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ABSTRACT The small battery capacities of the mobile robot and the un-optimized planning efficiency
of the industrial robot bottlenecked the time efficiency and productivity rate of coverage tasks in terms of
speed and accuracy, putting a great constraint on the usability of the robot applications in various planning
strategies in specific environmental conditions. Thus, it became highly desirable to address the optimization
problems related to exploration and coverage path planning (CPP). In general, the goal of the CPP is to find
an optimal coverage path with generates a collision-free trajectory by reducing the travel time, processing
speed, cost energy, and the number of turns along the path length, as well as low overlapped rate, which
reflect the robustness of CPP. This paper reviews the principle of CPP and discusses the development trend,
including design variations and the characteristic of optimization algorithms, such as classical, heuristic,
and most recent deep learning methods. Then, we compare the advantages and disadvantages of the existing
CPP-based modeling in the area and target coverage. Finally, we conclude numerous open research problems
of the CPP and make suggestions for future research directions to gain insights.

INDEX TERMS Coverage path planning, exploration, heuristic algorithm, deep reinforcement learning.

I. INTRODUCTION
Mobile robots such as unmanned aerial vehicles (UAVs),
unmanned ground vehicles (UUVs), autonomous underwater
vehicles (AUVs), autonomous surface vehicles (ASVs), and
industrial robots have been used to perform autonomous area
coverage tasks for field exploration. Although the industrial
robot arm generally manipulates the end-effector to reach the
goal position along a predetermined path to cover a spec-
ified target area, such a method is not optimized to avoid
static or dynamic obstacles in the path space domain. Hence,
autonomous robots must overcome the obstacles by resolving
the coverage path planning (CPP) problem for interacting in
a complex environment.

CPP has become a hot research topic in robotic applica-
tions such as autonomous cleaning [1], [2], lawn mowing [3],
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structural inspection [4], [5], agriculture [6], [7], and surveil-
lance [8], including exploration, mapping, search, and
rescue [9], [10]. Robotic end-effector could also be ben-
eficial from CPP such as surface treatment applications
(milling [11], laser cleaning [12], spray painting [13], [14],
fused deposition modeling printing, and manufacturing
inspection [15], [16]). CPP is the determination of the path
that cover all points from an initial state to a final state while
detecting and avoiding obstacles in a target environment [17].
The goal of the CPP algorithm is to compute the optimal path
and project a collision-free trajectory to ensure the robot fully
covers an area of interest (AOI) within a certain time. Firstly,
a decomposition technique decomposes the AOI into a set of
sub-areas. Then, it sets an initial position of the robot and
determines the covering direction of each sub-area. Effective
optimization solver computes the sequence connection of the
sub-areas to cover each cell. Finally, the robot covers all the
sub-areas by using simple movements such as back-and-forth
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FIGURE 1. The concept of coverage path planning (CPP).

motion. The concept of the CPP is illustrated in Fig. 1. The
robustness and performance of CPP efficiency are based on
several parameters, such as the percentage of covered area,
travel time, path overlap rate, and energy consumption of
robots.

CPP is an integral part of mobile robot exploration to
deal with area coverage optimization. Area coverage is gen-
eralized as a completely or partially enclosed area with a
non- overlapping path by robots. Depending on the prior
knowledge of the surrounding environment with onboard
sensors, the CPP algorithm can be categorized into off-line
and online algorithms [18]. The off-line algorithm allows the
mobile robot to perform the coverage with a static and well-
known environment. The CPP is generally based on global
sequential point-to-point coverage, and the robot follows the
route besides obstacle avoidance on the given map. However,
in practice, the robot needs to deal with an unknown or
partially known environment. Therefore, the online algorithm
is preferred, whereby the exploration strategy changes whilst
the robot moves, executes, acts, and observes the location of
the obstacle to explore an unknown area within the region
of interest. The robot will resolve for a suitable path by
acquiring real-time data from the local sensor and extract
distinctive features in the dynamic environment. In the end,
the robot must create a finite mapping of the environment
under exploration with the CPP technique [21].

In the past decade, Galceran and Carreras [18] have
reviewed CPP for robotics literature. The works reported
are surveys on an environment modeling based on various
surface partitioning methods used in solving the CPP prob-
lem, i.e., cellular, grid-based, and graph-based methods of
the respective 2D and 3D structures. The literature reported
in recent years is a review on multi-robot CPP for model
reconstruction and mapping [19] and specifically a review
on drones [20]. The difference between past review papers
and the present review is a comprehensive and state-of-the-art

FIGURE 2. The organization of the paper.

study particularly in terms of optimization criteria. In the
current review article, an extensive review of CPP focusing
mainly on the classical and heuristic algorithms used to solve
the optimization problem. The collision-free path, coverage
cost function (shortest and smoothness paths), and coverage
sequence (set covering problem, SCP and traveling sales-
man problem, TSP) directly correlate with CPP problems,
in which how well the optimization problem can be solved.
Furthermore, no literature review exists on addressing the
CPP problems using deep reinforcement learning methods.
We believe that this review will provide a comprehensive
understanding of CPP in robotics in terms of design vari-
ations, the characteristic of optimization algorithms, and
various technical features, i.e., searching time, path optimal-
ity, dynamic performance, convergence speed, and computa-
tional complexities.
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This paper provides a review of CPP techniques. The
remaining of the paper goes as follows. Section II presents
the objective of CPP and the specific challenges regard-
ing the platform, environment, and path optimality. Next
in Section III gives the recent development of CPP based
on various classical and heuristic algorithms. The existing
reviews are related to coverage efficiency issues and per-
formance metrics. Section IV analyzes and summarizes the
applications of various CPP algorithms with the advantages
and disadvantages and discusses the open problems in the
CPP for future research to provide the directions. Finally,
Section V concludes the paper. The organization of the paper
is shown in Fig. 2.

II. CHALLENGES IN CPP
CPP is still an open problem in robotics in improving the
efficiency of planning an optimal path to cover the target area,
as well as generating a collision-free pathway with less com-
putation. The generated coverage path should be optimal to
ensure minimal logistical costs, such as overlapping, number
of turns, travel time, and energy consumption. The CPP prob-
lems include potential uncertainty failures, unknown obsta-
cles in a complex environment, and path optimality, which
are considered the major challenges in robotics. An overview
of CPP problems with the objective, challenges, and design
features is shown in Fig. 3.

Area coverage using a single robot has been presented
in many works, whereby only one autonomous vehicle exe-
cutes a simple task in small areas such as room cleaning.
In the case of broader area coverage, the robot may suffer
mission incompletion due to uncertainty in malfunction and
potential failures, such as mechanical or electronic break-
down, sensor and actuator faults, and battery drainage. Thus,
many researchers focus on improving the efficiency of the
area coverage by deploying multi-robot systems. Multi-robot
coverage provides more significant advantages over a sin-
gle robot in minimizing operational time and enhancing the
robustness of CPP [22]. However, developing the CPP tech-
nology of multi-robot is still challenging to fulfill complex
and large-scale environments because it must address many
CPP constraints.

Meanwhile, limited sensing capability and communication
bottlenecking are the significant factors to deal with in the
face of positioning failures of the multi-robot system. Thus,
the distributed control network system is either broadcasted
by centralized or decentralized methods to avoid the scalabil-
ity problem in such a limitation [23]. Besides, the strategic
resilience of a team robot is equally important, where the
neighbor robots could overtake re-planning tasks to fill the
functional gap in the case of robot failure [24]. Improper task
schedules could also lead to an idling problem. Specifically,
coordination and task allocation are the core problems in the
multi-robot distribution for area coverage, highly depending
on each robot’s position. Therefore, the efficiency of the CPP
is highly reliant on coordination and task allocation strate-
gies in the effort of minimizing the total coverage time and

balancing the workload of each robot. In the end, the multi-
robot system could provide system redundancy and high
fault-tolerant compared to a single robot.

Environmental factors like wind, wave and underwater
current are still considered a great challenge for the CPP in
robotics. Vehicles such as UAV, AUV, and human-centered
intelligent robots [25] must stabilize themselves in a position
when collecting the data under the physical influence of the
environmental conditions as well as the impact of human
motion. Other than counteracting with external forces, obsta-
cle avoidance is also a common practice to prevent physical
damage to the vehicle by physical collision. The CPP for
large-scale environments (especially multi-robot systems) is
often an off-line planned algorithm due to the limited onboard
sensor and battery limitation. Generally, many CPP tech-
niques of robots are only considering in a two-dimensional
(2D) workspace due to the complexity of kinematic and
dynamic constraints. That, in turn, limiting the robots capable
of three-dimensional (3D) space coverage, especially in an
underwater environment [26]. Despite the simplicity in the
2D model that only requires a small amount of computation.
Hence, many studies create a 2D model on a cross-section of
a surface, neglecting the height information in 3D modeling
since most robots can perform 2D specific area coverage
tasks. However, the significant aspect of the CPP problem
in the artificial 2D workspace is the overlapped coverage of
the sensor footprint along the sweeping path [10]. In reality,
the height at a constant depth varies when UAV or AUV
covers the region of interest (ROI) on a non-planar sur-
face (large degree of the surface slope). When the environ-
ment is prior known, cellular decomposition is the simplest
method to segment the region into smaller sub-areas, either
regular grid cells or polygon shapes [27]–[29]. CPP in the
3D space mainly focuses on the target coverage in such a
way as to cover the critical ROI for evaluating the quality
of the structure (3D model). The effective coverage of the
target area can be achieved by generating viewpoints and
optimizing the sequence of visiting the viewpoints. How-
ever, most research works only focused on 3D targets with
a smooth surface (less interest in rough surface or hidden
surface) [30].

Path optimality is related to the shortest coverage path
or TSP, where typically in terms of planning a path with
minimal travel cost to visit all points through the multi-ROIs.
Thus, it introduces a significant challenge to address the CPP
problem since TSP and CPP problems are NP-hard [31].
Many integrated TSP and CPP studies on finding the visiting
order for the set of regions by TSP solver, as well as planning
the optimal path to fully cover all the sub-regions in the back-
and-forth manner [32]–[34]. Hence, the connection of local
and global coverage paths should be concerned to address
the integrated TSP and CPP problems, including coverage
path in each ROI, the sequence of visiting order within sub-
regions, and the entry-exit path. Additionally, in a 3D surface,
single or multi-robot typically generate a set of viewpoints
to cover the target surface areas through view planning and
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FIGURE 3. The objective and challenges in coverage path planning (CPP) problems.

find the shortest path with collision-free to visit the selected
viewpoint [35], [36]. The view planning problem in model-
based is typically regarded as an SCP that the goal is to
reduce the number of viewpoints, then the TSP or multi-TSP
solves the set of selected viewpoints for tackling the path
planning problem [23]. Therefore, the challenge of the CPP
path optimality is to minimize the total travel time along the
coverage path and reduce the turning cost.

