systems
due to off-state currents in synaptic devices.

INDEX TERMS Neuromorphic system, CMOS-based integrate-and-fire (I&F) neuron circuit, spiking neural
networks (SNNs), synaptic off-state current blocking operation, TCAD simulation, SPICE simulation, SNN
high-level simulation.

I. INTRODUCTION
Recently, various attempts have been made on neuromorphic
computing systems to emulate biological brain behavior in
terms of energy consumption and parallel processing [1]–[4].
Although conventional computers based on the von Neumann
architecture sufficiently perform the functionality of arti-
ficial neural networks (ANNs), their sequential processing
exponentially increases the energy consumption required to
process parallel operations on data. Compared to the von
Neumann architecture, a neuromorphic computing system
based on a spiking neural network (SNN) is suitable for
complex data processing such as pattern recognition [5], [6],
image denoising [7], and speech recognition [8] owing to the
energy efficiency and parallel processing capability of SNNs.
To make SNNs more biologically plausible, learning algo-
rithms for SNNs that correspond to the error backpropagation
(BP) of non-spiking ANNs are under investigation [9]–[11].
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Moreover, SNNs can also be implemented using the pre-
trained weights of the ideal ANN because the output
activations of the non-spiking ANN and SNN firing rates
are equivalent [12], [13]. Thus, without its own learn-
ing rule, SNNs exhibit a good performance in inference.
Hardware-based neurons have been implemented in the form
of electrical circuits emulating the characteristics of the
integrate-and-fire (I & F) model [14]–[28]. The I & F neuron
circuit accumulates the weighted sum current of the synapses,
and creates an action potential instantaneously after the mem-
brane potential (Vmem) exceeds the threshold of the circuit.
The firing rate of the I & F neuron circuit and the common
output activation function of the non-spiking ANN, rectified
linear unit, perform the same function when there is no extra
current component of the synapse. However, synaptic devices
made of field effect transistors (FETs) or memristors have
off-state current (i.e., off-current) components even when no
input spike is applied [29]–[31], which may vary depend-
ing on the synaptic weights. Once the synaptic off-current
exists, it flows continuously into the neuron circuit, causing a
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change in Vmem. This change is not intended by the network;
therefore, the firing rate of the I & F neuron circuit can be
increased or decreased compared to the correct activation rate
of the non-spiking ANN. Consequently, the performance of
the inference system is adversely affected. The distortion of
Vmem becomes more severe as the idle time of the neuron
increases. One of the greatest advantages of SNNs over
non-spiking ANNs is energy efficiency; therefore, to mini-
mize the energy consumption of SNNs, the pulse interval of
the input data can be maximized within the range to meet the
application requirements. Therefore, energy-efficient SNNs
cannot ignore the idle time of the neuron circuit. Recent
studies on silicon neuron circuits [16], [17], [22], [24], [28]
and non-silicon materials [18]–[20] exhibit extremely low
energy consumption, but their firing rate can still be affected
by the synaptic off-current, which is an external off-current
component of the neuron circuit.

To prevent the distortion of Vmem by the synaptic off-
current, several solutions proposed in previous studies can be
employed. First, various types of leaky I & F neuron circuits
can be proposed to manage Vmem at the circuit level [24],
[26]. The leak conductance in the leaky I & F neuron circuit
successfully blocks the constant off-current generated in the
network from constantly changing Vmem during idle time.
However, reported synaptic devices often have off-currents
that are weight-dependent [29]–[31], and the leaky I & F
neuron circuit may not be sufficient to block the off-current
from the synaptic array comprising these synaptic devices.
In addition, the synaptic off-current sum flowing to the neu-
ron circuit varies with the number of synaptic devices in a
source line, which is determined by the number of presynaptic
neurons in the network. Consequently, the leaky I & F neuron
circuit has its limitations in multi-layer SNNs in terms of
blocking the synaptic off-current, even if the off-current in
each synaptic device is not weight-dependent. Second, synap-
tic devices and arrays have often been restricted so that no
synaptic off-current flows in the idle state [32], [33]. This

type of solution can eliminate synaptic off-currents flowing
from the synaptic device to the I & F neuron circuits. How-
ever, the selection range of synaptic devices and arrays is
narrow. Therefore, there is a strong need for a method that
can block the change in membrane potential due to synaptic
off-current at the circuit level. We propose a novel method
to minimize the effect of the synaptic off-current on SNN
inference systems, irrespective of the device or array type.

