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ABSTRACT As industries become automated and connectivity technologies advance, a wide range of
systems continues to generate massive amounts of data. Many approaches have been proposed to extract
principal indicators from the vast sea of data to represent the entire system state. Detecting anomalies using
these indicators on time prevent potential accidents and economic losses. Anomaly detection in multivariate
time series data poses a particular challenge because it requires simultaneous consideration of temporal
dependencies and relationships between variables. Recent deep learning-based works have made impressive
progress in this field. They are highly capable of learning representations of the large-scaled sequences in an
unsupervised manner and identifying anomalies from the data. However, most of them are highly specific to
the individual use case and thus require domain knowledge for appropriate deployment. This review provides
a background on anomaly detection in time-series data and reviews the latest applications in the real world.
Also, we comparatively analyze state-of-the-art deep-anomaly-detection models for time series with several
benchmark datasets. Finally, we offer guidelines for appropriate model selection and training strategy for
deep learning-based time series anomaly detection.

INDEX TERMS Anomaly detection, deep learning, fault diagnosis, industry applications, Internet-of-Things
(IoT), time series analysis.

I. INTRODUCTION
Everything on the Earth is a source of signals. Humans
have continuously measured and collected signals occurring
in nature, such as temperature, wind speed, rainfall, and
sunspot intensity, to adapt to the environment. In addition,
for decades, various industrial activities have been generating
numerous data in most fields of industries such as business
(e.g., sales and market trend), finance (e.g., stock price),
biomedical (e.g., heart and brain activity), and manufacturing
(e.g., yield). In each industrial field, the data owners actively
collect and leverage them to improve products, processes, and
services. In particular, with the advent of Industry 4.0, indus-
tries have started to intensively utilize numerous sensors to
monitor their facilities and systems simultaneously, resulting
in increased efficiency, safety, and security [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Zhou.

Among the various data types, time-series data has been
studied for a long time in academia, such as medicine, mete-
orology, and economics, and is now an essential target of
analysis in most practical applications. Time-series analysis
refers to a range of tasks that aim to extract meaningful
knowledge from time-ordered data; the extracted knowledge
can be used not only to diagnose the past behavior but also
to predict the future. Widely-known examples of time-series
analysis include classification, clustering, forecasting, and
anomaly detection.

Anomaly detection, the process of identifying unexpected
items or events from data, has become a field of interest for
many researchers and practitioners and is now one of themain
tasks in data mining and quality assurance [2]. It has been
studied in a variety of application domains and has experi-
enced significant progress. Classical methods including lin-
ear model-based methods [3], distance-based methods [4],
density-based methods [5], and support vector machines [6],
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FIGURE 1. Anomaly types in time-series data.

are still a viable choice of algorithm. However, as target
systems become larger and more complex, those methods
face limitations, namely an inability to manipulate multi-
dimensional data or address a shortage of labeled anoma-
lies. In particular, detecting anomalies in time-series data
is challenging because the order and the causality between
observations along the time axis need to be jointly consid-
ered. Recently, many approaches have been developed to
address these challenges. For instance, Hu et al. [7] proposed
a novel computational method using a recurrence plot (RP),
a square matrix consisting of the times at which a state of a
dynamic system recurs. They measure the local recurrence
rates (LREC) by scanning the RP with a sliding window
and detect anomalies by comparing similarities between the
statistics of the LREC curves.

Deep learning, a subfield of machine learning algorithms
inspired by the structure and function of the brain, has been
getting attention in recent years. Deep-learningmethods learn
the complex dynamics in the data, while making no assump-
tions about the underlying patterns within the data. This prop-
erty makes them the most attractive choice for time-series
analysis these days. For instance, Yan et al. [8] proposed to
combine ensembled long short term memory (LSTM) neural
networks, which memorize long term patterns in time series,
with the stationary wavelet transform (SWT), to forecast
the energy consumption. Their experimental results showed
that the proposed deep-learningmethod outperforms classical
computational methods.

The goal of this study is to review state-of-the-art deep
learning-based anomaly detection methods for time-series
data. To the best of our knowledge, previous reviews [1],
[2], [9]–[14] on this subject matter do no more than sim-
ply categorize models according to their mechanisms and
describe their characteristics. In this paper, in addition to
classifying the models according to their methodologies,
we further analyze in detail how they define interrelation-
ships between variables, learn the temporal context, and iden-
tify anomalies in multivariate time series. Also, we provide
guidelines to practitioners based on comparative experimen-
tal analyses using several benchmark datasets. Our analyses
provide practitioners with helpful insights for choosing the

best-suited method(s) for the problem(s) they are trying to
solve.

The rest of the paper is organized as follows: in Section II,
we provide elementary backgrounds on anomaly detection
and time series. In Section III, we present various indus-
trial use cases. In Section IV, we present notable con-
ventional methods and discuss the underlying factors that
have made them no longer sufficient for recent applica-
tions. In Section V, we review recent anomaly detection
methods in-depth according to how they define the inter-
correlations between variables, model the temporal context,
and set anomaly criteria. Through Section VI-A to VI-B,
we evaluate the deep learning-based anomaly detection meth-
ods on several benchmark datasets and provide a comparative
review. Finally in Section VII, we provide general guidelines
for model selection to fit given conditions and problems.

II. BACKGROUND
A. ANOMALIES IN TIME-SERIES DATA
We begin with introductory remarks on the definition of
anomalies. Several attempts have been made to describe
the nature of anomalous data (i.e., statistical outliers).
Hawkins [15] described an outlier as an observation that
deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.
In this context, we can describe the anomaly in time-series
data as the data point(s) at time step(s) that shows unexpected
behaviors that differ significantly from previous time steps.
Following the previous works of literature, we categorize the
types of anomalies related to time-series data as follows.

