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ABSTRACT The increasing penetration of renewable resources causes some challenges like the electric
power demand prediction uncertainty and energy surplus. Energy storage systems (ESS) are promising
solutions for these challenges. However, considering the marginal capacity of ESSs according to the
installation area and the economic portion of ESSs according to the installation capacity, the use of battery
ESSs to reduce surplus energy is not efficient and has practical limitations. To efficiently resolve the
challenges, a multi-energy system (MES) that is capable of operating different energy sources, such as
natural gas storage (NGS), thermal energy storage (TES), ice energy storage (IES), and hydrogen energy
storage (HES) has been proposed. The centerpiece of converting and managing multiple energy sources
associated with the MES is the energy hub (EH). In this paper, we reviewed and compared the performance
of existing ESSs and the MES, and the results have demonstrated the superiority of the MES. In addition,
EHs that include power-to-gas, combined heat power, and combined cooling heat power, have been examined
based on their structural characteristics. A review of the methods and the primary purpose of MES is also
highlighted in this paper.

INDEX TERMS Combined cooling heat power (CCHP), combined heat power (CHP), power to gas (P2G),
microgrid, reliability, multi-energy system (MES), energy hub (EH).

NOMENCLARUE
MES Multi Energy System.
EH Energy Hub.
CHP Combined Heat & Power.
CCHP Combined Cooling Heat & Power.
P2G Power to Gas.
ESS Energy Storage System.
BES Battery Energy Storage.
TES Thermal Energy Storage.
IES Ice Energy Storage.
NGS Natural Gas Storage.
Elz Electrolyzer.
FC Fuel cell.
GT Gas Turbine.
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approving it for publication was Tao Wang .

GB Gas Boiler.
Ach Absorption chiller.
HRS Heat Recovery System.
EC Electric Chiller.
WH Wood Heat.
TR Transformer.
SOFC Solid Oxide Fuel Cell.
MCFC Molten Carbonate Fuel Cell.
SOC State Of Charge.
NG Natural Gas.
MILP Mixed Integer Linear Programming.
MIP Mixed Integer Programming.
LP Linear Programming.
NLP Nonlinear Programming.
MPOD Multi-Period Optimal Dispatch.
MISCOCP Mixed Integer Second-Order Cone

Programming.
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BONMIN Basic Open-source Nonlinear Mixed-Integer
Programming.

FOA Fruit fly Algorithm.
CGA Compact Genetic Algorithm.
HS Human Strategy.
GA Genetic Algorithm.
EVPI Expected Value of perfect Information.
RO Robust Optimization.
VSS Value of the Stochastic Solution.
SO Stochastic Optimization.
PSO Particle Swarm Optimization.
TLBO Teaching Learning-Based Optimization.
TACMA Total Annual Cost Minimization Algorithm.
ADMM Alternating Direction Method of Multipliers.
FOR Forced Outage rated.
LOLP Loss of Load Probability.
MAIFI Momentary Average Interruption Frequency

Index.
CAIFI Customer Average Interruption Frequency

Index.
CAIDI Customer Average Interruption Duration

Index.
SAIDI System Average Interruption Duration Index.
SAIFI System Average Interruption Frequency Index.
LOGP Loss of Gas-load Probability.
LOLE Loss of Load Expectation.
LOEE Loss of Energy Expectation.
EENS Expected Energy Not Supplied.
EGNS Expected Gas Not Supplied.
ASAI Average Service Availability Index.
ECOST Expected customer interruption COST.
IPM Interior Point Method.

I. INTRODUCTION
Due to the rapid increase in energy generation from renew-
able sources, flexibly using multiple energy sources as an
efficient avenue for surplus power utilization attracts signif-
icant attention. Renewable energy sources, such as the wind
and solar energy, usually generate an intermittent power sur-
plus. These sources are characterized by a power prediction
based on the probability distribution because of their unstable
output [1]–[3]. In contrast to the steadily increasing surplus
power associated with renewable energy sources, the capacity
of battery energy storage system (BESS) systems, which
store electric energy, is limited [4]. A multi-energy system
MES can ensure the energy supply reliability and efficiency
by continuously supplying energy from different sources. The
MES is capable of providing energy through the efficient use
of wasted energy, even if there is a problem with the energy
supply. To configurate aMES, the energy conversion between
multiple sources is a primary consideration. Such energy
conversion is adequately explained using the energy hub (EH)
concept. The EH is an energy conversion and management
system where the input energy variables (x1, x2, . . . , xn) are
represented as the output energy variables (y1, y2, . . . , yn) for
different energy types [5].Many projects and previous studies

have built EH in MES through sector coupling based on
renewable energy sources. In this study, the concept of EH is
evaluated using three well-known technologies, followed by
an integrated MES construction.