III. RELATED ALGORITHMS
CPP algorithms can be categorized into two approaches,
classical algorithms, and heuristic-based algorithms. The
summarized details of CPP algorithms according to the char-
acteristics of the algorithms are classified as shown in Fig. 4.
Notably, sampling-based planning and bio-inspired algo-
rithms are hot research topics for solving CPP problems.
There are ten highlights in the existing literature, i.e., random
walk, chaotic coverage path planner, spanning tree coverage,
artificial potential field, sampling-based planning algorithms,
dynamic programming, greedy search and graph search algo-
rithms, evolutionary algorithms, human-inspired algorithms,
and other classical-heuristic algorithms.

A. RANDOM WALK
Random walk (RW) is a stochastic process that describes
the animal search pattern or movement in the attempt to
scan and explore the unexplored area [37]. Different variants
of the RW have been studies for environmental exploration
and coverage [38], [39]. There are two methods for area

coverage based on the RW, i.e., fixed linear method and
variable step method. Robot of fixed linear approach ran-
domly turns at an angle and frequently moves at the straight
line until it collides with the wall or obstacle boundaries.
Hasan et al. [40] introduced CPP algorithms that involve the
RW, spiral motion, boustrophedon motion, and wall follower
in the cleaning system. Liu et al. [41] proposed an online
random coverage method that improves the coverage rate.
However, to ensure that the robot covers the whole area,
the variable step method computes a set of RW directions
based on the probability distribution of step lengths taken by
the robot.

The variable step method is popular in a collaborative
mobile robot swarm system, including Brownian motion
(BM) [42] and Lévy flight (LF) [43]. The robot based on BM
repeatedly moves in a step length with a given distribution
(i.e., Gaussian or von Mises [44]) and randomly turns in a
direction. Conversely, the robot of LF travels a distance in
which the step length depends on Lévy’s probability distribu-
tion [45]. The BM step length is of finite variance, whereas
the LF step length is of infinite variance. Therefore, BM has
a high target density (local walk) and short-range movement
compared to LF (global walk). Martinez et al. [46] proposed
a swarm robot using BM-based RW to enhance area cov-
erage. Each robot is considered a particle whose motion is
controlled by signals in the environment. In [47], pheromone-
based communication [48] is utilized to control multi-robots
and the LF search strategy is implemented to improve the
efficiency of searching and coverage in an unknown environ-
ment. Whereas [49] proposed gradient following combined
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FIGURE 4. The classification of coverage path planning (CPP) algorithms.

with the LF approach using a virtual pheromone-based model
in the control to provide better performance in area coverage.

The main advantage of the random walk approach is that
the platform does not require sensors for localization. The
robot only requires simple onboard sensors to sense and
detect the boundaries of an area for obstacle avoidance. Thus,
it is very flexible and easy to deploy due to a simple algorithm
with less memory requirement. However, the RW path valid
only for a small environment and hard to cover all areas in
the presence of obstacles. The robot may also cross the same
path several times, leading to an inefficient overall path.

B. CHAOTIC COVERAGE PATH PLANNER
Chaotic CPP is a deterministic technique that consists of a
chaotic system to generate a coverage trajectory based on
chaotic motion. Chaotic CPP ensures high coverage effi-
ciency in the entire workspace in terms of the robot’s tra-
jectory, guaranteeing faster coverage in the working space
because the motion is pre-determined. Arnold’s dynamical
system is a well-known chaotic system, first introduced by
Sekiguchi and Nakamura [50]. A controller is designed and
built with a combination of chaotic dynamic variables and
kinematic equations of the mobile robot to construct chaotic
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motion. This system could also perform surveillance tasks by
achieving the highest coverage rate without the requirement
of obstacle avoidance along the boundaries [51].

In the case of a 3D non-linear chaotic system, the Lorenz
dynamical system and Chua circuit are similar to the Arnold
dynamical system. In [52], the Lorenz system speeded up
the workspace coverage by utilizing the hyperchaotic tech-
nique with a non-linear open-loop controller, showing a good
chaotic characteristic compared to the Arnold system and
RW [53], [54]. Chua patterns used in mobile robot also
provides a better coverage performance [55], [56]. A random
number generators based on chaotic attractors using the Chua
circuit, Lorenz system, and multiple scroll attractors have
been proposed in the CPP [57]. Nasr et al. [58] utilized a
multi-scroll Chua chaotic mirror mapping method to deter-
mine the low-cost coverage path.

Standard (Taylor–Chirikov) and logistic map are both the
discrete-time dynamical system model of a 2D iterated map
and 1D iterated map, respectively. Volos et al. [59], [60]
design a chaotic logistic map random bit generator to gen-
erate the coverage trajectory for the mobile robot. Angu-
lar transformations could further improve the evenness of
the coverage path planner [61]. Whereas [62] implemented
a pseudo-random bit generator combined with an inverse
pheromone method, achieving less memory requirement
while providing higher coverage in a given terrain. In the
case of the standard map, [63] presented the terrain space
covering using a discontinuous control law. Whilst [64], [65]
suggested a fusion strategy with the iteration cycles between
large and small divided regions as well as mapping (affine
transformations) correspond to the standardmap.Meanwhile,
Li et al. [66] used a 2D Chebyshev map with a similar affine
transformation technique for chaotic CPP.

Most of the chaotic CPP motion does the exploration and
surveillance mission in an unpredictable random, small num-
ber of steps and provides fast scanning in an unknown envi-
ronment compared to RWbecause RW is not continuous [67].
Thus, the continuous motion of chaotic CPP enables the
robot to move in searching and finding the target effectively
with a more uniform coverage density. However, the existing
literature only highlighted the coverage rate, ignoring the cost
of coverage time. The unpredictable trajectory is also hugely
dependent on the kinematic motion of the robot subjected to
kinematic constraint, and it needs to be studied.

C. SPANNING TREE COVERAGE
The spanning-tree coverage (STC) based CPP algorithm sub-
divides the workspace into a finite sequence of disjoint cells,
either by cell decomposition-based method or grid-based
method [68], [69]. Then, it constructs a spanning tree of the
graph in the corresponding mega cells that spit into four sub-
cells, whereby the size of the corresponding cells equals the
size of the robot. This algorithm enables the robot to cover
each unoccupied cell by finding the optimal path using a
tree traversal algorithm, such as depth-first search. However,
the robot fails to cover the mega-cell if an obstacle within an

entire mega-cell occupies a sub-cell. In [70], the authors pro-
posed a full-STC algorithm, where a robot can cover the free
sub-cells to maximize the area coverage. The STC has been
extended in focusing on the online strategy for a multi-robot
system to increase the coverage efficiency [71], [72]. How-
ever, the traveled path is dependent on the initial positions of
each robot and might lead to backtracking issues among other
robots. The robots suffer from a high overlap rate, signif-
icantly deteriorating energy efficiency. Kapoutsis et al. [73]
proposed an area division algorithm concerned with the ini-
tial positions of robots to optimal cell assignment in matrix
conditions. A minimum spanning tree is constructed in each
divided space for balanced task assignment. Still, it cannot
deal with the pathway through the free sub-cells situation
in which the cells are occupied by obstacles, especially in
robot placement along the same axis. In [74], the workspace
is divided into different cell sizes based on the hierarchical
quadtree structure, following the construction of the spanning
tree by considering different edge lengths. This method could
minimize the repeated coverage and balance the task assign-
ment, but introduces over-segmentation in the cell, leading to
extra task costs.

Gao and Xin [75] proposed the STC algorithm based on
auction and bidding processes for solving multi-robot CPP.
In [76], a pseudo-STC is constructed to create the virtual
edges, providing that the obstacles occupy the mega-cells.
The wall following algorithm enables the robot to move along
the obstacle boundary through the sub-nodes. Meanwhile,
Pham et al. [77] improved the algorithm to find the optimal
path, focusing onminimizing the backtracking and increasing
the coverage rate by considering the mega-cells that are par-
tially occupied by obstacles in building the C-space boundary
contour. The path is planned through the spanning-tree edge
in an anti-clockwise direction to find the next unvisited mega-
cell. In the case of the next mega-cell that is partially occupied
by obstacles, the robot moved along the C-space edge and
returned to the parent node. The experimental results show
that the proposed algorithm achieves a high coverage rate as
compared to the full-STC method. Similarly, [78] proposed
the adjacency graphs structure based on connectivity between
theminor nodes to allow the robot to cover themega-cells that
are partially occupied by obstacles. Typically, the robot-based
online CPP needs to provide sensing feedback, resulting in
considerable energy usage. Hence, [21] proposed a hybrid
CPP without the aid of scanners by combining the frontier-
based exploration and STC algorithm to improve energy
efficiency.

In the latest studies, most of the multi-robots-based STC
algorithms rely on centralized control techniques, involving
communication and task allocation. The sensor information
significantly burdens computation and memory complexity.
That might result in system failures when a breakdown occurs
in the central control agent. Dong et al. [79] proposed an
artificially weighted STC based on a decentralization strategy
to perform the coverage task in a distributed manner. The
tasks burdened by each robot are equally distributed and the
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algorithm could re-generate the STC path if the robot failure
occurred. Thus, the system could ensure the completion of the
coverage task in the case of robot failure. However, the path
re-planner could ignore the task burdened by the operating
robots, leading to an unbalanced workload problem. Fault
tolerance is still a big challenge in a real-world situation.

D. DYNAMIC PROGRAMMING
Dynamic programming (DP) is an approach for solving opti-
mization problems by recursively dividing the complex prob-
lem into a set of simple sub-problems and recombining the
results of all the sub-problems to obtain the solution [80].
The DP problem exhibits the overlapping sub-problems and
optimal substructure in CPP to optimize the sequence of
global coverage sub-spaces based on the distance matrix [81].
In [82], the DP and TSP reduction could optimize a greedy
construction of a set of segments and the connection of all the
segments respectively to find the shortest coverage path and
minimize the number of turns. The DP framework is devel-
oped in [83] to optimize the coverage overlaps within an area
of interest. Coombes et al. [84] used the bottom-up strategy to
save memory space and accelerate through the recombination
process of the decomposed cells. A DP has been used to
solve the TSP in CPP with global planning for finding the
shortest path that sequentially covers all the regions [33].
However, the generated tour might not be optimal due to
the enormous scale of the problem. Thus, [34] proposed
the nearest neighbor-based or genetic algorithm (GA) based
2-Opt algorithm to solve many regions, further optimizing
the tours by the DP-based exact approach. Cheng et al. [85]
introduced the graph model of the environment according
to the sets of morphology layer and stripe layer, requiring
cost calculation of each strip layer to be memorized by DP,
developing re-calculations precaution to speed up the compu-
tation. However, the robot cannot adapt to a complex dynamic
environment. Ghaddar and Merei [86] suggested an online
CPP algorithm by utilizing DP to improve performance in
terms of adaptability and energy efficiency.