In this study, we propose an analog CMOS I & F neuron
circuit that actively controls the current of the synaptic
array. First, the electrical characteristics of the proposed
circuit were compared with those of a conventional circuit
using an analog circuit simulation by Silvaco SMARTSPICE
(ver. 4.32.4.R). An in-depth analysis of the energy con-
sumption of the proposed circuit was performed. Second,
a dual-gate FET-type synaptic device was simulated to esti-
mate the off-current distribution of a real synaptic array.
Device simulations were performed using a computer-aided
design (TCAD) simulation. Finally, the proposed circuit was
validated by comparing the results of high-level SNN simula-
tions for two types ofmodifiedNational Institute of Standards
and Technology (MNIST) image recognition using a system
simulation in MATLAB R2019b.

II. CIRCUIT DESIGN AND SIMULATION
A. CONVENTIONAL I & F NEURON CIRCUIT
Fig. 1 shows a conventional CMOS I & F neuron circuit
based on the circuit proposed in our previous study [21]. The
circuit consists of an integration part and a spike generation
part to perform the I & F functions. Synaptic devices sepa-
rated by excitatory and inhibitory arrays were connected in
parallel with the circuit. Spikes generated in the presynaptic
neurons are transferred as a current with a weighted value
through synapses, and the integration part receives this cur-
rent. The integration part determines the direction in which
the input synaptic current acts on the membrane capacitor and
changes Vmem as per the change in the accumulated charge

FIGURE 1. Schematic of the conventional I & F neuron circuit.
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of the membrane capacitor. When Vmem exceeds the neuron
threshold (VN

T ), that is, the threshold voltage of the cascaded
inverters at the spike generation part, a Vout voltage of VDD
is immediately formed, and this voltage is subsequently reset
to zero by the Ndischarge transistor. Additionally, the overflow
retaining concept is applied to the circuit to prevent the
discarding of residual charges that contribute to the formation
of the membrane voltage above VN

T . Only the value of Vmem
is reduced by VN

T during spike generation by selecting an
appropriately sized Ndischarge transistor.
However, conventional I & F neuron circuits are vulnerable

to off-currents continuously occurring in the synaptic array
because the integration part passes the input synaptic current
to the membrane capacitor without any control. To analyze
the effect of the synaptic off-current on the neuron circuit,
we can model the analog relationship between the current
and Vmem based on previous work [34]. The Vmem of the
conventional I & F neuron circuit at time t can be expressed
as:

Vmem (t) = Vmem
(
t−pre
)
− VN

T δ(tpre)

+C−1mem

∫ t

tpre
(iexc (t)− iinh (t)) dt (1)

where Cmem, tpre, t−pre, iexc(t), and iinh(t) are the membrane
capacitance, latest time of fire, time immediately before tpre,
excitatory synaptic current sum, and inhibitory synaptic cur-
rent sum, respectively. In the conventional I & F neuron

FIGURE 2. Effect of synaptic off-current on the membrane potential
shown in (a) timing diagram and (b) output characteristics of a
conventional CMOS I & F circuit.

circuit, the current component (iexc (t)− iinh(t)) in Eq. (1) can
be expressed as the sum of the weighted sum currents and the
synaptic off-current sum (ioffsum) as follows:

iexc (t)− iinh (t)

=

∑M

j=1
{(wjexc − w

j
inh)δj (t)+

(
1− δj (t)

)
ioffsum} (2)

where M , wjexc, and w
j
inh are the number of neurons in the

presynaptic layer (i.e., pre-layer), and the excitatory and
inhibitory weights of the synapse connected between the j-th
neuron in the pre-layer and the current neuron, respectively.
The spike voltage of the j-th neuron in the pre-layer can be
represented as an impulse δj (t)with a value of one only when
there is a spike; otherwise, it is zero. In addition, ioffsum of
Eq. (2) can also be expressed by dividing it into excitatory
and inhibitory parts, as follows:

ioffsum =
∑M

j=1
{ijoff ,exc − i

j
off ,inh} (3)

where ijoff ,exc and i
j
off ,inh represent the excitatory and inhibi-

tory synaptic off-currents connected between the j-th neuron
in the pre-layer and the current neuron, respectively.
Equations (1) to (3) show that the charge of the synaptic
off-current continuously changes Vmem in the absence of
spikes in the pre-layer neurons. The currents from the excita-
tory and inhibitory synapses contribute in opposite directions
to the formation ofVmem; thus, themembrane capacitor can be
charged or discharged in the idle state even if the magnitudes
of the synaptic off-currents in the two directions are only
slightly different.