The first technology is the power to gas (P2G) technology,
in which surplus power is generated by converting renewable
energy to gas energy through hydrogenation andmethanation,
which can then be supplied, stored, or consumed [6]–[8]. The
main components of the P2G system are the electrolyzer (Elz)
for generating hydrogen through the electrolysis of water
and the hydrogen energy storage system (HESS) for storing
the generated hydrogen [9]. Reversely, in the gas to power
(G2P) technology, electric energy is generated using hydro-
gen energy as the input through the operation of fuel cells
(FCs). However, in the present study, both the P2G and
G2P are considered as P2G technology. In [10], the state
of charge (SOC) of the HESS was analyzed, and a method
for efficiently operating the system was proposed. In [11],
the FC using hydrogen energy was researched, motions were
predicted, and cells were designed as molten carbonate fuel
cell (MCFC) and solid oxide fuel cell (SOFC) in consider-
ation of cell temperature, anode off-gas recirculation, reac-
tant temperatures and fuel and oxidant utilization factors.
The optimal capacity of the P2G components was calculated
in [12] according to the renewable energy penetration asso-
ciated with the exchange of gas and electric energy from
the P2G components and a gas-fired generator. Meanwhile,
in [13], the optimal capacity was calculated through the
economic optimization of natural gas storage (NGS) system,
in which natural gas (NG) generated through the P2G is
stored based on the renewable energy shares. An economic
analysis of the P2G technology based in Germany was per-
formed in [14]. In [15], energy was converted and supplied
from a natural gas grid to the power system by introducing
an NGS incorporating the forced outage rate (FOR) into the
natural gas grid, and the reliability of the gas and power sys-
tems was verified. Further, an economical operation method
for the P2G technologywas derived in [16] by curtailing loads
of photovoltaic (PV) and wind generators.

The second technology considered is the combined heat
and power (CHP) technology. The basic structure of a CHP
system consists of the integration of heat and electricity
systems. An EH structure for MES was modeled in [17]
using the CHP system. The representative components of the
CHP structure include a gas turbine (GT) and a heat recovery
system (HRS) [18]–[20]. In this system, NG is employed as
the input energy, and electricity is generated through the GT,
while the heat produced as waste is supplied as heat energy
through the HRS [21]–[29]. An optimal combination of the
electric heat pump (EHP) and CHP systems has been inves-
tigated by [30], [31]. In [32], the economics of using a micro
CHP systemwith an electric boiler (EB) at home was studied,
while in [33], a method for improving the efficiency of the
CHP system using the Kalina cycle process was proposed.

The third technology investigated is the combined cool-
ing heat power (CCHP) technology. The CCHP system is
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designed to supply additional energy to the cooling load
in a conventional CHP system [34]–[39]. Many studies on
MES dealing with a cooling load are based on an absorption
chiller (Ach) as a component of the EH to supply energy
to the cooling load [40], [41]. In [42], the CCHP structure,
including the Ach, is described, and an optimal hourly oper-
ation process for each component is proposed. An economic
analysis comparing the CHP and CCHP techniques (payback
period, discounted payback period, net present value, and
benefit/cost methods) was presented in [43]. Further, in [44],
a CCHP operation method based on biomass combustion was
reported.

Among the three EH technologies described, the multi-
energy outputs are represented by the input of electricity and
NG. However, considering a broader analysis, an EH involv-
ing heat as the input can be configured by adding direct heat
using wood or through a solar collector [45], [46]. Although
three EH technologies were described, not all MESs or EHs
ofMESs contain these components, and none of the structures
always operates independently. Alternatively, the design and
components of the EH would vary according to its opera-
tion [47]. A representative MES was manufactured in [34]
by separating the CHP and Ach.

Meanwhile, in [48], [49], hydrogen energy and HESS
were interconnected with the CHP system. A combined MES
and P2G system were presented in [50], and a method for
using hydrogen as the energy for the MES was introduced.
Representative examples of building an MES through an EH
that includes all energy carriers associated with the structures
described are provided in [51], [52].

Fig. 1 Shows the number of times CHP, CCHP and P2G
technologies were used in previous studies. Themedia associ-
atedwith the energy usedwhen passing through each layer are
illustrated separately. The three structures in Fig. 2 are repre-
sented by distinct colors, with the second- and third-layers
showing the energy conversion representing the EH.

FIGURE 1. Diagram showing the number of different structures employed
in energy hub models in previous studies [Table 4].