E. ARTIFICIAL POTENTIAL FIELD
The artificial potential field (APF) algorithm is commonly
used in detecting obstacles when the robot is towards the
goal position. A fictional repulsive force and attractive force
are created in the surrounding obstacles and around the goal
respectively to ensure the robot in achieving the target while
keeping the distance between the robot and obstacles [87].
Sutantyo et al. [88] employed the LF algorithm to explore the
unknown environment. The dispersion is enhanced by adding
the APF technique for producing the repulsion among the
robots. In [89], the coverage path is re-planned by calculating
the cost according to the artificial potentials when the sensor
detects the defect for surface treatment. However, the robot
may fail to escape from the dead zone due to the APF method
has a local optimum problem. Hence, Wei et al. [90] imple-
mented the inspection strategy by combining the APF and
particle swarm optimization (PSO) algorithms to overcome

the problem of local optimal by optimizing the speed and
position of particles. Wang et al. [91] introduced a potential
field based on the information gain and path cost, in which
the robot can find the optimized trajectory to avoid being
trapped in local minima. In [92], the authors improved the
APF algorithm by introducing the concept of seeds for CPP
in a grid environment. Different kinds of path seeds can be
generated according to the environmentmap to cover the area.
Huang et al. [93] utilized the APF method to cover the area
by the formation control of the multi-robot system. The sim-
ulation results proved that the approach achieves better area
coverage and real-time planning. In a specific case such as a
robot pass through a narrow space, the robot might not be able
to reach the target. Hence, Jiang and Deng [94] improved the
APF algorithm by modifying the repulsive potential function
to avoid the obstacles in the inspection mission effectively.
Despite all the research effort, there is still a lack of planning
for collision avoidance between multiple robots when simul-
taneously access to the goal under the potential field.

F. SAMPLING-BASED PLANNING ALGORITHMS
The traditional algorithm applies a random sampling method
to a coverage issue for solving a planning problem [95], [96].
Recently, probability sampling-based planning (SBP) algo-
rithms have been used to solve complex planning prob-
lems heuristically and optimally. Generally, the algorithm is
the process of mapping the environment from configuration
space by using a node sampling strategy (random generation
of a set of nodes in the search environment). The probabilis-
tic completeness of SBP is effective for optimizing sensor-
based (visual-based) inspection in terms of exploration. SBP
based planner includes probabilistic roadmap (PRM) [97] and
rapidly exploring random tree (RRT) [98].

1) PROBABILISTIC ROADMAP
The PRM planner is a process of planning and query by
establishing a roadmap for creating a path in the configu-
ration space [99]. The planning phase randomly generates
the number of nodes in the robot’s configuration space and
connects the pairs of nodes in a straight line without crossing
the obstacles to form a roadmap. Then, the query phase
plans a path between initial and goal configuration by using
the result from the planning phase [100]. Dias et al. [101]
deployed grid-based PRM for search and rescue in an earth-
quake situation. PRM is widely used to optimize path and
obstacle avoidance by combining a search algorithm such
as the A∗ algorithm [97]. In [102], the collision-free path
and optimal sequence path between themeasurement position
of an industrial robot are generated based on PRM and A∗

algorithm, respectively. The simulation result shows that the
proposed algorithm could reduce the cycle time by adding
a TSP solver. However, the PRM method limits the robot
coverage area near the boundaries and obstacles due to the
random placement of nodes. The PRM also removes the
corresponding nodes and edges when an obstacle collision
occurs. Besides, the PRM may lead to high complexity and
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computation time despite the advantage of probabilistic com-
pleteness with massive nodes.

2) RAPIDLY EXPLORING RANDOM TREE
The RRT algorithm is an efficient search planner by using
an incremental technique in tree structure form to construct
a graph to search and explore in the free or obstacle con-
figuration space [103]. The algorithm is designed to search
in high dimensional spaces effectively and handle kinody-
namic planning. The RRT is faster than PRM for a single-
query problem because the algorithm does not require a
sampled configuration to build a roadmap during the learning
phase [1034]. Zaheer et al. [105] analyzed that the RRT has
better performance in terms of computation time and has
a better smooth path compared to PRM. Meanwhile, [106]
proposed a bidirectional search approach between the initial
and goal trees to rapidly grow towards each other, making
a connection on both trees to generate the shortest path
for uniform searching. However, the generated path based
on RRT is not optimal in solving the planning problem.
The modified variant of RRT called RRT∗ can improve
path quality by providing an asymptotically optimal solu-
tion [107]. Englot and Hover [35] presented a CPP based
on the sampling-based approach to solve both coverage sam-
pling and multi-goal planning problems independently. The
first coverage sampling problem determines the minimal set
of views that provide guaranteed coverage. Then, the multi-
goal planning problem addresses a shorter tour that visits all
the views. The approach asymptotically finds the globally
optimal solution to improve the feasible coverage path by
using the RRT∗ algorithm. Similarly, [108] proposed a rapidly
exploring random tree of trees algorithm to find the optimal
coverage path for real-time 3D reconstruction. A meta-tree
structure contains multiple sub-trees, and each sub-tree grows
according to its own RRT∗ planner for every number of
iterations to provide full visibility. However, the algorithm
requires a large memory to store notes in the tree, leading
to high planning costs. Hence, an optimal CPP algorithm is
utilized based on two-scale algorithms to produce the shortest
coverage path by reducing memory requirement [109]. The
multi-directional fixed nodes RRT∗ algorithm is developed to
generates a minimum cost trajectory planning for each point
of interest (POI) from a given initial point to a goal point
by exploring the neighborhood. Then, the GA is used to find
the shortest path to visit a sequence of POIs by dealing with
the problem of TSP, following a return to the initial point.
Similarly, [110] utilized an incremental random inspection
roadmap search to optimize the number of POIs in the con-
structed graph. The tree is iteratively generated based onRRT,
constructing the roadmap that induces the subset of the POIs.
Then, it computes the shortest path to cover the POIs with
a suitable graph search algorithm. The results [109], [110]
show that the approach can minimize coverage planning time
by limiting the size of memory (number of nodes in the tree).
Faghihi et al. [111] introduced a random kinodynamic inspec-
tion tree (RKIT) algorithm, integrating the CPP problem and

kinodynamic planning problem. In the 3D model structure,
the starting point and goal point are located at the center of
the front and back faces, respectively. Then, the structure is
remodeled in which several hypothetical cubes are developed
where the size of the cubes in respect to the dimension of the
front (or back) face and sensor coverage. The path-creating
module computes the intermediate points that refer to the
critical points (outward spiral path, helix spiral path, and
inward spiral path). Finally, the coordinate of the intermediate
point on a given area is taken to perform sampling by RKIT
in every iteration. The algorithm also utilized a steering func-
tion to deal with differential constraints effectively. Hence,
the authors proved that the algorithm successfully identify-
ing a feasible coverage plan in 3D structure. Nevertheless,
the research study does not involve the simulation result in
the presence of static and dynamic obstacles.

The recent development of the RRT∗ algorithm has real-
ized a breakthrough in terms of searching time and path cost
(shorter and smooth path). However, fewer related studies
tackle the narrow passage problemwhen the robot is perform-
ing the coverage task. Therefore, the robot moves through
a narrow unstructured environment cluttered with obstacles
using RRT∗ variant (to optimize the area coverage in near
difficult regions) would be an interesting research endeavor
in the future.

3) VIEW PLANNING AND MOTION PLANNING
Apart from the sensor-based planning method [112], [113],
the sampling-based view planning approach [114], [115]
is another solution for solving the optimization prob-
lem, requiring both view planning and motion planning
tasks [116], [117]. View planning mainly applies to modeling
applications and exploration tasks [118]. The sensors are
crucial to enable the robot vision system to handle the view-
point planning problem and CPP problem for target covering.
The SCP and TSP solve the minimal set of viewpoints to
cover the whole target structure and the viewpoints, respec-
tively [119], [120]. Then, the variant of planning algorithms
solves the coverage planning problems, i.e., greedy strategy,
optimal strategy, or decompose planner [36]. In addressing
the online CPP problem, most studies utilized the next-
best-view (NBV) approach [121] for solving suitable view
selection in which the viewpoint is planned based on the
current robot location and the information acquired from
the sensor. The robot onboard sensor explores and senses the
target region before the planner generates the viewpoint to
reconstruct the structure model [122], [123].

Meanwhile, [115] proposed a structural inspection plan-
ner (SIP) by implementing the Lin-Kernighan-Helsgaun
(LKH) algorithm [124] to optimize the tour of view-
ing poses. Palomeras et al. [125] introduced the NBV
planner by using probabilistic analysis for utility calcula-
tion. Osswald et al. [126] used the inverse reachability map
combined with the NBV algorithm to improve robot poses
and viewpoint planning problems by filtering possible view
candidates. Ardiyanto and Miura [127] presented a visibility
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coverage based on polygon search using skeletonization tech-
nique to generate coverage viewpoints and improve the view-
point planner further to minimize the energy consumptions
of the robot’s movement, thus, maintaining visibility of a
moving target [128]. However, the robot may fail to track if
an occlusion occurred.

The sequential viewpoint is part of the viewpoint plan-
ning problem as well, requiring modeling of information
gain in a 3D environment, such as voxel [129] or surface
mesh [130] in the NBV planning. Wu et al. [131] proposed
the learning-based NBV to compute an optimal viewpoint
by estimating a set of voxels for planning the next scan
following the ray casting along the voxels. The inverse kine-
matic solver computes collision avoidance as well as finding
a good sequence of the viewpoint by using the calibration
of relative position between the onboard sensor and view-
points [131], [132]. Mansouri et al. [133], [134] utilized the
structure frommotionmethod to reconstruct the target region,
generating high-quality cover map 3D data. This method
highlighted the cost-effectiveness compared to laser or range
scanning. Meanwhile, [135] presented multi-view cameras
based on structure frommotion in CPP.Meng et al. [136] con-
structed 3D models using the probabilistic volumetric map
based on Octomap structure [137] and the information gain
could select the frontier viewpoints for solving the variant
of TSP. Paratama et al. [138] proposed a search space CPP
algorithm to maximize the information gain of the waypoints
and calculate the entropy of each waypoint based onOctomap
in the heuristic cost function. The experiment results showed
that the proposed algorithm could provide a higher coverage
percentage as compared to SIP, LKH with RRT, and LKH
with Euclidean heuristic methods.

Most research focuses on large unknown search space
without looking at less informative areas, leading to
inaccurate and incomplete structure models, disregarding
global path, and results in long path overlapping. Hence,
most researchers studied the receding horizon planning
approaches, including NBV planner and exploration plan-
ner, utilize the RRT or RRT∗ algorithm to explore an
unknown environment [122], [139]–[141]. The optimiza-
tion process repeats in the next iteration in such a way
that, only the first viewpoint is executed, and the path is
selected based on the best viewpoint. However, the robot
often falls into dead-end sub-optimal traps due to the lim-
ited look-ahead sensing for a fixed horizon. Thus, Jung
et al. [142] introduced a multi-layer CPP technique, divid-
ing the 3D model structure into several layers and resample
viewpoints in each layer to obtain the local path, following
all the layers connected for global coverage. Oleynikova
et al. [143] introduced an online local re-planning to max-
imize exploration gain by deploying an intermediate goal
selection strategy. Providing a collision-free path in explo-
ration in an unknown indoor environment with narrow and
large-scale space is challenging. Thus, [144], [145] pre-
sented the combination of local and global exploration tech-
niques by utilizing a sampling-based algorithm and frontier

exploration. Similarly, Almadhoun et al. [146] proposed a
switching approach between the frontier and adaptive grid
viewpoint generators to enhance the qualities in terms of local
minima avoidance and utility function. However, high cover-
age density in a particular area increases the traveled cost.
Thus, Schmid et al. [147] studied the potential influence of
information gain and cost formulation on tackling the balance
between the gain and cost in the utility function. To improve
the completeness of the target coverage, [147], [148] intro-
duced an informative sampling algorithm to maximize the
utility value in terms of global coverage and trajectories by
using an online approach, reducing the sampling range by
employing a streaming set cover algorithm.