1) POINT ANOMALY
Point anomaly is a data point or a sequence that abruptly
deviates from the norm (Fig. 1(a)). Such anomalies may
appear to be temporal noise and are often caused by sensor
errors or abnormal system operations. For detection, oper-
ators traditionally set upper and lower control limits, com-
monly referred to as UCL and LCL, respectively, based on
prior data. Values that exist outside those limits are regarded
as point anomalies.
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TABLE 1. Description of the detailed classification of anomalies in time-series data.

2) CONTEXTUAL ANOMALY
Similar to a point anomaly, a contextual anomaly represents a
data point or sequence observed over a short time but does not
deviate from the normal range in the same way as predefined
UCL- and LCL-delimited anomalies. However, considering
the given context (Fig. 1(b)), the data points are out of the
expected pattern or shape. For this reason, these anomalies
can be difficult to detect.

3) COLLECTIVE ANOMALY
This type of anomaly refers to a set of data points that should
be considered an anomaly because they gradually show a
different pattern from normal data over time (Fig. 1(c)). Indi-
vidual values within this type of anomaly may seem trouble-
free, but collectively, they raise suspicion. Since they are not
easily recognizable at once, contexts over the long term are
of particular importance in detecting them.

4) OTHER ANOMALY TYPES
Since anomaly is something outside the normal state, what is
abnormal depends on what we define to be normal. Generally
speaking, anomalies can be classified into one of the three
aformentioned types, but other perspectives may subdivide
anomalies into more specific categories. Table 1 shows the
taxonomy of anomaly patterns and their examples described
from [16], [17].

In summary, an anomaly is a data point whose occurrence
was either extremely rare in the past or is logically impos-
sible. However, in multivariate time-series data, it may not
be valid to classify anomalies as in the previous examples.
Multivariate time-series data require additional consideration
of the relationship between variables along with the time
axis. As the number of variables increases, more diversified
patterns occur. Then, an abnormal pattern may be irregu-
lar, and the difference between normal and abnormal state
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may be ambiguous. Scanning the individual univariate time-
series data and aggregating them to identify anomalies do
not guarantee the accuracy of detection results because few
anomaly points can be obscured by the other normal variables
and significantly affect the entire target system. Reducing the
dimensions by extracting clear variables or features or using a
model complex enough to detect various patterns can address
such problems.

B. PROPERTIES OF TIME-SERIES DATA
Although time is an essential concept in nearly all tasks,
working with time-sensitive data requires lots of careful
consideration. Nevertheless, if the characteristics of time-
series data are well-understood, anomalies can be effectively
detected by utilizing the contextual information from signals.
Therefore, we describe the fundamentals of time-series data
in a nutshell. The factors discussed here include temporality,
dimensionality, nonstationarity, and noise.

1) TEMPORALITY
A time series is generally considered to be a collection of
observations indexed in a time order [18]. The data are cap-
tured at equal intervals, and each successive data point in the
series depends on its past values. Hence, there is some impli-
cation of the temporal correlation or dependence between
each consecutive observation [19]. A joint distribution of
sequence of observations can be expressed using the chaining
product rule as (1).

p(x1, x2, . . . , xT ) = p(x1)
T∏
t=2

p(x t |x1, x2, . . . , x t−1), (1)

where x t is a data point observed at time t ∈ T ⊆ Z+
and each conditional probability p(·|·) indicates the temporal
dependence between current state and previous ones.

2) DIMENSIONALITY
Dimensionality refers to the number of individual data
attributes captured in each observation [9]. According to
the dimensionality, time-series data is largely divided into
univariate and multivariate types. The dimensionality of
time-series data influence computational costs and analysis-
method choices.
• Univariate: This type describes an ordered set of real-
valued observations, where each data point is measured
at a specific time, t ∈ T ⊆ Z+. Then, x t ∈ R is a
data point measured at time t and is a realized value of
a certain random variable, X t [2].

• Multivariate: This type describes an ordered set of mul-
tidimensional vectors, X = {xt }t∈T , each of which is
recorded at a specific time, t ∈ T ⊆ Z+, and contains
real-valued observations. In practical circumstances, this
can be seen as a group of univariate time-series data
streams representing the state of the target system.

Anomaly detection for univariate time series only con-
siders the relations between the current state and the

previous states, i.e., temporal dependence. But for a multi-
variate stream, both the temporal dependence and the corre-
lations between observations should be considered. Despite
the added trickiness, multivariate time series data has now
become a typical type of data for analyzing various behaviors
created by combinations of several variables.

3) NONSTATIONARITY
A time series is said to be stationary if its statistical properties
do not change over time. More explicitly, for any τ ∈ N,
a continuous stochastic process x = {x t }t∈T⊂Z+ is strongly
stationary if following condition is satisfied, as in (2).

Fx(x1+τ , . . . , x t+τ ) = Fx(x1, . . . , x t ), (2)

where Fx denotes the joint distribution function. Ideally,
we want a stationary time series for modeling, but many of
the desired properties are not satisfied in real-world scenar-
ios. Volatile features, such as seasonality, concept drift, and
change points, make time-series data non-stationary.
• Seasonality: This refers to a periodic and recurrent
pattern caused by factors such as weather, holidays,
marketing promotions, and the behaviors of economic
agents [20]. In short, it is a periodic fluctuation over
a limited time scale. For example, power consumption
is high during the day and low during the night. Like-
wise, online sales increase rapidly over the Black Friday
weekend and then decrease again.

• Concept Drift: The nonstationarity of many real envi-
ronments may lead to changes in the underlying sta-
tistical distribution of a data stream over time. This
phenomenon goes by many names in literature, the most
common of which is concept drift [21]. This is a central
issue, because it can derail the performance of models
learned from historical data [22].

• Change Points: In the manufacturing industry, the nor-
mal state of equipment often changes for several reasons.
For instance, process conditions change as operations
are stopped and restarted with a different setting.