The timing diagram in Fig. 2(a) shows the effect of the
synaptic off-current on Vmem in a conventional I & F neuron
circuit. In the ‘‘ideal’’ case where no synaptic off-current
component exists in the array, only the charge from the
weighted synaptic current is transferred from the pre-layer,
as intended. However, in the case of ‘‘off-leakage’’ where
the charge from the off-current of the synaptic device con-
stantly accumulates in the membrane capacitor, the network
can cause unintended firing of neurons. Therefore, an SNN
inference system organized without a synaptic off-current
control methodology can cause a fundamental distortion
of the transmitted information. The simulation results of
the conventional neuron circuit in Fig. 2(b) show that this
phenomenon can occur at an actual circuit level. Charges
from the pre-layer spikes will not accumulate correctly in
Cmem, except when two synaptic off-current components of
iexc(t) and iinh(t) are equal. Consequently, the amount of
information transmitted using conventional neuron circuits
can always be greater or less than intended.

B. PROPOSED I & F NEURON CIRCUIT
To minimize the effect of synaptic off-currents on the mem-
brane capacitor, we propose a CMOS I & F neuron circuit
that performs the synaptic off-current blocking operation,
as shown in Fig. 3. In the proposed neuron circuit, two pass
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FIGURE 3. Schematic of the proposed I & F neuron circuit.

transistors that enable special integration are added to the cir-
cuit. Each gate voltage of the pass transistor is controlled by
the voltages VOCC_P and VOCC_N determined by the logic of
the off-current cancelation (OCC) part. The reference current
(iref ) was generated using a cascade current mirror circuit,
and the iref amplitude was modulated by the series resistor
RS . Subsequently, iref is copied to the pull-up stage of the
OCC decision logic of each neuron circuit and compared with
the copied pull-down current of the excitatory and inhibitory
current sum of synapses. By comparing the two currents,
the OCC part determines the voltages VOCC_P and VOCC_N .
When the sum of the excitatory current exceeds iref , VOCC_P
becomes VDD from 0 V, allowing the sum of the excitatory
current to flow. Similarly, when the inhibitory current sum
exceeds iref , VOCC_N becomes 0 V from VDD, allowing the
inhibitory current to sum to flow. Thus, the proposed circuit
can determine whether to separate the membrane capacitor
from the synaptic array. By choosing an appropriate iref
between ioffsum and the minimum weighted current of the
unit synapse, the current components of the proposed circuit,
i′exc (t) and i

′
int (t), can exclude the synaptic off-current com-

ponent from iexc(t) and iinh(t), which is expressed as:

i′exc (t) =
∑M

j=1
{wjexcδj (t)}, (4)

i′int (t) =
∑M

j=1
{wjinhδj (t)}. (5)

Note that i′exc (t) and i
′
int (t) are generated by two pass tran-

sistors in the integration part, and the gate voltages of the two
pass transistors are independently determined by each OCC
decision logic. In other words, the OCC decision logic does
not compare (iexc (t) − iinh (t)) directly with iref because the
integration part cannot exclude the synaptic off-current when
only one of iexc(t) and iinh(t) is below iref . By controlling the
synaptic current flow independently in the integration part,
the proposed circuit can transfer the weighted sum current to
the membrane capacitor without being affected by the current

component on the opposite side. Finally, the Vmem of the
proposed I & F neuron circuit at time t can be expressed as:

Vmem (t) = Vmem
(
t−pre
)
− VN

T δ(tpre)

+C−1mem

∫ t

tpre
{

∑M

j=1
(wjexc − w

j
inh)δj (t)}dt (6)

As shown in Eq. (6), it is expected that the SNN inference
system without Vmem distortion can be implemented using
the proposed I & F neuron circuit. Although not yet studied,
non-CMOS devices previously used in neuron circuits, such
as MTJ-based devices [18], [19] and resistive RAMs [20],
could be used to perform the same operation as the OCC part
of the proposed circuit. However, these devices should adjust
the threshold voltage of each device to change iref . Con-
versely, the proposed CMOS neuron circuit has the flexibility
to change iref simply by adjusting the common gate bias from
the iref generation circuit owing to the CMOS comparator
characteristic driven by two different gate biases.