Furthermore, Jing et al. [149] proposed a novel CPP frame-
work, including viewpoint generation, path primitive genera-
tion, visibility estimation, primitive coverage graph encoder
formulation, and coverage graph search. The computation of
an iterative adaptation of uniform could provide full cov-
erage by generating viewpoint in high fidelity mesh model
following point-to-point connecting based on RRT∗ [150].
The Voronoi-based re-meshing algorithm down-samples the
mesh model of the structure to improve the inspection path
with guaranteed coverage. Glorieux et al. [15] presented a
targeted viewpoint sampling strategy by combining both SCP
and TSP. The self-adaptive differential evolution algorithm
could optimize the best next viewpoint, following the imple-
mentation of RRT for collision avoidance. The results showed
the reduction of inspection cycle-time and travel costs by up
to 23.8% and 22.7% as compared to the greedy approxima-
tion method. However, most of the existing sampling algo-
rithms cannot generate accurate maps in high-dimensional
search space. Thus, Hou et al. [151] use the Gibbs sampling
technique (Markov Chain Monte Carlo) to produce accurate
occupancy maps by decomposing the sample space using
the NBV algorithm to estimate the conditional probability of
each voxel for 3D surface reconstruction. The coverage ratio
could be further enhanced by using the CPP algorithm as well
as NBV, which could be planned in real-time to maximize the
information gain by applying aMonte Carlo tree search [152].

There are many prior works concerning the optimization
problem in viewpoint planning and coverage planning to
improve the coverage efficiency and to ensure the quality
of viewpoint planners. The high demand for high geometric
accuracy also results in the high computation complexity of
the algorithm. Hence, it is still challenging to have a balance
between the model quality (completeness and accuracy) and
the computation time. Moreover, the feasibility of real-time
applications with an implementation in large-scale space is a
complicated task worthy of future study.

G. GREEDY SEARCH AND GRAPH SEARCH ALGORITHMS
The greedy algorithm is the well-known heuristic approach
used to solve optimization problems by constructing a
solution through a sequence of choices available without
changing on subsequent steps once the choice is made at
every step [153]. The algorithm often looks for the best
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choice by making a locally optimal choice to obtain a glob-
ally optimal solution. The greedy algorithm, (i.e. Dijkstra’s
algorithm) is simple, easy to implement, and generally fast
but the algorithm does not guarantee to find the globally
optimal solution due to the short-term solution [154]. The
graph search algorithms such as A∗ algorithm, D∗ algorithm,
and Theta∗ algorithm typically combine the boustrophedon
motion or spiral pattern to plan and optimize the coverage
path. The search algorithm finds the shortest path between
a pair of nodes in a graph to move from the current blind
position to the uncovered area when the robot falls into the
dead zone or encounters an obstacle, re-planning the path
to identify the next position of the robot to escape the blind
nodes; otherwise, the robot continually follows the zigzag or
spiral path if no obstacles are detected. The tasks repeat until
the ROI is fully covered. Hence, the search algorithms are
important to address the CPP problem and improve search
efficiency. However, it is still challenging for path searching
in the large grid map due to the large computation cost.

1) DEPTH-FIRST SEARCH AND BREADTH-FIRST SEARCH
ALGORITHMS
The depth-first search (DFS) or breadth-first search (BFS)
is the recursive algorithm for searching the nodes based on
the graph data structure [155]. Both algorithms provide good
performance in terms of time complexity, but each algorithm
has its drawbacks. The DFS fails in infinite depth spaces
and does not guarantee to find an optimal solution (shortest
coverage path), whereas the BFS consumes large memory
space due to the high branching factor in the search space.
The DFS optimizes the sequence path with the benefit of
minimum overlapped and several turns for CPP [156]–[158].
Kabir et al. [159] utilized the DFS technique to create a clean-
ing trajectory by generating a sequence of setups. However,
the robot is relatively complex with heavy computing due
to the multiple degrees of freedom. Barrientos et al. [160]
suggested a waveform planner based on the BFS technique
that can be applied over the grid-based workspace to gen-
erate the coverage path with a minimum number of turns.
Wang et al. [161] proposed a CPP method to reduce the
uncovered area by employing the BFS algorithm. However,
this approach causes an uncovered edge, and the robot may
fail to operate in the corner. In [2], a knowledge reasoning
for robot CPP combines with the BFS to avoid the dynamic
obstacles under an uncertain environment, lowering repeti-
tion rate and computation time. Miao et al. [162] proposed a
distribution technique by using sub-map decomposition and
BFS methods. This technique decomposes an unknown map
into several sub-areas, distributes each robot to select the
nearest sub-areas to be covered by using a spiral pattern.
Both DFS and BFS algorithms can effectively optimize the
coverage paths in the case of a small graph.

2) DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm applies a generalized graph searching
technique for solving a single source shortest path issue with

non-negative costs for all the edges [163]. The algorithm
obtains the shortest path tree by visiting vertices from the
starting node according to the cost function in each neigh-
bor vertex. Almadhoun et al. [164] presented an efficient
path coverage by employing Dijkstra’s algorithm to explore
and visit all the nodes with minimum cost in an indoor
environment. Yehoshua et al. [165] introduced a spiral STC
approach to optimize coverage path, following with Dijk-
stra’s algorithm to find the minimum weighted path. Then,
an approximation algorithm builds each pair of the connected
area to solve the TSP, obtaining a higher expected percentage
coverage path. Cheng et al. [84] used Dijkstra’s algorithm
to calculate the shortest path between the stripe layer sub-
graphs (fast path searching), reducing the total action cost
to achieve maximum area coverage within the strip layer in
the attempt to minimize the revisited nodes. Rosa et al. [166]
presented the task planning of a multi-robot system by using
Dijkstra’s algorithm with a honeybee (hexagonal) structure.
Zhang et al. [167] improved Dijkstra’s algorithm by con-
sidering the cost function of turning times and angles. Nev-
ertheless, the search path is not optimal in terms of travel
distance [166], [167].

3) A∗ ALGORITHM
The A∗ algorithm determines a neighbor vertex by estimating
the cost of the path from the current vertex towards the
goal according to the heuristic function [168]. The algorithm
chooses the best node to find the shortest path instead of
searching the whole map. The algorithm based on the cost
function has been used to minimize the number of turns and
reduce the processing time of the path search [169], [170].
Viet et al. [171] implemented CPP by utilizing the A∗ algo-
rithm with a backtracking approach to obtain optimal cover-
age, albeit large memory is needed to store the backtracking
points. Cai et al. [172] described the concept of the A∗

algorithm to search the shortest path from escaping the dead
node to an uncovered area. However, it finds difficulty in
covering the cells around the obstacles if the robot moves in a
diagonal path. Also, the robot revisits the cell at a high over-
lapping rate without covering the other cells during obstacle
avoidance. Thus, Le et al. [173] proposed amodifiedA∗ algo-
rithm for CPP by determining the boundary waypoints and
obstacle waypoints, reducing the revisiting ratio by 7.01%,
and increasing the coverage ratio by 6.4% as compared to
traditional A∗. The A∗ algorithm can outperform DFS and
BFS algorithm if the location of the target is known.

4) D∗ ALGORITHM
The D∗ algorithm is effective for pathfinding in a dynamic
environment [174]. The algorithm is a variant of the opti-
mal A∗ algorithm capable of re-planning the path by apply-
ing the cost path optimization solution when the robot
encounters the obstacle. Dakulovic et al. [175] computed
the cost value in the D∗ algorithm to avoid revisiting nodes
and reduce the overlapping path in the path re-planning
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process. Maurovic et al. [176] implemented an active SLAM
to explore a dynamic environment by modifying the D∗

algorithm with negative edge weights. The D∗ lite algo-
rithm improved path re-planning efficiency by obtaining the
information from a previous search (shorter than D∗) [177].
Luo et al. [178] employed the D∗ lite re-planning algo-
rithm as a global path planner to generate a collision-free
path in an unknown environment and used the ant colony
optimization (ACO) to plan the sequence of the waypoint
path to address the TSP, minimizing the overall distance
along the planned trajectory in exploring a terrain. In [179],
an improved version of the D∗ lite algorithm, namely the
AD∗ algorithm could find the optimal path through online
re-planning for dynamic obstacle avoidance. In general, the
D∗ Lite algorithm is more efficient than the A∗ algorithm in
the path re-planning process when obstacles exist because the
D∗ lite algorithm having previous information data during the
first search but the A∗ algorithm needs to re-plan the path
from the beginning. Thus, the selection of the algorithm is
dependent on different requirements in the specific task.

5) THETA∗ ALGORITHM
The A∗ and D∗ algorithms discrete search methods cannot
find the shortest path in continuous space since the generated
paths are created by grid edges. Thus, the Theta∗ algorithm is
based on any angle pathfinding solver [180], and the Lazy
Theta∗ algorithm can address the limitation. The shortest
path generation is based on a pair of points on a grid map
that follows the vertex parent to be any vertex instead of
the vertex parent having to be a neighbor of the vertex
(A∗ algorithm). Choi et al. [181] presented an online CPP
of the cleaning robot using the Theta∗ algorithm and boustro-
phedon motion to optimize the local backtracking path. The
recalling pass knowledge determines the backtracking points
when the robot reaches an ending point after performing
a boustrophedon motion before planning the shortest back-
tracking path to the next starting point. Similarly, the cost and
goal selection functions could reduce the coverage time of
multi-robot CPP in an unknown environment [182]. However,
the algorithm failed to generate a global optimization solution
in terms of path length. In the case of 3D space, Lazy Theta∗

algorithm is more suitable to perform on cubic grids due to
the high number of neighbors per node as compared to 2D
space (square grids). Faria et al. [183] implemented frontier
cell exploration with Lazy Theta∗ algorithm to explore and
avoid the obstacle in the 3D Octomap framework. Mean-
while, [184] improved the efficiency of the Lazy Theta∗

algorithm by reducing the number of generated neighbors to
reduce the computation cost with a fewer number of line-
of-sight checks. Faria et al. [185] added the flyby sampling
technique in the exploration system, including frontier and
Lazy Theta∗ planner for global searching, CPP, and target
inspection to produce a smooth path and cover the region
without overlapped albeit the path length is not guaranteed
to be optimal.

H. EVOLUTIONARY ALGORITHMS
Evolutionary algorithms (EAs) are based on natural or genetic
evolution in which the algorithms tend to find a better solu-
tion for solving optimization problems [186]. EAs consist of
variation operators (crossover and mutation) and evaluation
of the fitness function. The fitness function determines the
qualities of individuals’ solutions by giving a corresponding
score value to everyone. The calculation of the fitness func-
tion can be expressed as an objective function for solving
optimization problems to minimize or maximize the value
of the fitness function [187]. EAs play an important role in
building genetic searching more efficiently for solving real-
world CPP optimization problems in mobile robots.