Because most time-series data are nonstationary, data points
that indicate spurious anomalies at certain timestamps may
not be truly anomalous on a larger scale. Hence, detection
methods that adapt to changes in data structures are required
for long-term deployment.

4) NOISE
In signal processing, noise is a general term for unwanted
changes to signals during their capture, storage, transmission,
processing, or conversion [23]. It is considered a bread-and-
butter issue in real-world systems. In many cases, noise is due
to minor fluctuations in the sensor sensitivity and will have
essentially no effect on the overall data structure. However,
when the separation between noise and anomaly in a noisy
system is difficult, noise seriously affects the performance of
detection models [24]. Therefore, it is crucial to understand
the nature of the noise and reduce noise during the prepro-
cessing stage.
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III. INDUSTRIAL APPLICATIONS
Various industries have increased their competitiveness by
adapting to the changing environment using the latest digi-
tal technology. Cloud computing, big data, mobile devices,
IoT, and artificial intelligence (AI) have led to the hyper-
connectivity and super-intelligence of industrial sites. Com-
bining digital components with physical world phenomena
helps reduce operating costs, increase business agility and
flexibility, and create new revenue models. Anomaly detec-
tion using these technologies is particularly essential to indus-
try because it is highly demanded by real-world applications,
such as fault detection in manufacturing, leak detection in
gas-chemical processes, cyber intrusion detection, and struc-
tural health monitoring in infrastructures.

A. SMART MANUFACTURING
The idea of smart factory conceptualizes a highly digitalized
and connected combination of facilities and equipment that
can improve productivity and quality through automation and
self-optimization. In an automated manufacturing process,
equipment conditions are most closely related to quality and
productivity. Stable operation leads to better quality, and
efficient operation reduces manufacturing time and improves
productivity. Therefore, it is crucial to detect faults immedi-
ately or forecast possible anomalies in equipment.

The equipment applied in smart factories includes the
production equipment, the infrastructure facility, and the
logistics automation equipment (Fig. 2). The production
equipment manufactures products efficiently while maintain-
ing quality. The infrastructure facility supplies power, water,
gas, and chemicals to the manufacturing process; it also puri-
fies wastewater and chemical waste. The logistics automation
equipment carries products from one place to another.

While several machine learning techniques have been uti-
lized to detect damage, faults, and abnormalities in these
types of industrial equipment [25]–[28], deep-learning mod-
els have shown a great promise.

1) PRODUCTION EQUIPMENT
Data-driven models help equipment operation in large man-
ufacturing factories because they can detect possible fail-
ures without extensive domain knowledge. Hsieh et al. [29]
adopted an autoencoder (AE) based on long short-term mem-
ory (LSTM) to learn the normal state of equipment and
detect anomalies in multivariate streams occurring in pro-
duction equipment components. LSTM-based AE contains
an encoder and a decoder, each of which consists of LSTM
networks, variants of recurrent neural networks (RNN).

In most manufacturing work areas, computer numerical
control (CNC) is utilized to shape and machine metal and
other rigid materials by cutting, boring, grinding, shearing,
or other deformations. Luo et al. [30] proposed an early
fault detection model for a CNC machine. They employed
a stacked autoencoder (SAE) to mine sensitive fault features
from large-scale vibration data during long-term operations.

FIGURE 2. The examples by equipment type: (a) A production equipment
named etching machine in semiconductor manufacturing creates chip
features by selectively removing dielectric and metal materials on a
wafer; (b) An infrastructure facility called the central chemical supply
system safely supplies high-purity chemicals to the semiconductor
manufacturing process; and (c) A logistics automation equipment called
automated guided vehicle transports product components in work areas.

They used cosine similarity function as a health indicator for
predictive maintenance.

After convolutional neural networks (CNN) revolutionized
the field of computer vision [31], researchers also began to
apply CNN to time-series data analysis [32]. CNN-based fault
detection and diagnosis models showed their competence in
handling multivariate time-series data captured from semi-
conductor manufacturing processes in [33]–[35].

2) INFRASTRUCTURE FACILITIES
Pumps, chillers, and scrubbers are representative infras-
tructure facilities for maintaining environmental conditions
(e.g., temperature, purification, and pressure). In particular,
industrial pumps are used for various reasons, such as sus-
taining a vacuum state in equipment or pipes and exhaust-
ing gases and sludge. Pumps are usually driven in parallel.
Thus, even if one pump behaves abnormally, the other pump
can compensate for it, leaving the operator unnoticed. This
scenario provides tolerance for abnormalities, but the heavily
loaded pumps will inevitably wear faster. Therefore, accurate
detection and prediction of anomalies are required to enhance
the stability of the manufacturing process. In this regard,
Lindermann et al. [36] employed a discrete wavelet trans-
form (DWT) and LSTM-AE to detect anomalies across mul-
tiple pumps. Another method used CNN to recognize failures
with converted images from vibration signals of pumps [37].

Heating, ventilating, and air conditioning (HVAC) is a
representative system that is key to providing indoor environ-
mental comfort via temperature control, oxygen replenish-
ment, and removal of moisture and contaminants. Recently,
deep learning-based anomaly detection and diagnosis models
for this system have been proposed in [38], [39].

During chemical processes, abrupt changes in the air
supply or the contamination levels can significantly dam-
age the product quality. Therefore, several anomaly detec-
tion studies have been conducted over the years. Wu and
Zhao citewu2020fault employed a pre-trained AlexNet, one

1https://www.lamresearch.com/wp-content/uploads/2018/01
2https://expo.semi.org/korea2020/Custom
3https://researchforecast.com/global-automated-guided-vehicle-market
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of CNN models, to extract general features from data and
perform transfer learning using the joint maximum mean
discrepancy. The proposed model showed a great general-
ization performance to various chemical processes. Another
example [41] used LSTM for the early detection of faults via
particle attrition in a chemical-looping system. Contaminant
detection and treatment are essential in wastewater treat-
ment (WWT) as well. A recent study leveraged LSTM to
monitor and detect faults in the WWT process, showing a
remarkable performance [42].

