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ABSTRACT With intensified market competition, product development procedure is accelerated, requiring
rapid product innovation and efficient collaboration between design and manufacturing. However, there
still exist information islands, prohibiting integration of product life cycle processes. To address this issue,
bionics and digital twin (DT) are combined as a potential solution. The concepts, framework, and features of
digital twin bionics (DTB) is originally proposed, with co-evolution mechanism of product-twins (including
virtual and physical products) and production-twins (including virtual and physical production) elaborated.
A symbiotic co-evolution mechanism is presented to integrate the processes of product development and
manufacturing. In detail, the supporting technologies, such as industrial internet of things, cloud edge
computing, big data, and artificial intelligence, as well as the potential key technologies, are illustrated.
A case study for rapid development of automotive body-in-white in an industrial robotics welding production
line is investigated to verify the applicability of the proposed framework. The results suggest that the
integration of bionics and DTs can accelerate the innovations and developments of new products and also
help to achieve efficient management of production construction.

INDEX TERMS Digital twin, bionics, product development, co-evolution, product life cycle.

I. INTRODUCTION
With increasing market competition, there is an urgent need
for the manufacturing companies to turn to smart manufactur-
ing production paradigm for rapid product development [1].
State-of-the-art of information and communication technolo-
gies (ICTs), e.g., internet of things (IoT), cloud computing,
big data analysis, artificial intelligence (AI) [2], [3], are
applied in manufacturing industry so that innovative products
with stable qualities can be developed rapidly and efficiently
through the digital transformation [4]. However, the core
problem of rapid product development is rapid innovation
design of product [5] and the efficient collaboration manufac-
turing with design [6]. To address this problem, the concept
of bionics has been introduced in product design to solve
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these problems [7]. Bionics is a frontier in manufacturing
industry; it is an interdisciplinary science that combines bio-
logical features and evolutionary principles with design and
manufacturing engineering technologies [8]. Although pro-
gresses have been achieved in bionics-based product design,
e.g., theoretical modeling [9], [10], product design [11], [12],
product evolution [13]–[15], and product optimizing algo-
rithms [10], [15], yet information islands persist. This leads
to an emerging problem: the bionic design cannot be quickly
applied and verified in manufacturing [16] due to the absence
of integration of design and manufacturing. Consequently,
multiple design revisions are needed, thereby compromising
the overall efficiency of innovative product development [17].

Digital twin (DT) is considered as a key pillar of cyber-
physical integration [3] and an enabler of smart manufac-
turing paradigm [18]. DT is an equivalent digital virtual
model of a physical entity established in cyber world [19],

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121507

https://orcid.org/0000-0003-2109-5718
https://orcid.org/0000-0003-3062-1935
https://orcid.org/0000-0001-5944-0121


L. Li et al.: DTB: Biological Evolution-Based DT Approach for Rapid Product Development

bridging the cyber world and physical world. It has been
applied in product design [20], [21], manufacturing [18] and
services [22]–[24] for aerospace, automotive, machine tools,
medical, and machinery manufacturing [25], [26]. It breaks
the barriers between product design and manufacturing [18]
through simulation and interaction. It has also been applied
to optimize production in a digital twin shop-floor [27]. The
core problem is that product has not been deeply integrated
and co-evolved with production system in the product life
cycle, thus leading to lots of reworks. Therefore, there is an
urgent need to combine the bionics and DT to promote rapid
product development.

In this paper, the concept and framework of digital twin
bionics (DTB) is introduced firstly by combining bionics and
DT to solve the problems of innovative product rapid develop-
ment. And then the co-evolution mechanism of product-twins
(including virtual and physical products) and production-
twins (including virtual and physical productions) is pro-
posed separately with the conceptual framework of DTB
and to their symbiotic co-evolution mechanism. Furthermore,
the application of supporting technologies of DTB in the
innovation and evolution of product twins are explained.

The main contributions of this paper are as follows. (1) The
concept of DTB is introduced for products bionics design to
address information islands in product life cycle processes.
(2) The symbiotic co-evolution mechanism of product-twins
and production-twins mentioned above will push the progress
of product integrating and co-evolving with production sys-
tem in the product life cycle, and help to speed up the
construction of a more suitable production system for rapid
product development. (3) The key technologies for the evolu-
tion of digital-twins, such as multidisciplinary collaborative
simulation and virtual commissioning, are illustrated for the
integration between design and manufacturing.

The rest of this paper is organized as follows. Section II
reviews related works. Section III introduces the concept,
features, and framework of DTB. Section IV illustrates the
related co-evolution mechanisms of DTB. Section V presents
the supporting technologies for DTB. Section VI relates to a
case study, and Section VII makes a conclusion.

II. RELATED WORKS
A. BIONICS IN PRODUCT DEVELOPMENT
The extant literature on bionics in product development
mainly focuses on product design, optimizing algorithms, and
bionics manufacturing system, as shown in Table 1.