After presenting the MES configuration, its objective
function is defined to solve the problem based on different
perspectives. Many studies [100]–[125] have explored the
economic improvements associated with the MES compared
to conventional single systems [53], [54], [67]. Some other
studies [131]–[140] proposed methods for enhancing the reli-
ability of a system through the MES, and the simulation
resulted in improved economic and reliability data compared

to existing system. In the present study, the structure and
objectives of the MES are examined. This investigation is
divided into the following three parts:

In Section 2, the operational principles of existing single
systems of different energy types are briefly described and
previous studies are highlighted.

In Section 3, the EH concept is introduced and used to
examine the conversion process for each single system energy
type. The components of each energy system and previous
studies are also reviewed.

Section 4 provides a description of the design process
associated with the MES presented in Sections 2 and 3, with
the objectives defined and benefits highlighted, and relating
them to previous studies.

II. TRADITIONAL ENERGY SYSTEM
In this section the principles of different energy systems are
reviewed. Flow analysis is performed for different compo-
nents, including power, gas, and water. The flow and energy
transfer equations for the energy storage systems (ESS),
BESS, TES, IES, NGS, and HES are presented in Table 1.
Fig. 2 shows the topology of an integrated MES, including
the three EH technologies as input energy, energy conversion,
and output energy layers.

TABLE 1. Energy carriers and the associated flow equations based on
previous studies.

A. POWER SYSTEM
Considering that this study examines electricity as the basis
of the MES, knowledge of the structure and analysis of the
power system is essential. Traditionally, many studies [21]
use power flow that could be solved through Newton’s
method to analyze the system.

B. NATURAL GAS SYSTEM
The EH of the MES utilizes NG as one energy
input. Although the NG handling and production meth-
ods differ by country and region, in most studies, the
Weymouth equation is commonly used to analyze gas flow
through pipes [53], [54]. Many other techniques in addi-
tion to the Weymouth equation exist for analyzing gas
networks [55]–[58]. For example, in [59], gas flow in
the Belgium gas system was analyzed based on the
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FIGURE 2. Conceptual model of a multi energy system [Table 5].

Newton–Raphson formulation. This paper considered the
pressure drop in the gas system just as the voltage drop in
the power system. In [60] the gas flow was calculated and
analyzed using node and loop equations, with the analysis
based on the method used in the power system analysis. This
method considers the diameter and length of the pipeline,
the absolute roughness, gas velocity, dynamic water viscosity,
friction factor, and pressure drop.

C. THERMAL SYSTEM
According to previous studies on MES, heat serves as energy
input and output [61], [62]. Although heat energy cannot
be transmitted through cables (as in power systems) or
flow through pipes, such as NG, the associated temperature
can be transmitted through a medium, such as water and
gas [64]–[67] In [64], [66], [67] flow analysis was conducted
using water as the medium. The Bernoulli equation is used to
analyze thermal system with water the medium.

D. ENERGY STORAGE SYSTEM
Single energy systems usually contain an ESS, whereas in
the MES, the system stores power energy using a BESS,
NG energy using an NGS, a TES for storing thermal energy,
an IES for storing cooling energy, and an HES for storing
hydrogen energy. Details on the BESS, NGS, TES, IES, and
HES systems are available in [68]–[72].

E. ENERGY STORAGE SYSTEM
Single energy systems usually contain an ESS, whereas in
the MES, the system stores power energy using a BESS,
NG energy using an NGS, a TES for storing thermal energy,
an IES for storing cooling energy, and an HES for storing

FIGURE 3. Different components for energy hub models were reported in
previous studies [Table 6].

FIGURE 4. Energy storage systems and their usage frequency based on
previous studies [Table 7].

hydrogen energy. Details on the BESS, NGS, TES, IES, and
HES systems are available in [68]–[72].

III. MULTIPLE ENERGY CONVERSION SYSTEMS
In this section, the components of each energy conversion
system are examined by introducing the EH concept. The
MES coupling matrix expressed as the input energy variable
(x1, x2, . . . , xn) and output energy variables (y1, y2, . . . , yn)
following Eq. (1). The energy conversion in an EH through
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FIGURE 5. Illustration of the components of an energy hub and their links to the system [Table 5].

a coupling matrix similar to Eq. (1) is described in [73–75].
An example of a multi-EH system based on a coupling matrix
is shown Fig.5, while the EH of the MES illustrated in Fig.6.