3) LOGISTICS AUTOMATION SYSTEM
The manufacturing industry’s recent interest in highly
flexible production systems is related to the increasing
demand for more individualized products [43]. This situation
requires production flexibility, which has been enhanced by
autonomous guided vehicles (AGV) that transport product
components between work areas during the manufacturing
process [44]. AGV reduce the cost of human intervention and
allows on-demand changes regarding product types.

Despite numerous advantages, there are several crucial
obstacles that must be overcome when using AGV. For exam-
ple, if one of the vehicles is damaged or malfunctions, it can
cause a bottleneck, and the others have to move further,
resulting in significant economic loss. To take an appropriate
action when such a problem occurs, the condition of vehicles
must be monitored at all times. Acosta and Kanarachos [45]
presented amethod that estimates nonlinear vehicle dynamics
based on signals in the vehicle. They employed a structure
composed of an Extended Kalman Filter (EKF) and neural
networks to predict the lateral tire forces and the road grip
potential. EKF assumes the distribution of uncertainty as
nonlinear Gaussian and estimates this by repeating predic-
tion and correction. Gräber et al. [46] proposed a side-slip
angle estimator using RNNwith gated recurrent units (GRU).
Because RNN, especially with GRU, explicitly models long-
term dependencies, it achieves an excellent estimation qual-
ity while generalizing over different conditions. Although
conventional approaches like EKF are still dominant in the
industry, a well-designed RNN with sufficient data can be a
competitive solution since it relies on fewer model assump-
tions like the underlying physical equations.

Another solution would be to monitor the route the AGV is
traveling rather than the AGV itself or to avoid congested sec-
tions. Since the early 2000s, in semiconductor manufacturing
plants, tens-of-thousands of AGV have transported wafers
along ceiling rails (i.e., the overhead hoist transport). In
these systems, neural network-based methods [47], [48] have
been proposed for rail condition diagnosis. They monitor the
positions of the upper- and lower- rail cables and the cable
holders. Another method used a decision tree [49] to detect
unplanned stopping or slowing of vehicles in factories.

B. SMART ENERGY MANAGEMENT
Stable supply and efficient consumption of energy are
essential to cope with rapid climate changes and resource

FIGURE 3. Smart energy management systems collect data from energy
supply and consumption processes. It provides real-time monitoring to
alert possible failures (e.g., leaks, overloads, cyber intrusions), helps
stakeholders analyze data, and sometimes renders remote control.

shortages. Thus, anomaly detection in energy supply and
consumption processes has become increasingly important.
In terms of supply, if a power outage occurs, it causes signifi-
cant losses to consumers. In contrast, if energy is unnecessar-
ily consumed, higher prices are paid and energy is wasted.

As illustrated in Fig. 3, a large amount of data are collected
and reported in the smart-energy management system. This
provides all involved individuals the opportunity to better
understand and predict consumption patterns. Autonomous
collection devices, in turn, reduce the requirement for manual
meter readings [11]. Furthermore, real-time early detection of
possible failures allows energy suppliers to deal with prob-
lems ahead of time instead of relying on reactionary efforts.
The success of smart-energy systems in the power sector has
enabled the full embodiment of the smart-grid paradigm in
water and natural gas fields [50].

1) ELECTRIC POWER
Several applications in [51]–[53] have been proposed to
detect anomalies in multivariate time-series data generated
by power plants. They take advantage of various deep
neural-networkmodels (e.g., convolutional LSTM,CNN, and
attention layers), achieving remarkable results. Aside from
anomaly identification, collected metrics data are used to
diagnose the severity of problems.

A wide variety of approaches has also been proposed to
detect consumer-side losses, such as abnormal consumption
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patterns, unnecessary waste, and theft [54]–[56]. Diagno-
sis results are reported to the consumer using the energy-
management systems to prevent problems and develop future
strategies.

2) TREATED WATER
Water treatment and distribution systems determine the
quality of both potable and industrial water supplies.
Water-treatment facilities mainly exist in secure areas, but
distribution networks are comprised of countless pipelines
that span large areas. Since distribution networks are
widespread and often vulnerable, the risk of physical attacks
always exists. To make the matter worse, a cyber-intrusion
poses a bigger threat, and the related damages have a sig-
nificant impact. In this regard, several real-world datasets
(e.g., SWaT and WADI) have been released [57], [58] so
that researchers can use them without the need to collect vast
numbers of data personally.

Li et al. [59] adopted a generative adversarial net-
work (GAN) to detect anomalies in multivariate time-series
data and validated their method on the aforementioned
datasets. More recently, a method using a temporal hierar-
chical one-class network (THOC) [60], a combined structure
with several layers of dilated RNN and multiscale support
vector data description (MVDD), has shown a superior per-
formance to the other state-of-the-art networks.

Several tools that detect abnormalities in consumption
patterns also exist. Representatively, Vercruyssen et al. [61]
exploited an active-learning strategy using constraint-
based clustering and label propagation to monitor water
consumption.

3) MANUFACTURED GAS
Crude oil, hard coal, and natural gas are manufactured into
petroleum products and transformed into solids, liquids, and
gases worldwide. Similar to the water-treatment process,
the purification and refinement processes directly affect qual-
ity of petroleum products. Inspired by a successful image
segmentation network, Wen et al. presented a time-series
anomaly detection model using a CNN [62] that adopted a
transfer-learning framework to resolve data sparsity issues.
They demonstrated its effectiveness with the gasoil plant
heating-loop dataset [63], which includes cyber-attacks on
utility systems as a variety of data points. Moreover, energy
management systems are required to manage gas storage
and transport thoroughly and constantly, not only for cost
reduction but also for environmental safety. On that matter,
a recent CNN-based model was proposed [64] to detect gas
leaks by monitoring flow noise inside the pipes.