Still, the gap between product design and manufacturing
inevitably results in information islands, which prevents the
bionic models to accurately depict the characteristics of prod-
uct. This would lead to product defects. In addition, the results
of bionic design cannot be directly applied to manufacturing
process and cannot be verified. This would increase reworks
and reduce product design efficiency.

B. DIGITAL TWIN IN PRODUCT DEVELOPMENT
There has been a hot discussion on DT in the context of
industry 4.0 [19], [26]. Since 2017, a lot of research has

TABLE 1. Categories of bionics in product development.

been made on many areas of DT, such as product design
and development [20], [21], [41], production planning
design [42]–[44], services [24], [45], application [46], and
standards [47]. Tao et al. [25] proposed a 5D model of DT,
consisting of physical models, cyber models, data, service,
and connections of them. Li et al. [16] presented a collabora-
tive symbiosis framework model for product DT, production
DT, and their performance DT, and introduced technolo-
gies of DT modeling and virtual commissioning for prod-
uct development to solve the problem of multidisciplinary
integrated modeling design of complex mechanical products.
However, the problem of integration and co-evolution mech-
anism between product and production system still has not
been solved yet, which will further result in less coordinated
development of design and manufacturing, thus leading to
inefficient manufacturing.
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In sum, it seems that DT technology could solve the
problems of information islands in bionics design, and
the biological evolutionary principle may explain the
co-evolution mechanism between product and production.

C. FUSION OF DIGITIAL TWIN AND BIONICS
Bionics has inspired engineers to design innovative products
with good structure and material performance, but the gap
between bionic design and manufacturing leads to informa-
tion islands, preventing bionic design to be applied, verified,
and optimized in time.

DT enables the integration of bionics design and manu-
facturing, and remove the information island. But DT, as a
tool technology, cannot solve the problems of the integration
and co-evolution mechanism between product and produc-
tion system. Thus, the design results of product cannot be
quickly imported to production because of lacking a suitable
production on the condition of product changing at any time.
However, the papers on growth design and evolutionary
design will inspire us to explore the co-evolution mecha-
nism between product and production system from a bionics
perspective.

In sum, bionics and DT are complementary, as their
integration will break the information integration barriers
between product design and manufacturing, and it further
promotes the symbiotic co-evolution between product-twins
and production-twins. They work together to achieve the
promotion of rapid product development and realization of
smart manufacturing.

III. CONCEPT, FRAMEWORK, FEATURES OF DIGITAL
TWIN BIONICS
A. CONCEPT OF DIGITAL TWIN BIONICS
Based on what is illustrated in previous part, the co-evolution
conceptual framework of DTB is proposed by combining
bionics and DT, as is shown in Figure 1.

(1) In the top of Figure 1, two circles represent the virtual
and physical products respectively. The first-generation vir-
tual product co-evolves with the physical product during the
product life cycle. The evolution of virtual product undergoes
six stages: (a) conceptual design, (b) detail design, (c) multi-
disciplinary simulation, (d) problem discovery and analysis,
(e) improvement, and (f) verification. As is shown in the
right of Figure 1 at the top, the virtual product is instantiated
to be a physical product, which evolves according to the
simulation results. The physical product also undergoes six
stages: (a) operation, (b) problem discovery and analysis,
(c) improvement, (d) test and verification, (e) problem dis-
covery and analysis, and (f) improvement. During the evolu-
tionary process of first-generation product, the virtual product
and the physical product keep continuous interaction and
real-time synchronization to finish the co-evolution process,
when they are internal self-circulation and self-evolution
separately.

(2) In the middle of Figure 1, the rectangle represents the
big circulation of the co-evolution between product-twins
and production-twins. Firstly, when the first-generation

FIGURE 1. Co-evolution conceptual framework of DTB.

product matures, it will evolve to the next generation prod-
uct. The virtual model of second-generation product will
experience the process of incubation through inheriting the
desirable characteristics of first-generation product, as well as
the process of crossover andmutation. In the whole process of
incubation, the product-twins will always keep co-evolving,
and experience the process of internal self-circulation and
self-evolution. Secondly, this process will promote the inter-
nal self-circulation and self-evolution of production-twins
at the same time. Furthermore, the product-twins interact
with the production-twins through two channels in virtual
and real spaces separately. On the left side, the virtual prod-
uct sends product technology parameters and processing
specification to virtual production when the virtual produc-
tion sends the simulation results to the virtual product for
product improvement. On the right side, physical produc-
tion delivers products and gets quality feedback from the
product quality system to improve the production continu-
ously. Thirdly, the production-twins undergo an evolutionary
process like product-twins, and production-twins continue
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TABLE 2. Features of DTB.

keeping co-evolving with product-twins in real time. There-
fore, they experience the process of symbiotic co-evolution
as well as the process of self-circulation and self-evolution
separately. They work together to realize virtual-real syn-
chronization, mutual adaptation, iterative optimization, and
dynamic balance during the co-evolution process. This will
be introduced in SECTION IV.