Fig. 4 shows the simulation results to confirm the per-
formance of the proposed I & F neuron circuits. Operating
waveforms of the proposed circuit in Fig. 4(a) shows that
iref of 80.3 nA is generated corresponding to RS , and the
OCC part clearly performs the current blocking operation that
controls VOCC_P and VOCC_N . Using the range of RS from
0.3 M� to 2.5 M�, an iref can be generated in the range
of 500 nA to 40 nA, as shown in Fig. 4(b), and any input
current less than iref is blocked by two pass transistors con-
trolled by OCC part. Fig. 4(c) shows the charge transfer ratio
according to the pulse widths of iexc(t) and iinh(t). If the pulse
width of the weighted sum current is less than the switching
time of the OCC part, the integration part cannot transmit
part of the input synaptic current; therefore, the charge trans-
ferred to the membrane capacitor can be discarded perma-
nently. For the simulation, the amplitudes of iexc(t) and iinh(t)
were 0.5 µA, and we confirmed a charge transfer ratio of
over 98.5% with a pulse width of iexc(t) and iinh(t) longer
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than 200 ns. This result indicates that the SNN inference sys-
tem using the proposed circuit can operate without data loss,
even when a sub-µs level of input pulse interval is applied
to the network. Fig. 4(d) shows the comparisons between
the OCC part and neuron circuits [16], [17], [22]–[24], [28]
in terms of the neuron spiking rate and energy consumption
per spike. Because only the OCC part performs the synaptic
off-current blocking operation via its comparison logic, it can
be independently combined with other I & F neuron circuits.
The energy consumption of silicon neurons is important as it
mimics the biological behavior of neurons. In other words,
the energy consumption of the OCC part per spike should
be relatively lower than that of the entire I & F neuron
circuit. The energy consumption of the iref generation circuit
was not considered because several OCC parts can operate
using the gate voltage of an iref generation circuit. For the
OCC part simulation, we used the following parameters: VDD

FIGURE 4. Simulation results of the proposed neuron circuit. (a) Transient
response of current blocking operation. (b) Change of iref according to
the series resistor RS . (c) Charge transfer ratio according to the width of
the input spiking current. (d) Energy consumption per spike of the OCC
part and other neuron circuits according to the spiking rate.

TABLE 1. Energy consumption comparison between the OCC part and
previous neuron circuits.

of 2 V, iref of 0.1 µA, weighted current of 0.5 µA, and
channel widths of 0.15 and 0.3 µm for NMOS and PMOS,
respectively. A channel length of 0.1 µm was used for both
NMOS and PMOS devices. As shown in Fig. 4(d), the OCC
part consumes 0.076 pJ of energy per spike for a spiking rate
of the neuron of up to 1× 107 spikes/sec. This result validates
the OCC part to have a reasonable energy consumption to
combine it with several I & F neuron circuits examined
earlier. Quantitative comparisons of the energy consumption
per spike are presented in Table. 1. In the low-spiking-rate
region, the energy consumption per spike in the OCC part

FIGURE 5. Variation in Vmem according to the input spike pulse with
different values of ioffsum. (a) Conventional I & F neuron circuit.
(b) Proposed I & F neuron circuit.
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increases because the energy consumption in the OCC part
is dominated by leakage components in the idle time; hence,
theOCCpart exhibits a better energy efficiency in the acceler-
ated spiking-rate region, where the total energy consumption
is dominated by dynamic power. Several architectures of the
SNN accelerator are under investigation to show better energy
efficiency compared to the standard ANN accelerators, which
have exhibited similar or better performance in terms of
energy efficiency [35], [36]. Therefore, SNN accelerators that
adopt the OCC part can be energy efficient with synaptic
off-current blocking operations. This result indicates that the
proposed circuit exhibiting low energy consumption can be
used for energy-constrained SNN system applications such
as mobile phones and robotics.