C. CLOUD COMPUTING SYSTEM
In cloud computing, client data are stored and managed
in remote data centers by a service provider [65]. These
providers are required to allocate appropriate resources
to users in real-time while storing sensitive information
securely. As cloud services become more popular, intrusion

detection has become crucial. Hence, providers now leverage
logs and time-series data to monitor the states of servers and
networks to detect deviations from normal patterns. Hundreds
of thousands of suspicious events are continuously detected
by such monitoring systems every day. Therefore, time-series
anomaly detection on cloud systems with subsequent diag-
nosis of the current state and tracing of the root causes is
important to maintain high service availability [66], [67].

1) SERVER MACHINE
On a server, multivariate time-series metrics, such as the
processor load, the network usage, and the memory status,
are made available. Su et al. [68] proposed a variational
AE (VAE) with gated recurrent units (GRU) for monitor-
ing a server machine, named OmniAnomaly. They combine
the hidden state of the GRU et and the stochastic variable
of the previous time step zt−1 in qnet, which acts as an
encoder. And the resulting value is fed to the dense layer
to sample the current stochastic variable zt. This variable
passes through the planar normalizing flow so that it can
learn the complex posterior well, and it is connected to
zt−1 using linear Gaussian state space model in the pnet,
which acts as a decoder, to obtain temporal dependence.
After that, the value x′t is sampled from the estimated distri-
bution through the reconstruction process. For similar pur-
pose, hierarchical temporal memory (HTM) and Bayesian
network-based approaches have been proposed [69]. Mean-
while, CNN-based approaches [70], [71] have been veri-
fied to be effective on several datasets from global cloud
enterprises.

2) NETWORK AND FRAMEWORK
Moreover, as the network traffic grows exponentially,
it becomes ever more necessary to constantly monitor
network systems and distributed processing frameworks.
Audibert et al. [72] proposed AE, in which one encoder and
two decoders are trained adversarially, to identify network
anomalies. In addition, Zhao et al. [73] recently suggested a
graph attention network-based method to detect anomalies in
a big-data processing framework. They explicitly modeled
correlations between sensors via attention layers, captured
temporal dependence with GRU, and increased performance
by jointly applying forecasting and reconstruction results.

3) CYBERSECURITY
In addition to ordinary physical threats, malicious cyber-
attacks have become critical issues for the reliability and
security of cloud systems. For this reason, numerous meth-
ods have been proposed to protect customers’ sensitive
information [74]–[76].

D. STRUCTURAL HEALTH MONITORING
Civil infrastructure, including buildings, bridges, levees,
pipelines, are composed of large and complex structures
that carry large loads while operating in tough environ-
ments. These structures are designed to operate safely under
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expected loading ranges, but corrosion and damage can occur
due to repeated exposure to operation over their lifespans.
If the damages are not detected on time, a structure becomes
more vulnerable to failure or results in a safety accident.
Structural health monitoring (SHM) evaluates their loads
and responses and identifies abnormal behaviors to main-
tain these structures [77]. Some anomalies in SHM data
caused by imperfect sensors and the poor quality of data
transmission must be eliminated because they can cause
false alarms and affect the structural performance assessment.
However, eliminating them requires expertise and is very
time-consuming.

In this respect, several approaches have been proposed
recently. Bao et al. [16], imitating the recognition process of
humans, transformed data as image files and fed them into
stacked autoencoders (SAE) for anomaly classification. They
trained each layer of the network one at a time, and this
training scheme is referred to as greedy layer-wise training.
After this phase is completed, they fine-tune all layers to
improve the results. They verified the performance of the
proposed framework with real-world data from a long-span
cable-stayed bridge in China.

Similarly, Tang et al. [17], taking advantage of the inter-
pretability of visualized data, converted raw time-series data
to images and split the continuous data into segments by
windowing data without overlap. Afterwards, they fed the
pre-processed data into a CNN-based classification model.
Each segment was decomposed into the time domain and fre-
quency domain with Fast Fourier Transform (FFT) and fused
as an image by stacking time response image and frequency
response image.

IV. CHALLENGES OF CLASSICAL APPROACHES
Even before deep learning was popular, people had developed
various mathematical and statistical models to analyze time-
series data, applying them widely across various fields. Here,
we introduce some representative methods and describe the
challenges that remain to be solved.

A. CLASSICAL APPROACHES
1) TIME/FREQUENCY DOMAIN ANALYSIS
Time-series data can be analyzed in the time domain using
the width and the height of measured thresholds. Another
straightforward yet efficient method is to apply Fourier
analysis to examine data with frequency-domain representa-
tions. According to the Fourier theorem, any periodic func-
tion, no matter how complex it is, can be expressed as
a combination of periodic components, such as a sum of
sines/or cosines. Fourier analysis is a process that recovers
the function from those components. Discrete Fourier trans-
form (DFT) is one of the popular methods and takes the
following form:

Xk =
T−1∑
t=0

xte−i2πkt/T , k = 0, . . . ,T − 1, (3)

where Xk is k-th frequency value transformed from given
input data xt . Once you transform the raw time series to a
frequency spectrum, as in (3), and sort it by coefficients,
you can acquire the seasonal periods by inverting the high-
est frequency. In practice, fast Fourier transform (FFT),
a speed-up version of DFT, is a preferred choice.

2) STATISTICAL MODEL
To mathematically analyze time-series data, we can generate
a statistical model by calculating statistical measures, such
as mean, variance, median, quantile, kurtosis, skewness, and
many more. With the generated model, newly added time-
series data can be inspected to determine whether it belongs
to the normal boundary [78].