1) GENETIC EVOLUTION
The GA is a meta-heuristic population-based stochastic algo-
rithm inspired by the idea of natural laws of biogenetics [188]
as well as survival and breeding of the fittest for solving
search problems [189]. GA can produce a near-optimal solu-
tion to solve path planning problems rapidly with parallel
processing implementation. The GA algorithm is an ideal
way that has been introduced by Wang and Bo [190] to solve
the TSP in CPP. Hameed et al. [191], [192] presented a GA by
optimizing the selection of driving direction and sequence of
track from the perspective of less overlap path and minimum
cost. Shen et al. [193] used theGA to optimize the energy effi-
ciency based on the order of path connection between multi-
ple fields. Ellefsen et al. [194] employed a multi-objective
planner with EA in AUV to plan a coverage trajectory for
underwater surface inspection with non-dominated sorting
GA to generate the collision path on purpose, establishing
the planner with penalizing strategy. This method could pro-
vide a better balance in terms of coverage and energy usage
compared to circling and sampling-based CPP. In [195], the
computation time of the GA-based approach for TCP-CPP
is faster than DP-based when the free space is decomposed
into many cells. Due to the limitation of power usage and
communication distance, Sun et al. [22] applied the GA for
multiple robots to solve task allocation problems with the
multi-TSP model.

The GA has a good global search capability in an area
coverage but has poor stability due to large search space
complexity, requiring high computation time [196]. Hence,
Sadek et al. [197] introduced multi-objective GA combining
with DP for online CPP, improving the speed of convergence
toward the optimal value when a deterministic crossover pro-
cess replaces the randomized crossover process in GA [198].
Batista and Zampirolli [199] described the implementation
of the GA with a near-optimal sequence of CPP for pool
cleaning. The double fitness function could compute the
chromosome’s efficiency to reduce the energy consumption
of the robot. In [200], the simulated annealing algorithm and
the GA algorithm could generate the global and multiple
local area coverage paths, respectively. Both algorithms are
processed in parallel to reduce the computation cost. The
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simulation result proved that the algorithm has good sta-
bility in finding the shortest path after the 37th iteration.
Liu et al. [201] applied the optimization algorithm to com-
bine the GA and neural network to generate a cooperative
path. The GA optimizes the weights and thresholds of the
neural network through the learning process, providing a
93.74% coverage rate and a 4.25% repetition rate. Still, there
is room for improvement on the convergence efficiency of
GA and the combination of algorithms is a very promising
solution.

Differential evolution (DE) is an EA that alternative to
GA [202]. In every iteration, the trial vector generation is
an important step in the DE process to solve optimization
problems, including differential mutation, recombination,
and selection [203]. The performance is dependent on the
selection of the control parameter and the mutation strat-
egy. DE has several advantages, such as quick convergence
and robustness [204]. Vesterstrom et al. [205] conducted the
experiments over numerical benchmarks and demonstrated
the DE has a better performance compared to GA and PSO.
For the robot task planning problem, Xiao et al. [206] mod-
ified the DE algorithm by combining the roulette and multi-
neighborhood operations (to solve local optimal solution),
the de-crossover strategy (to increase the convergence speed),
and the multi-population integration strategy (to get high
computing resources). The DE optimal path model could
provide good performance as compared to the shortest path
model under limited energy usage. Gonzalez et al. [207]
utilized the DE algorithm to optimize the coverage path (zig-
zag path) by reducing the distance cost. The combination
of DE and fast matching square could generate a smooth
trajectory concerning turning radius while avoiding collision
with obstacles at minimum distance cost in four different 3D
environments.

2) SWARM INTELLIGENCE
Swarm intelligence is introduced by Beni and Wang [208],
inspired by the collective social behavior of living organ-
isms [209]. It refers to the collective intelligence that emerges
from the cooperation of swarm agents [210]. The objec-
tive of swarm intelligence is to develop a probability-based
search algorithm in optimization problems. Therefore, swarm
intelligence algorithms have been used to solve global and
non-linear optimization problems in the real world due to
the advantage of flexible ability and high efficiency [211].
There are several classes of optimization algorithms in CPP,
namely, PSO [212], ACO [213], and bee colony optimization
(BCO) [214]. The CPP-based swarm intelligence algorithm
utilizes particle population movements to find the shortest
path or reach a target with minimum duration to provide the
optimal coverage solution.

The PSO is a meta-heuristic algorithm based on the social
behavior patterns of organisms involving the swarming of the
natural population [215]. Lee et al. [216] conducted an online
CPP based on PSO to provide a smooth coverage path in a
high-resolution grid map. In [217], the clustering distribution

factor and PSO algorithm could cover the area in each divi-
sion map. Sahu and Choudhury [218] used PSO to generate a
trajectory for covering the targets globally. Y. H. Lin applied
single-objective PSO [219] and multi-objective PSO [220] to
optimize dynamic route planning. Wang et al. [221] demon-
strated that the CPP based on the PSO approach has less
redundant coverage as compared to the cattle method. Over-
all, the PSO has global searchability in the initial stage,
but the swarm can easily trap in local minima, leading to a
slow convergence rate during the lately searching process.
Couceiro et al. [222] used the Darwinian PSO algorithm
to divide the swarm into several small cooperative swarms
(sub-groups) to provide the ability for escaping locally opti-
mal solutions based on reward and punishment mechanisms.
In [223], a collection of the sampled paths feed into the PSO
framework could optimize the cost function in terms of the
quality and the efficiency of a coverage path. Then, the global
best particle updates the particle exploration with minimal
cost selected from the camera view, overcoming the limitation
of premature convergence. However, the computation time
is still huge on the different model sizes. Besides, the per-
formance of the PSO algorithm has a possibility of rapid
deterioration when it deals with multi-dimensional search
space [224]. Thus, [225] proposed a cooperatively coevolving
particle swarm optimization (CCPSO2) technique for solving
large-scale optimization problems. Sun et al. [226] proposed
a combined approach (CCPSO2 and modified GA) to find
the optimal solution sensor deployment problem and solve
the TSP, respectively, achieving better coverage and obstacle
avoidance in all the respective sub-regions, albeit lacks exper-
imental results.

The ACO is a probabilistic technique that bio-mimics
the behavior of ants and the process of searching foods
by searching the optimal path route to solve the complex
optimization problem [227]. Implementing the ACO algo-
rithm for solving the path optimization problems has sev-
eral advantages, such as strong robustness [228], [229] and
parallel computation [230], [231]. However, the algorithm
could easily trap in the local optimum as well as slow
convergence speed [232], [233]. Thus, [234] proposed an
improved ACO algorithm using a pheromone updating rule
to avoid trapping into the local minimum. Chibin et al. [235]
used the ACO algorithm to optimize the coverage of the
sub-area following the distance matrix. Zhou et al. [265]
introduced an ACO algorithm by optimizing block sequence
to solve TSP. Whilst [237] presented a global inspection
routing optimization based on the ACO algorithm. Max-Min
Ant System (MMAS) is another improved ACO algorithm to
solve the local optimum problem by bounding the pheromone
value between the maximum and minimum value [238].
Karakaya [239] applied MMAS for UAVs to plan the desired
paths for target coverage. Tewolde and Sheng [240] compared
the CPP performance in spray painting between GA and
ACO algorithms and showed that the ACO algorithm can
reduce the coverage path length by 13% relative to the GA
algorithm. Chen et al. [13] improved the accuracy of the
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spraying path by using an exponential mean Bézier curve
and trajectory optimization based on ACO or GA, further
enhancing the smooth path by optimizing the trajectory on the
Bézier surface [241]. Gao et al. [242] proposed an improved
ACO algorithm to optimize the coverage performance by
reducing the number of turns in multi-robot CPP in simulated
2D grid space. Ye et al. [12] improved the algorithm by
randomly calculating the transition probability and updating
the pheromone besides the acceleration factor, improving the
global searchability despite the randomness of the algorithm
could induce failure. Dentler et al. [243] utilized a waypoint
follower based on ACO combined with a chaotic solution of
a dynamical to enhance the coverage efficiency. However,
high-risk crash scenarios might occur due to poor localization
precision. Le et al. presented the cleaning robot (hTetro) [244]
and tiling robots (hTetrakis [245] and hTrihex [246]) for CPP
by using GA and ACO algorithms to reduce energy consump-
tion. Also, each robot type can change shape to provide high
efficiency of coverage in a given workspace. Han et al. [247]
used the glider to glide through the navigation points with
back-and-forth motion to cover the sea level with the ACO
algorithm to find the shortest path to avoid obstacles, which is
challenging with the influence of a thermocline that changed
the communication radius.

The BCO is another swarm intelligence based on a bio-
inspired machine learning algorithm similar to ACO and
PSO. Caliskanelli et al. [248] introduced a pheromone sig-
naling algorithm based on BCO [249] for multi-robot cov-
erage as well as a hybrid BCO-ACO pheromone signaling
technique to solve the loss of communication network prob-
lems in multiple robots [250]. Firefly algorithm (FA) is a
nature-inspired optimization algorithm [251] that has been
widely used in coverage and exploration of the unknown
area, especially mine disarming tasks [252], [253]. The goal
of multi-robots is to explore and cover the area for min-
ing as well as finding the optimal path for obstacle avoid-
ance. Palmeiri et al. [254] compared the performance of FA,
PSO, and BCO in the coordination of the swarm robotics
system in terms of energy consumption. FA also has bet-
ter performance to globally cover all the nodes than the
ACO algorithm, reducing the computation time by 7.2% and
decreasing the coverage path length by 2.5% in the case of
grid size 10 × 10 of dynamic sloped terrain [255]. Neverthe-
less, there is no significant improvement in the path length if
it increases the robot density. Henrio et al. [256] suggested
the hyper-parameters tuning based on Bayesian optimization
to apply on the FA for addressing the optimization prob-
lems. The grey wolf optimizer (GWO) is one of the recent
meta-heuristic algorithms that mimic the hunting behavior
and social leadership of grey wolves [257], whereby alpha,
beta, delta, and omega are the categories of the moving of
wolves [258], [259]. Kamalova and Lee [258] used the coor-
dinated multi-robot exploration (CME) and GWO algorithm
for multi-robot exploration to achieve optimal coordination
and optimize the coverage area effectively, achieving better
performance compared to the deterministic CME algorithm.

Although the average coverage is 97.98% in four different
obstacle maps, the obstacle avoidance constraint remains a
challenge. Meanwhile, [260] conducted a similar experiment
based on a multi-objective GWO algorithm to demonstrate
the robot coverage capability, but the robots kept revisiting
the previously explored area, leading to a long executing time.
Besides, the GWO algorithm finds difficulties in obtaining
global optimal solutions and dealing with dynamic obstacles
due to step size mechanisms. Thus, Ge et al. [261] improved
the local optimal solution by combining GWO and fruit fly
optimization algorithm. Also, Dewangan et al. [259] proved
that the improvedGWO algorithm has better exploration abil-
ity and local optimal avoidance. Kamalova et al. [262] imple-
mented the global waypoints control method in frontier-based
exploration to generate the frontier points that lie on the
open regions of uncertainties (the sensor does not receive any
transmitted signal) and create the global waypoint based on
the input parameters of the array of frontier points. The GWO
algorithm could estimate the next global waypoint by calcu-
lating the average of three distances from the current robot
position to the frontier point positions (mean alpha points,
mean beta points, and mean delta points), thus, achieving
high searching actions compared to the PSO algorithm. The
robot has a high capability to avoid the obstacle, although it
ultimately results in long-distance traveled.