The energy conversion of the MES involving the EH is
configured as a multi-energy to multi-energy system. This
involves multiple inputs, such as electricity, NG, and ther-
mal (water) in the EH and multiple outputs including elec-
tricity, heat, and cool air. The multi-energy to electricity
(MEtE), multi-energy to heat (MEtH), multi-energy to cool-
ing (MEtC), and multi-energy to hydrogen (MEtH2) systems
were configured as displayed in Fig. 6. The frequency of each
input and output energy in the studies reviewed are exhibited
in Fig. 7, Fig. 8, Fig. 9 and Fig. 10 respectively, while the EH
representation for each output energy is displayed in Fig. 6.

A. MULTI-ENERGY TO ELECTRICITY
In Figs 4 and 6, the CHP and P2G structures represent the
MEtE system, with the CHP outputting electricity using gas
as the input of a GT. In case of an emergency of the power
system or in order to implement optimal electricity supply
according to the time of use (TOU) fee, multi energy shall be
converted into electricity and used. Linear modeling of the
GT using NARMAX is available in [76]. Conversely, in the
P2G structure, electrical power is generated with hydrogen
as the input using an FC. The basic operating principle and
output expression of the FC are provided in [77].

B. MULTI-ENERGY TO HEAT
As shown in Figs. 4 and 6, the CHP structure involves the
MEtH system. The components of this structure supply ther-
mal energy through the HRS from the heat loss generated
when the GT in the CHP structure is operated [78]. Because
the supply of heat energy through CHP uses waste heat, it is

FIGURE 6. Illustration of a multi-energy hub and coupling matrix.

much more efficient than the supply through other energy.
Regarding the components, the gas boiler (GB) outputs heat
from the gas input, while the EHP and EB output heat from
the electricity input, and the water heater (WH) outputs heat
from the water input [79]–[82].

C. MULTI-ENERGY TO COOLING
The CCHP structure in Figs. 4 and 6 represent the MEtC sys-
tem, and this involves interoperation of the GT andHRS com-
ponents. The hot water generated in the HRS using the waste
heat of the GT is supplied to the Ach, and cooling energy
is provided by boiling and evaporating water at approxi-
mately 5◦C. In addition, an electric chiller (EC) is used
for cooling the output from the electricity input [83], [84].
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FIGURE 7. Illustration of the multi-energy to electricity system in energy hub [Table 5].

FIGURE 8. Illustration of the multi-energy to heat system in energy hub [Table 5].

Generally, cooling energy is supplied through electricity, but
using CCHP to operate the Arch is more efficient than other
energy sources because it utilizes waste heat just like CHP’s
heat supply.

D. MULTI-ENERGY TO HYDROGEN
In Figs. 4 and 6, the P2G technology is employed as an
MEtH2 system. This technology is closely associatedwith the
utilization of hydrogen, and the hydrogen system is described
in detail in [87]. In the present study, the P2G structure
involves a closed circuit, as shown in Fig. 10. This means
that the P2G system is not restricted to supplying hydrogen
to the load, but is flexible in the system operation compared
to existing systems. A system operation involving the P2G
system proposed by [85] is described subsequently. First,

if the energy of the power system is balanced, the P2G system
does not operate. Second, if surplus power is generated by a
renewable energy source, the hydrogen energy is stored in the
HES through the Elz [88], [89] Third, if the energy supply
is insufficient, the hydrogen energy is converted to electrical
energy and supplied to the electrical system through the FC.
The hydrogen production process using the P2G system and
details of the methanation are described in [86], while details
of the hydrogen system are available in [87].

E. MULTI-ENERGY ANALYSIS
Although the supply of heat and cooling energy through
CHP and CCHP is determined according to each energy
demand, hydrogen energy using P2G technology is often used
to increase energy utilization depending on the degree of
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FIGURE 9. Illustration of the multi-energy to cooling system in energy hub [Table 5].

FIGURE 10. Illustration of the multi-energy to hydrogen system in energy hub [Table 5].

renewable energy use without being affected by hydrogen
load. Therefore, the energy produced depends on the final
operational purpose and the reference papers investigated in
this study show that the most frequent multi-energy to heat
systems are constructed based on CHP, which can be used to
supply heat energy.

IV. MULTI-ENERGY SYSTEMS OBJECTIVES
The objective of constructing a MES is to provide and energy
system with an environmentally-friendly power generation.
This involves increasing the efficiency of the surplus power
generated by a renewable energy source while reducing the
underlying power generation. Although MES are developed
to improve the efficiency of an energy system, economic
inefficiency would invalidate its utility. Therefore, many

studies have attempted to configure the MES topology and
demonstrate the associated optimized economics in terms
of capacity and operation of its components to enhance its
reliability compared to existing systems.