(3) In the bottom of Figure 1, the second-generation prod-
uct is incubated through mutation and innovation, and the
new second-generation product-twins would experience the
same evolutionary process as the first-generation product,
and it also experiences the process of co-evolution with
production-twins.

B. FEATURES OF DIGITAL TWIN BIONICS
The combination of DT and bionics endues DT with some
features of intelligent living beings, which urges engi-
neers and users to develop, use and manage DT from the
perspective of bionics. DTB is different from the current DT

in that it not only has basic features of DT, but also has some
features of biological living beings which current DTs do
not possess, for example, the intelligence, self-evolution of
individual, and collaboration of group. Therefore, there are
six features of DTB, namely self-evolutionary, collaborative,
shared, self-innovating, and ecological, as shown in Table 2.

IV. THEORIES OF DIGITAL TWIN BIONICS FOR PRODUCT
RAPID DEVELOPMENT
A. DTB-DRIVEN PRODUCT-TWINS CO-EVOLUTION FOR
PRODUCT RAPID DEVELOPMENT
1) DTB-DRIVEN PRODUCT RAPID BIONIC DESIGN
Both Bionic design and bionic manufacturing are important
topics in bionics for product development. First, to obtain
desirable product structure and properties [11], DT technolo-
gies are applied to extract bionic structure and functions
from biological structural features in nature to a machinable
product part model, and they include bionics evolutionary
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design, finite element simulation analysis and evolutionary
algorithm [12].

Second, for the rapid design in the product evolutionary
process, a bionic design is proposed to accelerate the inno-
vation cycle of machine tool development in literature [31].
However, the process is impossible to be controlled and
verified. Therefore, DT is integrated with bionic design to
optimize the bionics structure and verify the reliability of
design through virtual simulation. Furthermore, the manu-
facturing process can also be simulated, predicted and opti-
mized through virtual simulation. While the manufacturing
starts, the process will be dynamically monitored and even
controlled by virtual manufacturing model through real-time
interaction between the virtual and real-time manufacturing.
Besides, the design data, virtual manufacturing data and even
real manufacturing data will be fused to optimize the design
and manufacturing process, and this process will be iterated.
In the whole process of design and virtual manufacturing, all
the data are in the same database and the version is exclusive
and consistent. On basis of this, the data are valued to further
data analyzing, and the results of analysis will guide the
improvement of design and optimize manufacturing process
to reduce time and cost. In other words, the integration of
DTs and bionic design will push the process of product-twins
evolution and accelerate the development of new products.

2) DTB-DRIVEN PRODUCT RAPID BIONIC MANUFACTURING
DTB-driven product bionic manufacturing aims to inte-
grate the principles of bionics and DT technology in the
product manufacturing to improve processes and quality
and reduce manufacturing time and overall cost. In this
paper additive manufacturing will be introduced as a spe-
cial application of bionic manufacturing. Emerging in recent
years, bionic additive manufacturing, as an advanced bionic
manufacturing technology, aims to process special bionic
components through product bionic structural design and
additive manufacturing [48]. In literature [7], several versatile
metal-based parts and molds are designed and manufactured
with the combination of biological principles with digital
technology, biomaterials and additive manufacturing as a
new process. However, there are still many difficulties in
the industrialization of additive manufacturing, for example,
unstable product quality (dimensional accuracy and mechan-
ical properties), long processing time, and high cost.

DT enables the realization of the integration of design
and manufacturing through the fusion of cyber and physical
system. First, the problems of temperature field controlling in
additive manufacturing can be solved through multi-physics
simulation and in-time virtual-real information interaction.
Second, the processing speed can be effectively controlled
through simulating the scanning path. Third, virtual com-
missioning and virtual machining can be used to predict,
optimize and verify the actual machining process to reduce
errors and commissioning time as well as the pilot production
time. Additionally, the machining parameters can be adjusted
and optimized dynamically to achieve high-quality and rapid

processing of products through in-time information interac-
tion between the virtual machining and actual machining.
Hence, the coupled application of bionics manufacturing and
DT will improve the manufacturing process quality, acceler-
ate product development and reduce the manufacturing time
and cost.

3) DTB-DRIVEN PRODUCT-TWINS CO-EVOLUTION FOR
PRODUCT RAPID DEVELOPMENT
The co-evolution of product-twins is realized in the product
life cycle. The evolutionary process of product, including
inheritance and mutation and undergoing self-evolution and
co-evolution, is controlled by product gene carried in the
DT models and data.

There are three types of inheritance. (a) Product genes are
inherited during the instantiation process from virtual prod-
ucts to physical prototypes. (b) Gene is replicated during the
population instantiation process from product prototypes to
mass production. (c) The new child products inherit the genes
from the old parent ones. To meet the customized require-
ments, mutations of product genesmust be controlled to occur
in a certain direction while the simultaneous co-evolution of
both virtual and physical products is maintained until entering
the next-generation iteration cycle.