Fig. 5 shows the Vmem change in the conventional and
proposed neuron circuits when the input current of the neuron
is a continuous current spike with various ioffsum ampli-
tudes. Because the conventional circuit transfers synaptic
off-current charges without any control, Vmem is continuously
charged or discharged, except when ioffsum is 0, as shown
in Fig. 5(a). Meanwhile, the proposed circuit maintains Vmem
regardless of ioffsum by actively controlling the pass gates of
the integration part to cancel the input current below iref ,
as shown in Fig. 5(b). Fig. 5(a) and (b) show that, without
separate control, the synaptic off-current charge accumulated
in the membrane capacitor can degrade the accuracy of the
SNN inference system by changing the firing rate of the I &
F neuron circuits.

III. DEVICE STRUCTURE AND MEASUREMENT
If the off-current of the real synaptic device varies with the
weight stored in each synaptic device, then ioffsum is a non-
fixed value because ioffsum is directly determined by summing
all off-currents of each synaptic device, as shown in Eq. (3).
This effect of ioffsum on the I & F neuron circuit is expected to

FIGURE 6. (a) 3-D schematic view of dual-gate synaptic device.
(b) ID − VTG curves measured in the fabricated synaptic device with
different values of VT . (c) Simulated and measured ioff with normalized
weights. (d) The AND-type M × N synaptic array consisting of dual-gate
synaptic devices.

be different between the two types of I & F neuron circuits,
as the conventional circuit steadily accumulates ioffsum in
the membrane capacitor, while the proposed circuit actively
blocks ioffsum below iref , as shown in Fig. 5. The FET-type
synaptic device could be an example of this comparison
because its off-current characteristics depend on the density
of the trapped charge in the storage layer. The FET-type
synaptic devices reported in our previous studies modulated
the synaptic weight by changing the density of the trapped
charge [29], [32], [37]. Consequently, the off-current of the
FET-type device was determined with respect to the synaptic
weight. To confirm the relationship between the off-current
and the synaptic weight of a real synaptic device, we fab-
ricated and measured a dual-gate FET-type synaptic device
based on our previous work [37].

Fig. 6(a) shows a schematic of the proposed device. First,
doped n+ polysilicon was deposited as a bottom gate on a
buried oxide with a thickness of 400 nm. Subsequently, a bot-
tom gate insulator consisting of oxide/nitride/oxide (O/N/O)
gate dielectrics was formed on the bottom gate layer, and
the thicknesses of each O/N/O layer were 8, 7, and 3 nm,
respectively. For the body of the device, amorphous silicon
with a thickness of 20 nm was deposited on the bottom layer
insulator and then annealed at 600◦ for 24 h. A top gate
oxide with a thickness of 3 nm was deposited as a top-gate
insulator. To form the top gate, n+ polysilicon was deposited
and patterned with channel lengths and widths of 200 nm
and 10µm, respectively. Finally, the source and drain regions
were doped by ion implantation with 3 × 1015 cm−2 of As+

ions using the top gate as a mask layer.
In this device, electrons are injected from the top gate

into the nitride layer, based on Fouler-Nordheim tunneling.
The number of trapped electrons in the nitride layer can
be modulated by changing the time of the programming
pulse or changing the bottom gate voltage, thereby adjusting
the trapped charge, and the threshold voltage of the device
(VD

T ) performs the function of the synaptic weight of each
device. Fig. 6(b) shows the transfer characteristics of the
device, which presents the drain current (iD) versus the top
gate-read voltage (VTG) when the drain-to-source voltage
(VDS ) is 1 V. The top-gate VD

T is increased by applying a
programming pulse to the bottom gate voltage (VBG), and
the total adjustable range of VD

T is 0.25 V. As VD
T increases,

the off-current of the fabricated device (ioff ) increases owing
to the gate-induced drain leakage (GIDL) effect that varies
with VD

T . In other words, the effective field that produces
the same amount of GIDL effect in the body-drain junction
is dependent on the nitride trapped charge. Fig. 6(c) shows
the simulated and measured ioff when VTG is 0 V with nor-
malized weights. All of the physical parameters were cali-
brated in the simulation to implement ID − VTG curves with
respect to VD