3) DISTANCE-BASED MODEL
Many algorithms use the explicit-distance between two tem-
poral sequences to quantify the similarity between the two.
Based on the obtained similarity metric, newly obtained
sequences will be flagged as an anomaly if their distances
from the normal one fall outside the expected range. The
most common measure of distance is the Euclidean distance,
as in (4), which computes the distance as the length of a
segment connecting two points.

D(x, y) =

√√√√ T∑
t=1

(xi − yi)2. (4)

Dynamic time warping (DTW) is a popular distance mea-
sure, allowing nonlinear alignments between two sequences
that are locally out of phase [79]. Assume that we have two
sequences X and Y, whose lengths are M and N, respectively.
DTW between the two sequences are measured as follows:

1) Create cost matrix C using dynamic programming
algorithm, as in (5).

C(i, j) = D(i, j)+min


C(i− 1, j− 1)
C(i− 1, j)
C(i, j− 1),

(5)

where i is a data point of X, j is of Y, D(i, j) is a
distance between i and j, and C(i, j) is a minimumwarp
distances of two sequences.

2) Trace back from CM ,N to C1,1 to get the optimal warp-
ing path W (w1,w2, . . . ,wL), choosing the previous
points with the lowest cumulative distance.

3) Finally, calculate the final distance usingW , as in (6).

Dist(W ) =
k=L∑
k=1

wk . (6)

4) PREDICTIVE MODEL
Predictive models are used to forecast future states based
on the past and current states. We can deduce the anomaly
according to the severity of the discrepancy between the
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predicted value and the real one. For example, the autoregres-
sive integrated moving average (ARIMA) [80] are frequently
employed models to forecast time series. ARIMA model is
composed of three parts:
• Auto-regressive (AR) model is composed of a weighted
sum of lagged values, and thus we can model the value
of a random variable X at time step t as (7).

AR(p) : Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt ,

(7)

where {φi}
p
i=1 are auto-correlation coefficients, ε is an

white noise, and p is the order of AR model.
• Moving-average (MA) model computes the weighted
sum of lagged prediction errors and is formulated as (8).

MA(q) : Xt = εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q,

(8)

where {θi}
1
i=1 are moving-average coefficients,

εt denotes a model prediction error at time step t , and
q is the order of MA model.

• Integrated (I) indicates the time series using differences,
and thus a data point at time step t is X̂t = Xt − Xt−1,
when d = 1, where d denotes the order of differencing.

As a result, the ARIMA model with the order-parameters
is formulated as follows:

ŷt = µ+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p︸ ︷︷ ︸
AR(p)

−θ1εt−1 − θ2εt−2 − . . .− θqεt−q︸ ︷︷ ︸
MA(q)

, (9)

where µ is a constant and yt = Yt − Yt−1, when d = 1.
As described in (9), each value at a specific time step is
affected by previous observations and prediction errors, so the
ARIMA models the temporality of time series. Also, the dif-
ferencing process makes the time series stationary, resulting
in the ARIMA being effective for non-stationary time series.
If the time-series data has a seasonal- or cyclic- variation,
we can use a seasonal ARIMA (SARIMA) [81] model. In this
case, we introduce additional parameters: P,D, andQ, which
deal with the seasonality. These parameters are used in the
same manner as p, d , and q.
Fundamentally, ARIMA is not capable of modeling multi-

variate data. Instead, autoregressive integrated moving aver-
age exogenous (ARIMAX) [82] model that has an additional
explanatory variable or vector autoregression (VAR) [83]
model that uses vectors to accommodate the multivariate
terms is used to replace ARIMA.

5) CLUSTERING MODEL
In an unsupervised setting, clustering-basedmethods are sim-
ple yet effective choices for grouping the data and detecting
the anomalies. Once you map time-series data into a multidi-
mensional space, clustering algorithms group them close to
the centroid of each cluster depending on their similarities.

FIGURE 4. Flowchart of MapReduce model.

Models classify newly received data samples as anomalies if
they are far from pre-defined clusters or have low probability
of belonging in any of the clusters.

Popular data clustering methods include the k-means algo-
rithm [84], one-class support vector machine (OCSVM) [85],
Gaussian mixture model (GMM) [86], and density-based
spatial clustering of applications with noise (DBSCAN) [87].
The above methods may be insufficient to be applied
when datasets have mixed attributes, such as numerical and
categorical values. To resolve this issue, the k-prototypes
algorithm [88], a simple combination of k-means and
k-modes algorithm, was proposed. The k-prototypes algo-
rithm measures dissimilarity between two mixed-type
objects X and Y , which are described by attributes
Ar1,A

r
2, . . . ,A

r
p,A

c
p+1, . . . ,A

c
m. The dissimilarity is measured

as [88, eq. (10)].

d2(X ,Y ) =
p∑
j=1

(xj − yj)2︸ ︷︷ ︸
numeric attributes

+ γ

m∑
j=p+1

δ(xj, yj),︸ ︷︷ ︸
categorical attributes

(10)

where the first term is the Euclidean distance between the
numeric attributes and the second one is a simple matching
dissimilarity between the categorical attributes.

The above clustering methods are still representative
benchmarks but are becoming outdated. Recently, data has
become more large-scaled, and thus it requires clustering
algorithms that can deal with the massive size of data in both
sequential and parallel computing environments. In order to
effectively process large amounts of data, we can consider
two approaches; One is to increase the computational speed
by reducing the size of the data, and the other is to split the
data into small chunks and process them in parallel.