Therefore, inheritance and mutation must be controlled.
The product bionic evolutionary process is recorded in
DT data. Based on the data analysis results through big data
and AI algorithms, the product evolutionary laws that are
recessive genes of product DT can be represented by the
evolutionary algorithms and can be controlled to accelerate
product evolution and innovation.

B. DTB-DRIVEN PRODUCTION-TWINS CO-EVOLUTION
FOR RAPID PRODUCT DEVELOPMENT
Production-twins have a similar co-evolution mechanism
with product-twins. The co-evolution of production-twins
is realized during their life cycle through real-time interac-
tion and dynamic adjustments, ensuring the consistency of
their data and behavior states. The co-evolution is influenced
by evolutionary laws, emerging technologies, and social
environment.

For continuous adapting to the requirements of product
development, both of virtual and physical production expe-
rience incubation (e.g., production planning and design),
growth (e.g., engineering construction, renovation, and inno-
vation), and service (e.g., operation and Maintenance, Repair
and Overhaul, MRO) in the production life cycle.

In the incubation phase, a production DT model (including
all elements, all businesses, and all processes) is established
and various key performance indicators (e.g., capacity, effi-
ciency, energy consumption, quality, etc.) of the production
system are optimized through simulation. Finally, a relatively
perfect production DT model is transferred to the EPC com-
pany (Engineering Procurement Construction) and end user
in a digital way to guide the production engineering construc-
tion and manufacturing operation services.
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In the growth phase, the production DT model is strictly
followed to construct factory and organize production. The
production planning is dynamically revised and improved in
accordance with the feedback of actual construction. Then
both virtual and physical production will be combined and
digitally delivered to the end user by EPC. Simulation and
offline virtual commissioning will be carried out in virtual
world with the virtual models of the production lines and
equipment before real construction. By this way, more than
85% of the PLC (programmable logic controller) program-
ming and on-site commissioning work are completed before
the equipment and production line are installed in the factory,
which will greatly accelerate the construction cycle. Besides,
all the data of the construction process and even the company
and engineer’s name can be recorded in the model of pro-
duction DT. These data and optimized production DT model
will be digitally handed over to end user, who is no longer
presented with a collection of computerized CAD drawings,
equipment lists and PLC programs, but with a digital pro-
duction system model that consists of various interrelated
objects, elements, business and processes.

In the operation phase, production simulation is performed
on basis of the virtual production model delivered by EPC
to optimize resource allocation, takt time and logistics paths
through production planning and scheduling. The simulation
data and historical production data (e.g., production data,
equipment operation data, and energy consumption data) are
integrated for data analysis. The results of data analysis will
be used to guide and promote the manufacturing execution
of physical production. The virtual production is adjusted
in real-time in accordance with the physical production
conditions to continuously optimize production efficiency,
equipment utilization and energy utilization.

In the service phase, the service process may be simu-
lated and then optimized in advance in the virtual system
before addressing emergencies such as demand changes and
equipment failures. The actual changed process and data
are updated in the virtual production model after the real
services are completed to improve the service process next
time. Furthermore, the virtual production model will ensure
real-time synchronization and data consistency with physical
production status.

The optimization iteration and the co-evolution of
production-twins are realized through inheritance and muta-
tion during the production life cycle. The production evolu-
tionary process is recorded in production DT data and can be
studied through big data analysis and artificial intelligence to
achieve precise process control of production. The evolution-
ary laws of production are the recessive gene of production
DT and can be represented by the production evolutionary
algorithms. They can be developed to plan production, man-
ufacturing operation, and production improvement (including
old factory transformation and new factory replication) in
the production life cycle. Therefore, the production-twins
enable the realization of digital transparent management of
equipment and factory.

The evolution of production-twins supports and provides
a suitable production system to match the needs of rapid
product development. Next, the synchronizing symbiotic
co-evolution of product-twins and production-twins will be
realized in virtual and physical spaces.

C. DTB-DRIVEN SYMBIOTIC CO-EVOLUTION OF
PRODUCT-TWINS AND PRODUCTION-TWINS
The co-evolutionmechanism of product-twins and production-
twins in both the cyber and physical spaces is shown
in Figure 2, explaining the relationship of product and pro-
duction system.

FIGURE 2. Symbiotic co-evolution relationship of product twins and
production twins in eight quadrants.

First, the x-axis, y-axis, and z-axis cross each other. The
intersection of x-axis and y-axis forms a horizontal plane α
(top view). The intersection of x-axis and z-axis forms a ver-
tical plane β (front view), and the intersection of y-axis and
z-axis forms another vertical plane γ (side view). The x-axis
is a time axis and represents the product life cycle value chain.
The direction of x-axis represents the evolutionary direc-
tion of product twins. The left and the right ends of x-axis
represent the first-generation product G1 (PG1) and second-
generation product G2 (PG2), respectively. The evolutionary
process from PG1 to PG2 is a spiral process. The y-axis is
also a time axis and represents the production life-cycle value
chain. The arrow direction of y-axis represents the evolution
direction of production twins. The front and the back ends
of y-axis represent the first-generation production G′1 (PnG

′

1)
and second-generation production G′2 (PnG′2), respectively.
The evolutionary process from PnG′1 to PnG′2 is spiral. The
z-axis is a spatial axis. The horizontal plane α divides the
z-axis into upper physical space and lower cyber space.
The upper and the lower directions of z-axis indicate that the
cyber and physical spaces can be expanded and integrated
freely.