T , as shown in Fig. 6(b). Bandgap narrowing and
Shockley-Read-Hall recombination models were used in the
simulation. In addition, career density, mobility, and transport
properties were evaluated using the Fermi, Lombardi, and
hydrodynamic models, respectively. In addition, the quantum
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potential model of the careers was used in the density gradient
equation. The results in Fig. 6(c) indicate that the synaptic
weight and ioff are inversely related; in other words, ioff is
proportional to VT . The simulated and measured ioff ranges
for the total weight of the proposed device were 70 pA to
110 pA. Moreover, using the results in Fig. 6(c), the synaptic
weight can be directly converted into ioff , and this ioff can
be used for circuit-level and high-level SNN simulations.
Fig. 6(d) shows the AND-type synaptic array consisting of
dual-gate FET synapses in Fig. 6(a). In this array, the source
line transfers the weighted sum current by summing all the
currents at each synaptic device. The off-current component
of each synapse is also summed and transferred through the
source line because all synapses sharing a source line com-
monly use a drain line to perform bit-access read operations.
The results in Fig. 6(c) and (d) indicate that the dependency
of ioff on the synaptic weight can cause the ioffsum to vary
with each source line in practical uses of the synaptic array in
the SNN inference system. Because the output characteristics
of the conventional and the proposed neuron circuits with

TABLE 2. Hyper-parameters used in the non-spiking ANN training.

FIGURE 7. Classification accuracy of (a) the simulated FCN and
(b) simulated CNN consisting of conventional neuron circuit. Normalized
ioffsum distribution in the synaptic array: (c) the trained FCN and
(d) trained CNN.

ioffsum variations were different in circuit-level simulations,
classification results of SNN inference systems adopting two
types of I & F neuron circuits are also expected to be different.

IV. SNN SIMULATION
A. SNN INFERENCE SYSTEM
To convert the trained weights of the non-spiking ANN in the
SNN inference system, we trained non-spiking ANNs with
two types of datasets. First, a non-spiking fully connected net-
work (FCN) structure of 28 × 28-FC800-FC400-FC10 was
trained with the MNIST dataset, where the input layer
was 28 × 28 and FCm denotes a fully connected layer
with m neurons. Second, a non-spiking convolutional neural
network (CNN) structure of 28 × 28-32C5-AP2-64C5-AP2-
FC1024-FC100-FC10 was trained with the fashion-MNIST
dataset, where the input layer was 28×28 andmCn represents
n filters of size m × m. A 2 × 2 average pooling layer
(AP2) was used after each convolutional layer. The hyper-
parameters used for the non-spiking ANN training are shown
in Table 2. Finally, the trained weights of the two non-spiking
ANNs were imported to each SNN through a weight rescal-
ing process to prevent the change in Vmem to be greater
than VN

T [38].
Figs. 7(a) and (b) show the classification results of the

FCN and CNN for 10,000 samples of the MNIST and
fashion-MNIST datasets, respectively. A model equivalent to
the conventional I & F neuron circuit was used as a neuron
in the high-level SNN simulation, but the off-current of the
synaptic device was not considered. The result of the spiking
FCN (SFCN) inference system in Fig. 7(a) showed 98.62%
classification accuracy after 200 time steps, which is very
close to the result of 98.64% obtained by the non-spiking
FCN. In addition, as shown in Fig. 7(b), the classification
accuracy of the spiking CNN (SCNN) inference system
after 200 time steps was 91.88%, which is slightly lower
than the non-spiking CNN result of 92.55%. Therefore, the

FIGURE 8. Classification accuracy of the simulated SNN for various input
pulse frequencies for (a) the conventional SFCN, (b) proposed SFCN,
(c) conventional SCNN, and (d) proposed SCNN.
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non-spiking ANNs were well reproduced with the SFCN and
SCNN inference systems having rescaled weights.