3) ECOLOGY
The ecological algorithm is a bio-inspired algorithm from
nature, and it has been used in engineering and robotics as
an optimization method. Invasive weed optimization (IWO)
is a well-known algorithm that utilizes an ecological behav-
ior based on the colonizing property and distribution of
weed in nature [263]. IWO algorithm has better global con-
vergence and robustness in terms of optimization search
capacity [264], [265]. The algorithm transforms the weed
individuals into a positive integer by an encoder to reform
its population (the set of all weeds) to solve TSP prob-
lems [266]. Ghalenoei et al. [267] employed the discrete
IWO algorithm in a centralized manner for multiple task
assignments, resulting in less computation time relative to
GA. Zhuang et al. [268] presented the local and global cov-
erage holes’ detection and healing in the wireless sensor by
using IWO and DE algorithms. Sandamurthy and Ramanu-
jam [269] proposed the CPP based on a discrete IWO algo-
rithm with an improved 2-Opt operator for harvesting robots.
The IWO algorithm optimizes the collecting path (or TSP)
according to the distribution patterns of spreading invasive
weed whilst the partition strategy uses the Mahalanobis dis-
tance method, effectively optimizing the path and provid-
ing maximum coverage of 76% compared to existing graph
traversal techniques. The performance of the generated path
could be further improved using online methods in terms of
coverage.

I. HUMAN-INSPIRED ALGORITHMS
The human-inspired algorithm is one of the sub-intelligence
algorithms that mimic the human brain for learning to
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optimize decision-making in path planning. In recent years,
the algorithm has been studied in the field of exploration tasks
especially addressing coverage planning in a large dynamic
environment. The algorithm can avoid collision with obsta-
cles along the trajectory but still involves the considerable
computation burden and local minima problem.

1) NEURAL NETWORK
The neural network is a well-known model and one of the
most important in the field of robotics. It has been widely
used and applied to robot motion planning and control of
the robotic system. Besides, it also plays a crucial part in
enhancing the performance of CPP. Yang and Luo [270]
presented a non-learning neural network-basedCPP approach
for cleaning robots to avoid obstacles while planning a
collision-free coverage path, but the environment is assumed
to be off-line. Thus, [271] proposed a biologically inspired
neural network (BINN) for real-time CPP under a dynamic
environment. The BINN structure gives better performance
in the CPP of mobile robots since the learning process is not
needed (less computation). This approach has been further
improved to reduce the path planning time and provide a low
overlapping coverage area [272], [273]. However, the model
is not suitable for long-term online planning due to high
energy consumption. Yan et al. [274] introduced a neuro-
dynamics model in the real-time 2D grid map building that
could be applied to robot coverage through the neural activity
landscape, building a dynamic map and solving the CPP
in an unknown environment effectively. Meanwhile, [275]
presented a workspacemodel and guidance of multiple robots
using the neural dynamics method. Although the multi-robot
system increases the time efficiency of the area coverage,
the system has a high deployment cost. Yang et al. [276]
employed the BINN approach with pedestrian and obstacle
avoidance strategy to optimize the collision-free CPP tra-
jectory. Singha et al. [277] applied the BINN algorithm by
modifying the backtracking technique to improve the com-
puting efficiency of neural activities, overcoming the dead-
lock issue.

In CPP based on the BINN approach, the algorithm
requires high complexity and large calculation that leads to
the high cost. Besides, the robot must wait at the current
blind location until the neural activity value of the deadlock
is smaller than the neighboring locations (or decay) to escape
from the deadlock. Consequently, low-efficiency problems
may occur in the mobile robot, and it is not suitable for
long-term online planning. Thus, a Glasius bio-inspired neu-
ral network (GBNN) is an improved algorithm to decrease
the time taken of CPP, especially in escaping from the dead-
lock situation. Zhu et al. [278] proposed the GBNN model
to deal with CPP in building the 2D grid map. Whilst [279]
further built on the 3D grid map in static and dynamic envi-
ronments based on the GBNN approach. Although the model
has high computation cost, the robot could plan the path
to cover the area under a 2D or 3D environment without
collision. Sun et al. [280] introduced the cooperativemultiple

FIGURE 5. The agent-environment interaction in reinforcement learning.

robot system using the GBNN algorithm with the centralized
planning for CPP in the 2D static environment, dramatically
decreasing time complexity and reducing the repeated cover-
age in the region by 13.4% compared to the BINN method.
Kwon and Thangavelautham [281] presented the artificial
neural tissue control algorithm (sparse and variable topology
neural network with adaptive activation functions) to address
the coverage task. The advantages of using the controller are
the non-central controller and no communication between
agents of limited onboard sensors. Samarakoon et al. [282]
enhanced the area coverage by using a reconfigurable robot
and compared two similar performance techniques (feed-
forward neural network and adaptive neuro-fuzzy inference
system). Meanwhile, [283] investigated the tradeoff between
energy usage and area coverage using a fuzzy inference
system. The neural network algorithm has high computation
cost and time complexity, especially in focusing on CPP in
a large-scale environment, which still has the potential to be
optimized in the future.

2) REINFORCEMENT LEARNING AND DEEP LEARNING
Reinforcement learning (RL) is one of machine learning
where the agent learns to reach the desired goal by deal-
ing with sequential decision-making [284]. RL is neither
supervised learning nor unsupervised learning but instead
learns from the experience by trial-and-error rule. Markov’s
decision process (MDP) is the framework for describing RL
problems. The basic concept of RL is illustrated in Fig. 5.
The agent takes the possible action, by interacting with an
uncertain environment under the given state, st at each of a
sequence of time steps, t . As a result, the environment will
provide feedback to the agent while changing into a new
state, st+1 and the agent receives the reward, rt from the envi-
ronment. By providing new data (st , at , rt , st+1), the agent
can learn to self-optimize through iterations to generate the
policy, π from a training process.
RL is widely used in robotic applications [285], especially

in recent CPP work. Although the classical DP can solve the
optimal planning problem, it has difficulty solving large-scale
Markov decision problems due to the computation of the
transition probability matrices. Thus, RL has been devel-
oped to generate near-optimal solutions for solving com-
plex and large MDPs [286]. A model-free approach based
on RL has recently been successfully applied in real-world
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problems even if the environment model is incomplete [287].
Shakeri et al. [288] highlighted that RL could be utilized for
CPP. Jing et al. [289] proposed 3D surface inspection on
a production line using an MDP and ε-greedy forward tree
search (FTS) method to generate an online-based inspection
planning policy, proving that the ε-greedy FTS performed
better than the NBV method by reducing 24% of the aver-
age cycle time among eight target models. The proximal
policy optimization (PPO) algorithm is the policy gradi-
ent method that can be implemented in industrial coverage
spray painting [14]. Le et al. [290] used the PPO algo-
rithm based on the RL reward function to solve the TSP
optimization problem in finding a low-cost path. In [291],
the PPO algorithm with intrinsic rewards could provide a
high coverage ratio and prevent a frequent collision. However,
the coverage efficiency could decrease due to environmental
change. Piardi et al. [292] presented a Q-learning algorithm
by employing a grid map to optimize the CPP trajectory.
Meanwhile, [293] deployed a distributed Q-learning algo-
rithm for cooperative multi-agent with an information map to
enhance the coverage efficiency, providing stable local opti-
mal coverage solution in limited communication distance.

In real-world problems, the larger state-action (knowl-
edge) space may lead to the issue of retrieving the value
for all state-action pairs because the size of the table
that stores related knowledge is limited. Hence, deep RL
replaces the tabular function as function approximation to
avoid collecting large-scale data, such as Deep Q-network
(DQN) approach in mobile robot exploration and path plan-
ning [294], [295]. Sometimes, trained DQN tends to be
unstable because the deep Q-learning overestimates the
action value. Thus, Luis et al. [296] designed a double deep
Q-learning CPP to perform patrolling tasks effectively. Picia-
relli and Foresti [297] fed a bi-dimensional relevance map
into a convolutional layer in which the network is trained
by employing double DQN for optimizing the area coverage
of relevant zones according to the observation. The results
indicated that the RL approach is better than the zig-zag
path [296], [297], but only a single form of the result is
presented. Chen et al. [298] combined the n-step Q-learning
and fitted Q-iteration without using the replay buffer to train
the network for solving the CPP problem, reducing the path
length and number of turns by 21.8% and 38.6%, respectively,
but it is hard to deal with online CPP with the high search cost
of planners.

Typically, DQN suffers from slow convergence speed and
excessive randomness during training. Hence, actor-critic
methods were developed to accelerate the optimization and
training processes such as deep deterministic policy gradi-
ent (DDPG) algorithm and asynchronous advantage actor-
critic (A3C) network. TheDDPGmodel relies on architecture
with experience replay that frequently uses each sample from
the environment and separates the target network. Whereas
an A3C network utilizes the gradient descent algorithm
to optimize network controllers. The algorithm leverages
deep learning in continuous action spaces. Based on the

DDPG algorithm (the combination of policy gradient and
DQN), [299] proposed multi-AUVs using the online and
offline RL to perform coverage within the field of interest
and the communication range. Both RL approaches have high
efficiency as compared to the RWmethod and both have sim-
ilar performance, albeit the total traveled angle of the online
RL approach is more than off-line RL. The cost of explo-
ration in a complex environment could be high, especially in
dealing with obstacles. Hence, Hu et al. [300] enhanced the
learning speed of DDPG by integrating it with a prioritized
experience replay algorithm. Niroui et al. [301] developed
the A3C network with frontier exploration to generate a
robot path in an unknown map. Meanwhile, Cao et al. [302]
used a similar algorithm with the dual-stream Q-learning
technique for target search to explore the unknown envi-
ronment, but the task allocation is a problem. The cleaning
robot (hTetro) uses an actor-critic with an experience replay
algorithm (off-policy implementation of A3C) to enhance the
coverage time and energy efficiency, reducing the coverage
time by 25.88% and 29.11% as compared to ACO and GA
methods, respectively [303]. Kyaw et al. [304] addressed
the TSP on decomposed cells by using a long short-term
memory network (building units for layers of a recurrent
neural network), slightly reducing the path length and over-
lapping rate. [290], [303], [304] demonstrated the efficiency
of the RL approach (or deep RL approach) for finding the
solution of the TSP. However, the model is only best suited
for a self-reconfigurable robot in a 2D workspace, otherwise,
it could significantly increase the number of turns, leading
to a costly path in the conventional robot. Hence, the adapt-
ability of the RL approach with suitable robot platforms in a
dynamically changing environment is still a big challenge in
robotics.