Structural clustering algorithm for networks (SCAN) [89]
is one of the successful density-based clustering algo-
rithms for a graph, a fundamental data structure. Several
works [90]–[92] use nodes/edges pruning techniques to
reduce the number of structural similarity comparisons,
thereby boosting the efficiency of SCAN without sacrificing
the clustering quality for graphs with millions or even billions
of edges. These methods skip vertices that are shared between
the neighbors or remove outliers before update clusters.
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FIGURE 5. A taxonomy of recent deep learning-based time-series anomaly detection methods. HTM, hierarchical temporal memory; RNN, recurrent
neural networks; TCN, temporal convolutional networks; GNN, graph neural networks; GAN, generative adversarial networks; VAE, variational
autoencoder. Most of the models do not use only one structure or method but combine several ones. We classify the models based on the main structural
characteristics of each model and denote types of anomaly scores with colored circles. * is an exception because the roles and influences of Transformer
and GNN are clearly separated.

Similarly, Li [93] improveDBSCAN, a density-based cluster-
ing algorithm for numerical data, to prevent redundant com-
putations with the fast nearest neighbor query that exploits
the triangular inequality.

The second approach is to distribute the data among sev-
eral machines or processors to accelerate processing of an
extensive volume of data. MapReduce [94] is one of the most
widely used parallel processing models for data-intensive
applications. As illustrated in [95, Fig. 4], this model consists
of two main functions: the Map and the Reduce functions.
Considering k-means as an example,MapReduce tasks follow
the procedure as:

1) The dataset is split into multiple chunks and they are
fed to the mappers in the form of <index, value>.

2) The Map functions calculate the distance of each sam-
ple from centers, and then assign the samples to the
closest cluster: <index, center>.

3) The Reduce functions compute the partial summation
of the samples with the same center and binds them in
the form of <center, (sum, #samples)>.

4) The synchronization phase sequentially calculates the
new centers by dividing the sum by #samples and
update centers: <cluster, new center>.

5) Repeat until convergence.
Over the past few years, variants of k-means clustering using
MapReduce [96]–[98] have been introduced. Meanwhile,
Scalable k-means++ [99] utilizes MapReduce at the initial-
ization phase instead of the post-initialization phase.

B. CHALLENGING ISSUES
Although traditional approaches have made much progress in
anomaly detection in time-series data, there is still room for
improvement because of the following challenges.

1) LACK OF LABELS
Failure modes in most industrial circumstances are extremely
rare, and therefore they are insufficient for use as labeled
training data. The scarcity of failure modes makes collecting
enough labeled training data time- and resource-intensive.
Even when labeled data are obtained, the class imbal-
ance between normal and abnormal data hampers model
training.

2) COMPLEXITY OF DATA
Analyzing univariate time-series data is still a critical topic
in applications that require less computation, such as edge
computing. Nonetheless, as more industrial applications are
automated and the complexity of control systems increases,
separately monitoring individual univariate time-series data
becomes impractical. With the large numbers of dimensions,
traditional approaches generally experience a non-negligible
drop in performance due to the curse of dimensionality.More-
over, correlations between variables that cannot be inferred
by univariate time-series analysis can also be used to indicate
anomalies.

V. DEEP LEARNING FOR ANOMALY DETECTION
In this paper, we focus on recent anomaly detection models
that have been used to overcome the challenging issues men-
tioned in Section IV. Therefore, our survey works under the
following assumptions.
• Semi-Supervised/Unsupervised Learning: All data are
considered to be in the normal class for semi-supervised
learning, whereas no explicit distinction between nor-
mal and abnormal classes is considered in unsupervised
learning. Both strategies learn the data structure to over-
come the shortage of labeled data.
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TABLE 2. Inter-correlation between variables.

• Multivariate Data: The models should be capable of
extracting and exploiting the information entangled in
multivariate time-series data.

• Deep Learning: Deep-learning methods are explored to
handle a complex and massive amount of data.

The overall taxonomy of recently published anomaly
detection methods for time-series data is shown in Fig. 5.
We classify the methods according to their choices of archi-
tectures and denote how they calculate the anomaly score
from given data with colored circles. Two or more of the
scores can be jointly considered.

In this section, we analyze these methods from three per-
spectives: how they define inter-correlation between vari-
ables; how they model the temporal context information; and
how they define anomaly scores or thresholds.

A. INTER-CORRELATION BETWEEN VARIABLES
Most deep-learning models for multivariate time-series data
establish relationships amongmultiple variables at every time
step. This spatiotemporal information considers not only the
temporal context but also the correlation between variables.
Table 2 shows how the correlations of multivariate variables
are established in the recent works.

1) DIMENSIONAL REDUCTION
A status of a large-scale system can be represented using
a few significant factors. Thus, we can reduce the amount
of computation by extracting the main features via dimen-
sional reduction. Typically, a linear algebra-based method
including principal component analysis and singular value
decomposition, or a neural-network-based method including
AE and VAE is used. Some previous works process the
individual univariate time series, while the others treat the
reduced representations as multivariate series. Dimension
reduction also has a setback: detecting the cause of anomaly is
difficult.

2) 2D MATRIX
A 2D matrix directly captures the morphological similarity
and the relative scale among individual variables. More-
over, it considers multivariate variables jointly, making it
robust to turbulence at specific points in time. Two rep-
resentative definitions of the 2D matrix, mt ∈ Rn×n

FIGURE 6. A mechanism of graph attention layer. Red circle is the final
output.

are formulated as follows:

mtij =
1
w

w∑
δ=0

x t−δi x t−δj , (11)

mtij =
1
w

w∑
δ=0

∥∥∥x t−δi − x t−δj

∥∥∥ , (12)

where X = {x1, x2, · · · , xT } are multivariate time-series
data with n variables of length T , that is, X ∈ Rn×T , and
xt = (x t1, x

t
2, · · · , x

t
n) is an n-dimensional vector. On one

hand, if the phase of the entire variable suddenly rises or
falls due to an unexpected event, (11) can detect anomalies,
but (12) cannot. On the other hand, when the overall phase
changes by a concept drift or a change point, (12) dismisses
this event as normal, while (11) flags an unnecessary alarm.