Figs. 7(c) and (d) show the normalized distribution of the
ioffsum in SFCN and SCNN, respectively. For ioffsum estima-
tion, the synaptic device shown in Fig. 6(a) and the synaptic
array in Fig. 6(d) were considered. If the synaptic weights
are randomly distributed within the ioff range, a range of
ioffsum distributions of −2 nA to +2 nA is established, and
currents in this range continue to flow into the neuron circuit,
even in the absence of input pulses in the network. For the
converted SFCN and SCNN weights from the non-spiking
weights of ANNs, ioffsum distribution ranges were found to be
−0.5 nA to +0.5 nA and −1.0 nA to +0.5 nA, respectively.
Although converted weights have a relatively small ioffsum
range compared to the randomly distributed weights, the two
SNN systems are still affected by the input pulse interval if
the systems do not perform the synaptic off-current blocking
operation. Consequently, to determine the effect of synaptic
off-currents on the network, the operation of the SNN infer-
ence system should be reconsidered by mapping ioff to each
synaptic device in the network according to the relationship
shown in Fig. 6(c).

B. SNN SIMULATION RESULT
To determine the effect of the synaptic off-current on the
SNN network, a high-level SNN inference simulation was
performed by considering the ioffsum flowing from each source
line to the I & F neuron circuit model. Figs. 8(a) and (b)
show the inference accuracy of the SFCN consisting of the
conventional neuron circuits (i.e., the conventional SFCN)
and the proposed neuron circuits (i.e., the proposed SFCN)
for the time steps with various input pulse frequencies,
respectively. The ‘‘frequency’’ used in the simulation refers
to the maximum frequency of the input pulse in datasets.
As shown in Fig. 8(a), in the case of the conventional SFCN,

FIGURE 9. Classification accuracy of the simulated SNN with respect to
the weight variation of synaptic devices: (a) the conventional SFCN (b) the
proposed SFCN (c) the conventional SCNN, and (d) the proposed SCNN.

the inference accuracy decreases as the frequency decreases.
The simulated inference accuracies after 200 time-steps were
98.57%, 98.25%, and 96.92% for frequencies of 200, 20,
and 10 kHz, respectively. This result indicates that the effect
of synaptic off-current on the membrane potential becomes
dominant as the frequency decreases. In other words, the con-
ventional SNN is strongly dependent on the input pulse
intervals of the data. In contrast, for the proposed SFCN,
the simulated inference accuracies after 200 time steps were
98.62% for frequencies of 200, 20, and 10 kHz, as shown in
Fig. 8(b). The drop in accuracy was only 0.02%, regardless
of the input pulse frequency. The simulation results for the
SCNN consisting of the conventional neuron circuits (i.e.,
the conventional SCNN) and the proposed neuron circuits
(i.e., the proposed SCNN) are shown in Figs. 8(c) and (d),
respectively. In the case of the conventional SCNN, the simu-
lated inference accuracies after 200 time steps were 91.74%,
90.21%, and 88.51% for the frequencies of 200, 20, and
10 kHz, respectively, whereas the proposed SCNN showed
91.85% regardless of the input pulse frequencies. Conse-
quently, it was confirmed that the conventional SCNN infer-
ence systemwas also affected by the synaptic off-current, and
the classification accuracy performance decreased. However,
as shown in Figs. 8(b) and (d), the modeled OCC part of
the proposed circuit impeded the charge transfer of input
currents below iref , thereby improving the robustness against
unintended charge transfer during the idle time of the SNN
inference.

Figs. 9(a), (b), (c), and (d) show the inference accuracy
of the conventional SFCN, proposed SFCN, conventional
SCNN, and proposed SCNN, respectively, after 200 time
steps with the weight variation (σw/µw) of the synaptic

FIGURE 10. Raster plots of a sample digit ‘‘9’’ by SNN-high level
simulation using (a) conventional and (b) proposed neuron circuit.