J. OTHER CLASSICAL AND HEURISTIC ALGORITHMS
There are many other classical and heuristic algorithms for
exploration and CPP. The boustrophedon motion and the
internal spiral algorithm are simple CPP algorithms that are
commonly performed in each cell by back and forth (zigzag)
pattern and spiral path. Koval et al. [305] presented the
multi-agent exploration and coverage based on boustrophe-
don motion with a PRM planner. Balampanis et al. [306]
created a Delaunay triangulation mesh model to produce
coverage waypoint by utilizing the spiral pattern. Meanwhile,
[307], [308] proved that the smooth spiral path has better
coverage with minimal path length compared to the bous-
trophedon motion, but less attention to the curvature of the
complex surface. A Voronoi partition approach is a common
modeling technique that is applied in the distributed coordi-
nation for a multi-robot system [309]. Although the Voronoi
partition-based coverage using the STC algorithm can cover
the area with a non-overlapping path, prior knowledge of the
environment is required to complete the task. Brick and Mor-
tar is a heuristic search algorithm for multi-agent exploration
to search and cover the area of interest. Ferranti et al. [310]
presented the idea of using the Brick and Mortar algorithm
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TABLE 1. Randomized algorithms.

TABLE 2. Spanning tree coverage algorithm.

by thickening the block of visited or wall cells without losing
connectivity of explored or unexplored cells. The algorithm
marks the visited cells provided that the latter does not block
the path between two cells, either explored or unexplored
cells in the neighborhood. The algorithm shows better per-
formance in terms of speed and coverage. However, the algo-
rithm might stop executing because the agents strictly avoid
the visited terrain instead of finding a way to visit unexplored
areas. Becker et al. [311] used a multi-agent flood (MAF)
algorithm to explore unknown terrain by finding the point
of interest. Blatt et al. [312] combined the wavefront fron-
tier detection algorithm with the MAF algorithm to increase
searching speed as well as using the Bug2 algorithm with
edge following technique to bypass the obstacle and find the
frontier points along the straight line from the start position
to the end position.

Xiao et al. [313] proposed an improved CPP method
to overcome the drawbacks of hierarchical clustering and
iterative self-organizing field planning algorithms in terms
of computation and overlap rate. The local search and the
cost path could be improved by utilizing the nearest neigh-
bor insertion algorithm and variable neighborhood strategy.
Meaclem et al. [314] and Ding et al. [315] used the k-means
clustering method and the density-based spatial clustering
algorithm, respectively to partition the regions and assign the
robots in each region for area coverage. Azpurua et al. [32]

segmented the environment into sub-hexagonal cells and
divided them into sub-regions by the k-means algorithm.
Although the robot can execute the planned path, the wind
disturbance could significantly influence the robot’s perfor-
mance. Tang et al. [316] used CCPSO2, k-means clustering
with a feedback mechanism, and GA combined with A∗

algorithm for sensor deployment, area partition, and CPP.
Miao et al. [317] proposed amap decomposition and sub-map
cleaning according to the types of edge corners (concave or
convex) around the boundaries of the wall and obstacles for
multi-robot distribution. Each distributed robot can cover the
area in different assigned tasks and cover the whole map in a
large environment but lacks experiment results [316], [317].

Ma et al. [318] presented the CPP algorithms to deal with
the area coverage issues, especially in the dead zone and
obstacle boundaries. A quadtree segmentation method could
build a neuron map to split the map into different levels of
sub-blocks before the Hilbert curve traversal algorithm tra-
versed eachmode to obtain the path. Liang et al. [319] applied
the path generator strategy with the Hilbert curve techniques
for data collection to maximize area coverage. A supervi-
sory control-based algorithm has also been implemented in
a multi-robot system to enhance exploration efficiency [320].
Song and Gupta [321] introduced the ε∗ algorithm using an
Exploratory Turing Machine (ETM) to supervise the robot
for performing the CPP. The waypoint initiation is based on
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TABLE 3. Artificial potential field algorithm.

TABLE 4. Sampling-based planning algorithms.

multi-scale potential surfaces then forms 2D multi-level tape
to enable adaptive decision-making. The algorithm forms the
baseline coverage based on a resilience approach in multi-
robots [24]. An implementation in a re-planning algorithm
according to the game-theoretic framework, whereby each
robot is supervised by a discrete event system, holding the
promise of resilience if robot failure occurred. Although the
ε∗ algorithm has low computation complexity, the robot can
trap in the local optimum. Hence, Shen et al. [322] deployed
the onboard sensor to update the map information by using
ETM with Dubins path, avoiding trapped near the obstacles.

IV. DISCUSSION AND FUTURE RESEARCH DIRECTION
The review compared the CPP technique of various algo-
rithms and described the robot deployment methodology

depending on the environment modeling involved in the CPP
of a known or unknown environment. Table 1 to 7 shows
the summary of the CPP methods by analyzing each tech-
nique’s benefits and limitations, and their main contributions
in tackling the coverage tasks. Notably, most studies have
been conducted in the simulated environment, if not deployed
in off-line mode due to the constraint within the respective
field of research, such as hardware platforms and environ-
mental conditions. Hence, some of the researchers have made
assumptions for online deployment in a dynamic environ-
ment. However, existing works still lack a robust solution for
inefficiency, unreliability (task execution), and instability in
the real environment. Some of the CPP algorithms are not
well developed, leading to poor optimization for coverage
efficiency and obstacle avoidance. Table 8 listed the detailed
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TABLE 5. Greedy search and graph search algorithms.

descriptions of the technical properties of the motion plan-
ning problem, whilst Figure 6 shows their respective features
comparison of different algorithms in a typical grading scale.
Table 9 shows computational complexities in big O-notation
by analyzing each kind of algorithm. Table 10 illustrates
a performance comparison of the seven algorithms regard-
ing the coverage efficiency, optimization criteria, and future
trends.

Randomized algorithms (e.g., random walk and chaotic
CPP) arewell-known for randomor unpredictable trajectories
in the motion plan. They are widely used in low-end swarm
robotics without the need for map information, effectively
searching and exploring an unknown environment. They pro-
vide a very simple randommotion, running inO(log n), which
only records the current vertex, n, and count the number of
steps taken. Some works (i.e., the searching efficiency in

terms of step length, the number of visited cells, and coverage
time) have been considered key aspects in futures steps.

In any case, the STC algorithm could optimize a cover-
ing path in each area, addressing the single robot coverage
problem and provide the least coverage repetition to cover
all accessible grids. Other improvement methodologies such
as spiral STC, full-STC, and smooth STC could achieve
a maximum coverage rate over the original STC. Those
STC methodologies compute the coverage path in linear
time, O(n), where n is the number of grid cells (sub-cells).
An extension of multi-robot STC follows a proper selection
from various cellular decomposition techniques to shorten the
coverage time in a large area. STC is simple, responsive to
change in the environment, but only suitable to operate under
no circumstances of the dynamic obstacles due to the path
generated is predetermined. The new spanning tree could be
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TABLE 6. Evolutionary algorithms (Metaheuristic).

constructed based on the remaining uncovered grid cells by
using a path re-planning algorithm to cope with dynamically
changing in the environment, yielding additional computation
time.

APF algorithm is a simple calculation that provides fast
planning speed of obstacle avoidance path by building a

model according to attraction and repulsive forces analogy.
APF does not need global information; thus, the robots can
effectively avoid the obstacle in real-time and coordination
control of multi-robot. However, the robots can easily fall into
the local optimum if large or arbitrary obstacles approach the
target point. This is due to no movement takes place when
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TABLE 7. Human-inspired algorithms (Neural network).

TABLE 8. Detailed description about the properties of motion planning problem.

the amounts of repulsive and attractive forces, acting on the
robot are equal. Besides, the planned path is not an optimal
path and the adaptability in handling dynamic obstacles is rel-
atively poor, leading the robots to easily collide with moving
obstacles. Although the APF approach only validates local
obstacle avoidance and is hard to meet high-speed robots’
requirements, it is still most suitable for low-end swarm
robots by combining with the randomized algorithm.

DP is a classical exact-based approach to solve the TSP
optimization problem. It guarantees to choose the best solu-
tion within an acceptable time in finding the global opti-
mum. Nevertheless, the time complexity increases to address
the largest tour, leading to high computation power. Hence,
approximation approaches had gained attention to solve
large-scale TSP, i.e., metaheuristic evolutionary algorithms.
Evolutionary algorithms were proven to be effective to deal
with single or multiple objective optimization problems. For

example, GA often finds the best solution to address the com-
binational optimization problems (i.e., task allocation). PSO
requires few parameters and takes less time to reach the target
with computationally simple. On this account, it is sensitive
to control parameters, directly influencing the performance.
Whereas, the ACO algorithm has high efficiency in finding
the shortest TSP but is not practical in performing real-time
planning due to large memory to store in a pheromonematrix.
FA achieves fast convergence speed and simplicity due to
minimum parameters adjustment. Albeit the metaheuristic
algorithms have robust global or local searchability, they tend
to fail into local minima.

Recent trending includes hybrid algorithm (the combina-
tion of local search heuristic and evolutionary algorithm, i.e.,
2-opt algorithm and IWO [269] or two heuristic algorithms,
i.e., GA and PSO [226]) in optimizing the CPP solution.
The hybrid algorithm incurred a high computation time but
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TABLE 9. Computational complexities of each type of algorithm.

TABLE 10. Comparison of various coverage path planning algorithms: Performance and analysis.

delivers better coverage efficiency in terms of TSP optimiza-
tion. The selection of best-suited hybrid algorithms from
various metaheuristic algorithms for a specific CPP problem
is still uncertain due to lacking benchmarks or satisfactory
solutions.

In graph theory, search algorithms are probably the most
widely used in shortest path finding between two nodes. BFS
and DFS algorithms are the basic graph search techniques to
get the shortest path due to their blind search strategy (without
information about the environment). They can provide better
searching in small problems but are often inefficient in terms

of time and memory. Their time complexities are O (m∗n),
where n is the number of vertices (nodes), and m is the
number of edges. In contrast, informed search algorithms,
i.e., Dijkstra’s algorithm, A∗ algorithm, andD∗ algorithm, are
highly efficient heuristic search techniques to find the solu-
tion. Dijkstra’s algorithm is a classical backtracking solution
for tackling the CPP problem, a logical choice for indoor CPP
implementation for a small distance when the robot escapes
from the dead zone. Whereas A∗ and D∗ algorithms are the
fastest approaches known so far to speed up the search in
the large and complex search space, but they do not often
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FIGURE 6. The performance evaluation of the different algorithms based on five key features (as described in Table 8).

guarantee to provide the least-cost path due to their heuristic
strategy.