Second, horizontal plane α indicates the relationship
between the product and its production system in the evolu-
tion process. It reveals the value-added processes of the prod-
uct life cycle value chain and the production life cycle value
chain. Manufacturing operation (Manufacturing Execution)
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FIGURE 3. Interaction process of product-twins and production-twins in eight quadrants.

is the intersection of the two value chains and is the core
of product value added. Vertical plane β indicates that the
product co-evolves along the x-axis in the cyber and phys-
ical spaces. Vertical plane γ indicates that the production
co-evolves along the y-axis in the cyber and physical spaces.

Third, horizontal plane α, vertical plane β, and vertical
plane γ intersect each other and divide the entire space into
eight quadrants: I, II, III, IV, V, VI, VII, and VIII.

In figure 3, the interaction process of product-twins and
production-twins is illustrated in the eight quadrants. There
are four types of relationship between the product-twins and
production-twins, namely cyber-cyber interaction, physical-
physical interaction, cyber-physical interaction and cyber-
physical interaction only in the cyber space.

The co-evolution process model of product-twins and
production-twins are expressed below.

Product gene:

PG1 = {P = (g1, . . . , gi), gi ∈ Gi} (1)

In Equation 1, g is product meta gene. All the genes (gi)
are combined into product gene P. Gi is gene population
of PG1. i is the number of product meta gene.

Production gene:

PnG′1 = {Pn = (g′1, . . . , g
′
j), g
′
j ∈ G

′
j} (2)

In Equation 2, g′j is productionmeta gene. All the genes (g′j)
are combined into product gene Pn.G′j is gene population of
PnG′1.j is the number of production meta gene.
External environment:

E = {E1, . . . ,Ek} (3)

In Equation 3, Ek is the external impact factor. All the
Ek are combined into external environment E. k is the number
of external impact factor.

Production environment:

EP={(
∑

Ek ∪
∑

g′j), k= (1, . . . , k), j= (1, . . . , j)} (4)

In Equation 4, production environment EP is composed
of all the related Ek and g′j. Symbol ∪ represents the fusion
relationship of Ek and g′j.

Transfer function:

f ′ : PnG′1 × E → PnG′2 (5)

Pn = f ′(
∑

g′j,E) (6)
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TABLE 3. Symbiotic co-evolution process of product-twins and production-twins in eight quadrants.

In Equation 5 and Equation 6, transfer function f ′ shows
that the evolution of production Pn is impacted with external
environment E , and it provides a model for evolution produc-
tion gene Pn through the interaction of production genes (g′j)
with external environment E .
Transfer function:

f : PG1 × EP→ PG2 (7)

P = f (
∑

gi,EP) (8)

P = f (
∑

gi, (
∑

Ek ∪
∑

g′j)) (9)

In Equation 7 and Equation 8, transfer function f shows
that the evolution of product is impacted with the production

environment EP, and it provides a model for evolution of
product gene P through the interaction of product genes (gi)
with production environment EP. The product gene P is
determined and impacted by productmeta gene gi, production
meta gene g′j and environment impact factor Ek .
Next, the symbiotic co-evolution process of product-twins

and production-twins and the relationship between them
in Figure 3 will be illustrated in detail in Table 3 below.

Special attention should be given to Quadrant VII
and VIII, and the mismatch and imbalance between the
product-twins and production-twins are illustrated separately.
In Quadrant VIII, the performance of production system
largely exceeds the product manufacturing requirements,

121514 VOLUME 9, 2021



L. Li et al.: DTB: Biological Evolution-Based DT Approach for Rapid Product Development

FIGURE 4. New IT driven DT product development technology architecture.

thereby causing wastes. Thus, it is necessary to simulate and
optimize the virtual model of the production system in the
cyber space, and then integrate the virtual product model into
the virtual production system to adjust, optimize and iterate
the entire system, and finally achieve a balance between
investment and output before the production system is set up
(see Quadrant VII).

V. TECHNOLOGIES OF DIGITAL TWIN BIONICS FOR
PRODUCT RAPID DEVELOPMENT
A. SUPPORTING TECHNOLOGIES OF DIGITAL TWIN
BIONICS FOR DRODUCT RAPID DEVELOPMENT
The rapid integration and development of New IT (IoT, cloud
edge computing, big data, AI) and industrial applications
provide technical support for the rapid development of digital
twin product [49]. New IT is the supporting technologies of
DTB and the digital twin product development technology
architecture driven by new IT is shown in FIGURE 4.