FIGURE 11. Output characteristics of the neuron #9 of a sample digit ‘‘9’’
by circuit-level simulation using (a) conventional and (b) proposed
neuron circuit.
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devices. The process variation of the FET-type synaptic
device determines the standard deviation of VD

T [39], [40],
leading to a variation in the target weight for each synap-
tic device in the SNN inference system. The programmed
weights of synaptic devices have a Gaussian distribu-
tion [39], [41]; hence, the effect of weight distribution on
the inference accuracy is further investigated by apply-
ing the same distribution to the rescaled weights from the
non-spiking ANN. As shown in Fig. 9, it is confirmed that
the performance degradation of the network due to frequency
reduction and weight variation is greater in conventional
SNNs than in the proposed SNNs. If σw/µw of the dual-gate
FET-type synaptic device is controlledwithin 6.25%, as noted
in [42], the accuracies of the conventional SFCN and SCNN
are expected to drop by approximately 2.07% and 4.98%,
respectively, when an input pulse frequency of 10 kHz is
used. However, the accuracy drops of the proposed SFCN
and SCNN are expected to be only 0.29% and 1.18%, respec-
tively. Therefore, the proposed SNNs are also robust in terms
of weight variation owing to their capability of synaptic
off-current management.

Fig. 10 shows raster plots of the sample digit ‘‘9’’ obtained
from 10 neurons in the last layer of the SFCN inference
system. An input pulse frequency of 200 kHz was used for
the simulation. In Fig. 10(a), the conventional SFCN has the
same number of spikes for neurons #7 and #9; therefore,
the classification fails. On the other hand, in Fig. 10(b),
the proposed SFCN has more spikes for neuron #9 than
for neuron #7; therefore, the inference system successfully
classifies the answer. The synaptic off-current distribution
in Fig. 7(c) for the rescaled weights of the non-spiking FCN is
concentrated at a negative value; therefore, the overall firing
rate increases in the case of the proposed SFCN, which blocks
synaptic off-currents from the synaptic array.

Fig. 11 shows the output characteristics of neuron #9 in
the last layer of the SFCN using a circuit-level simulation.
To determine the input currents of unit neurons iexc (t) and
iint (t), we extracted all the time-dependent currents from
synaptic devices connected to neuron #9 from high-level
SNN simulation and applied them to the circuit simulation.
In Fig. 11(a), the conventional I & F neuron circuit has an
identical number and timing of output spikes as compared
to that in the results obtained from Fig. 10(a). Hence, the
conventional SFCN cannot classify the correct answer in a
circuit-level simulation. This result indicates that the dis-
crepancy between the output characteristics of the modeled
circuits in the high-level SNN simulation and that in the
circuit-level simulation is sufficiently small to be neglected.
The reliability of the two simulation methods was validated
when using the proposed circuit. In Fig. 11(b), neuron #9 of
the proposed SFCN generated 29 spikes during the simula-
tion time, which is the same number as the high-level SNN
simulation results in Fig. 10(b). Therefore, it is confirmed that
the difference between the conventional and proposed neuron
circuits in the SNN inference system is reproducible, even in
a circuit-level simulation.

V. CONCLUSION
In this study, we presented an analog CMOS I & F neuron
circuit for a synaptic off-state current-blocking operation.
The off-state current of the synaptic device, that is, the
synaptic current when no pre-layer spike is applied, can
be actively blocked by the OCC part of the proposed cir-
cuit. The proposed circuit can generate iref from 40 nA to
500 nA and handle the spiking pulse width of the input
current longer than 200 ns with a charge transfer efficiency of
more than 98.5%. In addition, the OCC part of the proposed
circuit consumes down to 0.076 pJ/spike for a spiking rate
of up to 1× 107spikes/sec, thereby demonstrating the poten-
tial for a synaptic off-current blocking module applicable
to low-power neuron circuits. To confirm the range of the
off-state current in a synaptic device, a dual-gate FET-type
synaptic device was fabricated, and relevant measurements
were obtained. Subsequently, the distribution of ioffsum flow-
ing to each neuron was estimated using the measurement
results of the dual-gate FET-type synaptic device. Finally,
we performed a high-level SNN simulation that compares
the inference accuracy and the raster plot of the proposed
neuron circuit with those of the conventional neuron circuit,
and successfully demonstrated the managing operation of the
off-state current in the proposed circuit. Herein, the proposed
CMOS I & F neuron circuit utilizes an AND-type synaptic
array and shows the practical feasibility of robust SNN hard-
ware for the time interval of the input data. Hardware SNNs
consisting of proposed neuron circuits can use various synap-
tic devices and arrays without considering the performance
drop due to synaptic off-state currents. In addition, in future
studies, the current blocking operation of the proposed circuit
could be applied to network pruning to reduce the computa-
tional resources of the neural network.
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