The time and space complexities of Dijkstra’s algorithm
are O(n log n) and O(n), respectively, in finding the single
source shortest path. In most cases, the O(n2) is the best
possible solution to compute the shortest distance for all
pairs of vertices for dense graphs. The complexities of A∗

and D∗ are highly dependent upon their heuristic functions

(estimate the cost from the given vertex to goal), reducing the
complexity to a lower degree, i.e., O(log n), which enable for
online implementation, yielding to O(n2 log n) or O(n2) if
utilizing a binary heap to implement the priority queue. The
only difference between them is the capability to meet the
requirement of mobile robots in a dynamic environment: A∗

relays on the nodes with the lowest value of the summation
of the cost path from the start node to any given vertex and
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the heuristic function, whereas D∗ relays on the nodes with
the lowest value of estimated cost by comparing the goal
node and current node (A∗ - forward search; D∗ - backward
search). Thus, the D∗ algorithm has a better solution to
address a complex problem, i.e., dynamic environment, as it
can handle this situation based on updating the reverse search
process (incremental search) to re-plan the path.

Alternatively, D∗ lite (based on lifelong planning A∗) is
preferable as it is simple to implement (shorter than D∗),
utilizing one tie-breaking criterion when comparing prior-
ities (simplifying maintenance). However, the complexity
of the D∗ or D∗ lite could dramatically increase when the
search space is relatively large due to many re-planning
executions. Also, an unrealistic distance could be produced
if there is a lot of moving obstacles. Overall, the A∗ algo-
rithm has a high search efficiency in a static environment
(i.e., shortest backtracking path for a mobile robot). Whereas
D∗ lite algorithm is better suited for dealing with changes
in obstacle features (i.e., industrial robotic manipulator for
inspection).

In most cases, the paths are constrained to the edges in
dealing with a discrete grid-based map (regular patterns),
leading to the generated path is not being the best shortest
path. The theta∗ algorithm overcomes this shortcoming with
an any-angle search method based on the utilization of a line-
of-sight check (LoS-Check). It is best suited for large-scale
coverage in an unknown environment, mainly deployed by
holonomic aerial robots to find the next starting point since
the planned path is fast and smooth. Alternatively, sampling-
based planning algorithms such as PRM and RRT could
specifically deal with the motion planning problem for non-
holonomic constraints. RRT algorithm (single-query planner)
is preferable in solving single start and goal states, but it
fails to converge to the optimal solution. Hence, the RRT∗,
a variant of RRT, eventually claims to reach convergence
towards the optimal solution by employing local rewiring
operations.

Although it is more promising to solve the shortest path
problem in a significantly large search space and the unknown
cluttered environment with narrow corridors, it requires
additional smoothing and re-planning algorithms to follow
the shortest path and avoid the dynamic obstacles, respec-
tively. This is due to the elimination of unnecessarywaypoints
in the path pruning process, generating a linear piecewise
path, resulting in not being feasible for a robot with kino-
dynamic constraint. Similarly, theta∗ algorithm might deal
with the same issue, it needs to further implement the
post-processing technique to achieve a kinematically-feasible
path. Despite both RRT∗ and Theta∗ algorithms have been
improved into several variants based on LoS-Check to obtain
the trade-off between the solution quality and the planning
time in tackling the coverage task, there is still lacking clear
solution and performance comparison of each algorithm. Due
to LoS-Check and online collision checking, the time com-
plexity of the RRT∗ and Theta∗ could reach toO(n2) andO(n3

log n), respectively.

For high-quality structural coverage, view planning is
the top priority for accurate surface modeling. Based on
the previous studies’ findings, the NBV planning approach
could gain the most informative view that considers the
unknown area from a given partial model. Nevertheless,
this approach does not consider the global route of the
environment, leading to the overlapping path with the pre-
vious known views that might exist. Some features like
holes and sparse surfaces might get ignored, resulting in
less completeness of the constructed model. The receding
horizon NBV technique achieves higher performance in local
exploration, but it is prone to local minima due to poor
global coverage. It also requires a relatively expensive to
explore in a large workspace because it tends to terminate
the exploration prematurely when the robot is not closer
to the nearest frontier (low-cost function). Thus, the com-
putational complexity of this technique mainly depends on
RRT tree construction, gain estimation (using ray casting)
and collision checking, giving the overall complexity as
O

(
n log n+ n log

(
V/r3

) (
NM/r4 + 1/r3

))
, where N is the

number of horizontal rays,M is the number of vertical rays, r
is the map resolution and V is the volume of the environment
to be explored [122]. In the current research review, the com-
bination of fusion-based algorithms provides better solu-
tions, utilizing various algorithms’ advantages. For instance,
sampling-based planning with frontier-based exploration
methods could optimize local and global searchability [149],
[323]. In addition, the combined receding horizon NBV and
frontier-based exploration approach could reduce the compu-
tational complexity of gain estimation from inversely quartic
growth to inversely linear growth, providing the overall com-
plexity as O

(
n log n+ nV

(
NM/r + 1/r3

))
[144]. There are

still many limitations as the performance might be degraded
due to localization drift and high computation requirement for
online operation, as well as the algorithm is highly dependent
on the sensor used and map resolution. Hence, there is an
endless opportunity for a fusion CPP algorithm with high-
quality optimization and a correct model in a real-world
situation for future work.

Recently, human-inspired approaches have received more
attention in addressing the CPP problem. The BINN and
GBNN are the most effective techniques to deal with
real-time coverage tasks as they do not need a learning pro-
cess. It utilizes the neural activity landscape for generating an
optimal path without prior knowledge of the environment and
no explicit searching procedures in the neural networkmodel.
Thus, they have a high capability to handle an unknown
static and dynamic environment. Instead of waiting for the
long decay time in the neural activity process, the GBNN
provides a better model in rapidly escaping from deadlock to
overcome the shortcoming of the BINN. Both models could
achieve obstacle avoidance in real-time and the complex-
ity is squarely proportional to the degree of discretization,
O(n2), where n is the number of neurons in the system.
The BINN has also been utilized to deal with the prob-
lem of multi-robot formation control in coverage planning
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tasks [325]. Still, somehow the optimal path is planned close
enough to the obstacles or multi-robot near-collision situa-
tion, leading to difficulty avoiding the fast-moving obstacles.
The robot might eventually fail when moves along the edge
of the obstacles, leaving many rooms for improvement in
planning the strategy in a rapidly changing environment.
Most studies assume the location of the robot is known with
prior knowledge of the environment, high precision sensing,
and ideal communication network due to the experimental
is often involved high-cost hardware with expensive sensor
and safety hazard in the workspace. Notably, the adaptability
of the BINN approach to work in real-world applications is
still uncertain as there is a big gap between the simulation
environment and practical experimental.

More recently, deep and RL started to gain importance
in addressing the CPP problem, allowing experience-driven
learning to tackle real-world problems. Several studies based
on RL have been made to accomplish the coverage task,
i.e., avoiding collision [291], balancing the coverage ratio
and energy usage [326], and is beneficial for view planning
in solving SCP optimization [327]. Metaheuristic algorithm
is superior in solving small workspace but can get stuck in
local minima and the computational complexity exponen-
tially increases when the workspace expands. Conversely,
the deep RL approach is an alternative to solve the optimiza-
tion problem under a large and complex environment, such
as disinfection tasks in reducing the spread of COVID-19 in
workspaces [328]. Although deep RL has relatively better
performance, it is not preferable to tackle small workspaces
due to the model computation complication of huge agent
training time and hyperparameter tuning. Performance com-
parison between the deep RL approach and metaheuristic
algorithms for holonomic and non-holonomic robots in solv-
ing TSP are lacking. It is challenging to use deep RL to
deal with multi-robot CPP tasks in an unknown environ-
ment. Nevertheless, deep RL offers a promising future direc-
tion for addressing CPP problems despite being relatively
immature.

Many CPP algorithms and methodologies have been pre-
sented in the field of robotics research. However, there
revolves many constraints and technical issues awaiting to be
explored and addressed. Future research should focus on the
following directions:

A. COVERAGE COMPLETENESS AND TIME-EFFICIENCY
TRADEOFF
The robot’s number of turns dramatically influences the total
coverage time. CPP techniques widely adopt back-and-forth
motion due to simple path design compared to spiral motion.
However, in a large-scale unknown environment, seeking
coverage completeness often results in a longer path and
more turning, increasing coverage time and reducing effi-
ciency. In a 3D complex structure, the existing algorithm is
limited to handling the target with hidden parts, which is
considered a non-interest region and obstacle in most pre-
vious research, leading to significant time-consuming for a

complete coverage plan. Therefore, the right balance between
the coverage completeness and execution time is required to
optimize the overall coverage efficiency.

B. ROBOT ADAPTABILITY VERSUS COST-EFFICIENCY
Dynamic environmental characteristics might influence the
robot’s motion and lead to unnecessary performance degra-
dation. Robots might lack flexibility and easily get trapped
in common dead-lock situations. The robot with the abil-
ity to change operating behavior over time is essential to
seek a collision-free path under an unknown environment
with uncertain obstacles. Besides increasing the number
of onboard sensors in handling complex environments, the
computation cost might be high. Evolutionary algorithms are
typically not suitable in low-cost robots due to large mem-
ory requirements and computationally expensive. Therefore,
the computation cost factorsmust be considered for designing
a suitable environment model for CPP. The hybrid algorithm
is an exciting development to manage the change in the
environment with minimum cost.

C. PATH SMOOTHNESS
The coverage and connectivity are crucial in wireless sensor
networks. With limited communication and sensing capa-
bilities, the robot cannot regenerate the best path if the
unexpected occurs, degrading the effective coverage ratio.
A kinematic constraint of the robot, such as path curvature,
is also one of the challenges that must be addressed. For
fast-moving robots such as drones, trajectory smoothing on a
sharp turn helps to provide the robot with an efficient inertia
motion transfer to minimize power consumption and prevent
premature mechanical damage. Hence, there is a need to
project a smooth path while following the CPP route [329].

V. CONCLUSION
Comprehensive knowledge of the CPP algorithms based on
classical algorithms and heuristic-based algorithms was sum-
marized in this paper. All the elements were listed and com-
pared by analyzing the merits and demerits of each technique.
The challenges that exist in the CPP were critically evalu-
ated, involving coverage efficiency and collision avoidance
in terms of several typical features such as area coverage,
path length, travel time, repetition rate, and energy usage.
Most of the approaches were shown the capability of the
robot to avoid obstacles effectively and cover the area in a
static and dynamic environment with the highest coverage
percentage and low overlapped paths. Each algorithm can
perform well in practice, but still has the limitation in the
CPP literature. The optimization algorithms may still not
well develop in solving CPP problems. As such, the SCP,
TSP, and local minima escaping problems are necessary to
be tackled. The connection between local and global coverage
paths could solve the integrated TSP and CPP problems. Still,
it is limited to handling the target with hidden parts. The
issue of adaptability in the complex unknown environment
still not well solving. Deep RL has been applied in various
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CPPwith great achievement in recent development. However,
the current RL techniques are still immature, thus, many
challenges need to be addressed before carrying out the CPP
in the dynamic environment. In a multi-robot scenario, issues
such as robot distribution and structure of the environment
should be considered for improving the efficiency of CPP.
Even though multi-robot can cover the AOI collaboratively,
transferring data online is still challenging [330]. In future
work, the performance of the CPP could be improved by
combining other algorithms to reduce the shortcoming of the
existing classical algorithms. The hybrid algorithm should
be the direction of CPP development. Lastly, the researchers
believed that the experimental results could be conducted
from real scenarios with the verification of the simulation
model.
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