(1) Industrial big data is the source and driving force of
product rapid innovative development. First, massive indus-
trial big data are generated and processed in the product
evolutionary process to obtain the value behind the data
through data mining and analysis [56]. Then the industry
knowledge in related fields will be extracted continuously to
obtain the insight into the complex innovative development
of product-twins and production-twins. Second, the running
mechanism of DTs is described through the association rela-
tionship of data, to predict and regulate the co-evolution
process of product-twins and production-twins. Industrial big
data enables DTs to possess the capabilities of self-learning,

self-optimization, self-regulation, and self-evolution. Finally,
the big data and the algorithm model are encapsulated in the
data service APPs in accordance with specific application
scenarios. The APPs provide customers with visual and trans-
parent analysis results in the form of micro-service.

(2) Industrial IoT is the application of IoT in the indus-
trial field. Providing a data acquisition platform for prod-
uct rapid development to obtain multi-source, reliable, and
accurate data, it also helps to realize the interaction between
heterogeneous data. The Industrial IoT system enables the
interconnection between cyber-physical networks of devices
(i.e., manufacturing resources, facilities, equipment, mate-
rials, products, and even people) by using industrial com-
munication technology (ICT) to link intelligent sensing
devices, actuators, and embedded devices [50]. It also per-
forms sensing, collecting, sending, and receiving of data and
becomes a bridge between the cyber networks and physical
objects [51].

(3) Cloud computing provides a platform for product
rapid design and manufacturing through multiple services,
it enables DTs to use huge cloud computing resources
and data centers through a dynamically scalable comput-
ing resource sharing pool service [52], to dynamically meet
the different requirements of DTs [53], such as scalability
and flexibility. Cloud computing adopts virtualization tech-
nology to perform configurable modeling and simulation
of manufacturing resources, manufacturing processes, and
multi-source data [54]. Cloud computing is featured as high
performance and lower cost, virtualization, dynamic scalabil-
ity, high flexibility, and reliability.
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FIGURE 5. Technical architecture of DT co-evolution for product rapid development.

(4) Edge computing is deployed on edge side of
DT system close to physical entities or data sources [55].
It is an open platform that focuses on scheduling, optimiza-
tion, and routing on basis of data analysis. Without having
to send all the data to the cloud, edge computing helps to
process and analyze the data acquired on the edge in real time
for local user immediate decision-making, rapid response,
and timely execution, reducing cloud data load and accel-
erate DTs evolution, iteration, and update [53]. Cloud-edge
cooperative computing is a good choice to utilize cloud
resources. Cloud-edge cooperative computing helps to set up
a closed-loop cloud-edge ecosystem to realize the data-driven
evolution of DTs.

(5) Industrial Artificial Intelligence, for example,
machine learning and deep learning, can automatically per-
form data preparation, analysis, and fusion without the par-
ticipation of experts, conduct in-depth knowledge mining
on DT data, and provide rapid data analysis, prediction,
and verification services for digital twin product develop-
ment [53]. Massive amounts of industrial data from DTs can
be preprocessed through unsupervised learning with special
rules to obtain lots of labeled data automatically, and then the
labeled data will be processed and trained to get an AI model.
Industrial AI has become a key technology to drive product
development and production optimization.

B. KEY TECHNOLOGIES OF DIGITAL TWIN BIONICS FOR
DRODUCT RAPID DEVELOPMENT
The evolution of product DT is determined by product
genes. The product genes are carried in the information of

product functional components and are stored in the product
DT models, the evolution of product DT models is the key to
control product evolution laws and promote product innova-
tive development.

The technical architecture of product DT evolution is
shown in Figure 5, in which product-twins co-evolve and
interact in real-time in the physical and cyber spaces. In the
physical space, the product undergoes multiple evolutionary
iterations in its life cycle. In the cyber space, there are four
areas: (a) engineering design platform, (b) gene base man-
agement platform, (c) product simulation evolution platform,
and (d) automation and algorithm design platform. Next,
the potential key technologies for product rapid development
driven by DTB are introduced below.

(1) Gene modeling and gene base management technolo-
gies in Figure 5 include: (a) gene expression and gene coding
rule design for product DT model; (b) Design, coding, and
storage of gene model; (c) Definition and description of
gene model relationship based on semantics; (d) Gene base
management technologies, such as optimization algorithm
for gene base search engine, gene model intelligence push
algorithm, fast matching between search results and demands
as well as the verification technology.

First, on the engineering design platform in Figure 5,
product gene models are designed and assembled. The
product genes and genome are composed of mechani-
cal (M), electrical (E), automation (A), and data and algo-
rithm (D), etc. And the gene models of product parts are
obtained through the mechanical design in MCAD (Com-
puter aided mechanical design), electrical design in ECAD
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FIGURE 6. Multidisciplinary collaborative simulation and virtual commissioning process of DTs.

(Computer aided electrical design) and other multidisci-
plinary design. Second, on gene base management platform
in Figure 5, the product gene models are extracted, defined,
described, classified, coded, and stored in product gene base,
and they will also be searched, matched, and evaluated when
they are chosen for assembly.