A. ENERGY ECONOMY EFFICIENCY OF THE
MULTI-ENERGY SYSTEM
One significant advantage of using multiple energy sources is
that it is economical. In many countries, the electricity rates
change with time. Therefore, the rate during a high-demand
period differs from that in a low-demand period [90]. Also,
changes in gas rates in the gas market differ from rates in the
electricity market. In [91], the economics of the MES was
analyzed after incorporating the gas market into the exist-
ing electricity market as the base and vice-versa. According
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TABLE 2. Summary of data for different optimization technique reported in existing studies.
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TABLE 3. Summary of reliability indexes used in existing studies.

to [92], economic efficiency can be improved by utilizing
a different energy source through energy conversion instead
of purchasing electricity from the power market during peak
times. Therefore, many studies on the MES maximize the
economic benefits through optimal operation, with the cost
function as the objective function. The two elements in the
cost function utilizing independent facilities include the oper-
ation and investment costs. However, in [93], [94], the capital
recovery rate is included in the cost function to accommodate
the facilities’ interest rate and life span. In some studies,
the ToU rate is also added to the pricing information [95].
In [96], the ToU system was compared with a real-time
price (RTP) system. The cost function advanced by [97], [98]
produce better results by considering the economic benefits
associated with pollutants emission reduction compared to
the cost function relying on the investment and operation
costs. To analyze the economics of a system with additional
independent components in the energy supply through the
main grid, mathematical optimization involving analyzing the
power generation cost according to the life, capacity, and
power generation time of the individual components is neces-
sary. Different optimization techniques have been employed
to identify the optimal point associated with the maximum
or minimum values of an objective function with multiple
variables [99]. In [100], a method for optimal configura-
tion of an EH and an algorithm for converting a complex
EH model to a multi-EH model was proposed. A summary

FIGURE 11. Plot showing input energy types reported in previous studies
[Table 5].

FIGURE 12. Representation of energy output types reported in previous
studies [Table 5].

of the optimization techniques, EH structures, ESSs, and
objective function reported previous studies are p resented
in Table 2.
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B. MULTI-ENERGY SYSTEM RELIABILITY
The power system can experience internal overload and facil-
ity problems as well as failures due to lightning and other
external causes. The power system failure is defined based
on the failure probability, while its standard reliability is
analyzed based on the damage caused by failures. Reliability
engineering can also be employed in gas systems. In [126],
the failure rate was analyzed according to the demand and
supply of the gas system using Monte Carlo simulation.
In [127], the reliability of the heat supply source in a thermal
system, including an HES, was analyzed. Reliability indexes
used for evaluating the impact of power failures and inter-
ruptions in a power system include the system or customer
average interruption frequency index (SAIFI, CAIFI), sys-
tem or customer average interruption duration index (SAIDI,
CAIDI), energy not supplied (ENS), and expected customer
outage cost (ECOST) [128], [129]. In [130], an approach for
conducting a reliability evaluation for an MES was intro-
duced. The reliability indexes used in previous studies are
presented in Table 3. These reliability indexes are objec-
tive and are associated with natural gas grids. The LOGP
and EGNS reported in [15] and the LOGLP and EGNS
reported in [101] represent the annual probability of gas
supply interruption and the yearly amount of unsupplied gas
linked to supply interruptions. Based on the power system
and gas system reliability indices shown in Table 2, the inte-
grated reliability of MES by external and internal factors can
be analyzed, and stability analysis through future research
by MES can be performed based on the derived reliability
determination.

V. CONCLUSION
In this study, we have examined several single energy sys-
tems that are commonly used for constructing an MES. The
MES topology was configured based on the EH concept
and energy conversion. The economics and reliability asso-
ciated with the MES were analyzed by mathematical mod-
eling based on a coupling matrix. The high efficiency of the
MES operation has been validated in many studies. Because
the power generation of renewable energy is predicted by a
probability distribution, a power system with reserve power
requirement inevitably generates surplus power. To solve
the problem, flexibly managing different types of energy
sources (electricity, NG, and heat) is the best option. As a
result, each country or region can establish a more effi-
cient energy operation strategy that ultimately promote
environmentally-friendly power systems and reduce pollutant
emissions. Such approach will contribute to the energy sus-
tainability in a green world. In future research, we will exam-
ine the MES based on the perspectives of the P2G and G2P
systems, specifically the former, which is currently of inter-
est worldwide. An optimal energy operating system incor-
porating reliability and economics for each system will be
considered.

APPENDIX

TABLE 4. Fig [1] references.

TABLE 5. Fig [2], [5], [7]–[12] references.

TABLE 6. Fig [3] references.
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TABLE 7. Fig [4] references.
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