(2) Cyber-physical co-evolution technologies are illus-
trated on the product simulation evolution platform and
automation & algorithm design platform in Figure 5. The
key technologies include: (a) multidisciplinary design and
simulation modeling [16]; (b) virtual commissioning, virtual
testing, and verification [16]; (c) cyber-physical real-time
interaction, such as cyber-physical interface and data inter-
action standards; cyber-physical data with time stamp syn-
chronization technology based on event changes.

On the product simulation evolution platform in Figure 5,
the following work is finished: product prototype vir-
tual assembly, simulation, virtual commissioning, virtual
testing, and virtual verification. First, according to the func-
tional structure tree of product, the gene models of prod-
uct modules will be queried from the gene model base to
assemble an original product virtual prototype. Sometimes
the prototype should be also stored in the product gene
base. The product simulation evolution platform consists of
a multidisciplinary collaborative simulation system, a virtual
controlled object simulation system, and a virtual PLC &
HMI (Human-Machine Interfaces) advanced simulation sys-
tem and so on. The product virtual prototype is simulated,
commissioned, tested, optimized, and verified in themultidis-
ciplinary collaborative simulation system, virtual controlled
object simulation system, virtual PLC & HMI advanced sim-
ulation system, as well as Integrated automation system on
the automation & algorithm design platform in Figure 5.

To show the data flow and system interaction process in
detail among the four systems above, a multidisciplinary col-
laborative simulation and virtual commissioning process of
DTs is illustrated in Figure 6 [16]. (a) In the multidisciplinary
collaborative simulation system, the assembled product

3D geometric model is imported to simulate the product
function and motion process, to verify the performance of
kinetics and dynamics as well as behaviors, and to find some
potential problems (e.g., collision and interference) before it
is put to manufacturing. (b) In the virtual controlled object
simulation system, the controlled objects (e.g., sensor, actu-
ator, remote I/O modules, valves, meters, motors) are virtu-
alized and encapsulated into program blocks. The controlled
objects 3D geometric model and the variables of virtual PLC
CPU PIP (process image partition) are connected through
the program blocks, and then the virtual PLC will drive the
product 3D model to simulate the logical process and behav-
iors of products. This process is the same as they are in the
real environment. (c) In the virtual PLC and HMI advanced
simulation system, the virtual control system is applied to
replace the physical entities (e.g., PLC CPU, servo driver
and HMI) to run the PLC programs and drives the product
3D geometric model to simulate the behavior, motion, and
dynamics performance. This is a type of software-in-loop
virtual commissioning. (d) The programs in virtual PLC CPU
and HMI will be imported to the physical PLC CPU for
further verification and optimization after the virtual prod-
uct prototype is tested and turns out to be in outstanding
performance. Then the integrated automation system will
replace the virtual advance simulation system to connect the
virtual controlled object simulation system through a switch
unit to drive the product 3D geometric model to go on a
precise simulation. This is a type of hardware-in-loop virtual
commissioning.

After all the simulation is finished, the physical automation
system will be integrated in the physical equipment to control
the equipment, acquire data, as well as to connect the virtual
product 3D geometric model.

(3) Product evolutionary design optimization algorithms,
including optimization algorithm for product gene module
division, product gene module combination, and algorithms
for product function evolution, structure evolution, and shape
evolution.
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FIGURE 7. Parallel hybrid production technical framework of welding production line based on DTB.

VI. CASE STUDY
A. CASE OF DTB-DRIVEN AUTOMOTIVE RAPID
MANUFACTURING IN A WELDING LINE
In this paper, taking an OEM manufacturing plant for
BMW automotive as an example, a case of product rapid
development based on the co-evolution framework of prod-
ucts and production line driven by DT is introduced. As it
is shown in Figure 7, the OEM plant needs upgrading the
old BMW X3 production line to establish a prototype pro-
duction line of MINI Countryman, and to produce the MINI
Countryman and BMWX3 in the same production line, while
the existing resources of the BMW X3 production line must
be fully utilized. Thus, quickly designing, transforming, and
upgrading the old welding production line and controlling the
risks and costs in the project are the key issues OEMplant was
facing.

In Figure 7, a parallel hybrid production technical frame-
work of body-in-white welding production line based on
DTB is illustrated. This parallel hybrid production transfor-
mation undergoes the following stages: production system
redesigns, layouts optimization, production process simula-
tion and logistics optimization. The core of upgrading and
transformation of the body-in-white welding production line
lies in the reuse of welding robots on the original production
line. Because most of the automotive body-in-white weld-
ing processes are realized by industrial welding robots. The
welding robots are the core of the entire welding production
line due to its complex motion, high precision, and strong
collaboration ability.

In the redesign stage, the welding robots are designed to be
reusable. They are highly cooperated with the body product-
twins and welding line production-twins. It can switch the
BMW X3 production status to MINI Countryman status
easily and vice versa. There are approximately 180 robots,
280 welding torches, 100 grippers, and corresponding tool
change systems on the plant’s body welding line, with its
automation degree exceeding 98%. In a limited space, it is

quite necessary to freely coordinate the interaction of up to six
robots with multiple degree of freedom and arrange all solder
joints on eachmanufacturing station within the required cycle
time.

An application framework for the body-in-white and weld-
ing production system driven by DTB is proposed in Figure 8.
First, the robot models, layout and usability were optimized,
verified through the integrated virtual simulation of the pro-
duction process (Seen in (1) and (2)). Before starting produc-
tion, cycle time was analyzed, collisions were detected, and
safety conditions were verified (Seen in (3) and (6)).

Second, after taking pictures of the workshop, the produc-
tion planning engineer made use of point cloud technology
and Siemens simulation software to build a virtual production
system model for the old BMW X3 welding production line,
as well as the 3D model of the entire automation system
(including robots, tooling, and peripheral equipment). And
then the robot virtual model and the automation systemmodel
were integrated into the virtual production system model.

Third, a new vehicle model of MINI Countryman, includ-
ing all geometric data and solder joints, was simultaneously
imported into the virtual production system model. Then the
body shell planning engineer defined the welding sequence,
evaluated the potential reusability of existing welding guns
for all the solder joints on the production line in the simulation
software (Seen in (3) and (4)). Finally, the solder joints are
more reasonably defined and distributed through simulation
(Seen in (2) and (3)). Besides, the simulation results of weld-
ing accessibility, cycle time analysis, and collision simulation
would support the rapid turnover, and improve the quality of
welding results (Seen in (3) and (6)).

Since the old products were still produced 24h/7day on the
BMW X3 production line, the programs could not be tested
on the actual line. Therefore, the robot control programs and
operations were designed, simulated, optimized, and offline
programmed in the simulation software before engineering
simulation (Seen in (5), (6) and (7)). Next, the planner used
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FIGURE 8. Application framework for a body-in-white and welding production system driven by DTB.

the simulation software to write and prepare all the programs,
integrated the work of external service providers, and sim-
ulated the environment in detail to test and verify all the
functions (Seen in (7) and (8)). All of these were done to
ensure that BMW X3 and MINI Country can be produced
on the old production line parallelly. Besides, the programs
were defined as fine tuning, including aberration compen-
sation, zero offset, and real-time testing. Therefore, a short
intervention time, rapid implementation and flexibility, and
continuous program adjustments were achieved in the actual
online commissioning stage (Seen in (9) and (10)), which
were in sharp contrast to conventional plans.

B. DISCUSSION
The final part deals with the conclusion of the research
paper. As we can see from the previous research, a sat-
isfying practical result was obtained from this technical
innovation. Firstly, in the mixing phase, the shutdown of
BMW X3 production line overlapped with MINI Country-
man’s startup curve. Thus, no problems occurred. During
this cycle, the BMW X3 production line could be run at full
capacity in the OEM plant. Two batch of program blocks

in the control system were used to switch the production
online between the two vehicles without any adjustments.
Then, after a two-week shutdown holiday, the output of MINI
Countryman was increased from 0 to 2/3 of the ridgeline of
full capacity only in four weeks. Despite the temporary paral-
lel manufacturing, the X3 continued to be produced without
any quality loss. In addition, the start-up time of the new
manufacturing process was shortened, and the production
cost was reduced due to the cancellation of the prototype
production line and the reuse of existing resources. Digital
planning guarantees high process quality, thereby reducing
the errors and material wastes.

In this project, a great success has been achieved based
on the DTB framework and the related technologies such as
virtual commissioning, verification and test. The key perfor-
mance indicator (KPI) in the project is illustrated in Table 4.

In the future, based on the established production DT sys-
tem platform, the following functions can be added in the
later stage: production performance monitoring and KPI data
statistical analysis, energy supervision and comprehensive
optimization utilization, and equipment Physical Health
Management (PHM), MRO and virtual training, so as to
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TABLE 4. Key performance indicator.

provide decision support for continuous optimization and
improvement of the production system.

Furthermore, the frameworkmentioned in this paper can be
used as a reference for the digital transformation of discrete
manufacturing enterprise. Besides, it can be also used to
evaluate the design proposals and production investments
when it is uncertain which technical route should be chosen
in the plant.

VII. CONCLUSION AND FUTURE WORKS
The combination of biological evolutionary theory and DT
technology can help to realize rapid product development
and cyber-physical co-evolution of product and production
system in their life cycle.

In this paper, a biological evolution-based DT approach is
proposed to achieve the rapid product development and the
suitable production construction. It also provides insight for
researchers into the exploration of product and production
evolutionary rules, helps to control the product evolutionary
process and to build a suitable production system for bal-
ancing the product development and production construction.
It can be predicted that the combination of DT and bionics
will become the focus of research on DT in the future.

The research can be extended in accordance with the fol-
lowing directions: (1) Gene modeling of DT. (2) Evaluation
of DT. (3) Cyber security of DT.
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