3) GRAPH
A graph can define an explicit topological structure and learn
the causal relationship among individual variables. Recently,
several approaches [73], [108], [109] that applied an atten-
tion mechanism to GNN have been proposed to improve
performance for identifying root causes. A directed graph
is formulated as G = (V, E), where V = {1, 2, . . . ,N } is
the set of N nodes, and E ⊆ V × V is set of edges. Here,
eij denotes the edge from node i to j. Generally, given a graph,
the attention layer outputs representation for each node as
follows:

yi = σ (
L∑
j=1

αijvj), (13)

where yi denotes the feature representation of node i.
σ corresponds to the sigmoid activation function, αij to the
attention score which measures the influence of node j to
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TABLE 3. Modeling temporal context.

node i, where j is one of the L adjacent nodes of i, and vj
to the feature vector of node j. We can compute the attention
score αij by the following equations:

eij = LeakyReLU(w> · (vi ⊕ vj)) (14)

αij =
exp eij∑L
l=1 exp eil

, (15)

where ⊕ concatenates two node features. w denotes a set of
learnable parameters, and LeakyReLU is a nonlinear activa-
tion function that has a gentle slope for negative values. Fig. 6
illustrates the intuition behind the graph attention.

4) OTHERS
Some methods [60], [68], [72], [110] that use the raw data
can directly identify anomalies in the data. Meanwhile,
Ding et al. [111] employs a multivariate Gaussian distribu-
tion to define correlations between data attributes.

B. MODELING TEMPORAL CONTEXT
The history of a sequence contains a great deal of knowl-
edge about its behavior and can suggest future shifts. Hence,
estimating the distribution alone is limited in detecting con-
text and collective anomalies. In time-series applications,
the temporal context should be considered when modeling
the normal status. Table 3 shows the taxonomy of models in
terms of modeling the temporal context.

1) RNN
Several deep learning-based approaches to model the tem-
poral context. One of the most common benchmarks uses
RNN to recognize pattern sequences and predict expected
values. Thus, we can determine anomalies by identifying the
differences between the predicted and actual signals. RNNs
have been extended with other variants, such as LSTM [122]
and GRU [123].

LSTM and GRU address the vanishing or exploding gra-
dient problem, where the gradient becomes too small or
too large as the network goes deeper. There are multiple
gates in an LSTM and a GRU cell, and they can learn
long-term dependencies by determining the number of pre-
vious states to keep or forget at every time step. Meanwhile,
the dilated RNN, as illustrated in [124, Fig. 7], is proposed to

FIGURE 7. An example of a three-layer dilated RNN with dilation 1, 2,
and 4. With its recurrent skip connection and its use of exponentially
increasing dilation, it alleviates gradient problems and extend the range
of temporal dependencies with fewer parameters.

extract multi-scale features while modeling long-term depen-
dencies by using a skip connection between hidden states.
Shen et al. [60] adopt a three-layer dilated RNN and extract
features from each layer to jointly consider long- and short-
term dependencies.

RNN-based approaches are generally used for anomaly
detection in two ways. One is to predict future values and
compare them to predefined thresholds or the observed val-
ues. This strategy is applied in [60], [110], [111], [114]. The
other is to construct an AE or VAE to restore the observed val-
ues and evaluate the discrepancy between the reconstructed
value and observed one. This strategy is used in [29], [59],
[68], [104], [112], [113].

2) CNN
Although the RNN is the primary option for modeling time-
series data, CNN sometimes shows better performance in
several applications [53], [62], [115] that work with short-
term data. By stacking convolutional layers, each layer learns
a higher level of features from pixels to objects. In addition,
the pooling layers introduce non-linearity to CNN, allowing
them to capture the complex features in the sequences.

Instead of explicitly capturing the temporal context,
the CNN models learn patterns in segmented time series.
Hence, one of its drawbacks is that it is not easy to compre-
hend behaviors appearing over a long period. As an alterna-
tive, Temporal convolutional networks (TCN), a variant of
CNN, has been proposed in [125]. There are three distin-
guishing properties of TCN. First, the convolutions in the
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FIGURE 8. The examples of each type of anomaly criteria: (a) a reconstruction error; (b) a prediction error; and (c) a dissimilarity.

model are causal, meaning that they ensure no information
leakage from the future to the past. Second, it can take a
sequence of any length, just as with an RNN. Third, it can
look quite far into the past to forecast futures using a combi-
nation of deep networks and dilated convolutions.

3) HYBRID
When monitoring time-series data with a sliding window,
the detectable anomaly pattern varies according to the win-
dow size. For example, assume that we have three different
windows for 30 sensor data and define a covariancematrix for
each window. Then, the shape of the data becomes (30, 30, 3)
at time t like an image. If we stack the covariance matrices
from t − 4 to t to the time axis, the shape of the data
becomes (5, 30, 30, 3) like a video, in which case, we should
consider the spatial information and temporal dependencies
simultaneously.

Shi et al. [126] first proposed a ConvLSTM model to
solve the spatiotemporal sequence-forecasting problem. They
replace the dot products in the LSTM cell with convolution
operators, and consequently, all gates and states in the cell
are reshaped into 3D tensors that can capture spatiotemporal
information.Moreover, themodel learns state transitions with
fewer parameters. In [51], [74], the overall architectures were
based on AE and GAN, respectively. In their encoders, Con-
vLSTMs capture the spatiotemporal context from the feature
maps across the previous time steps. Additionally, a temporal
attention mechanism [127] adjusts the contribution of the
previous feature maps to update the current one.

4) ATTENTION
The attention mechanism was initially used as an auxil-
iary tool in models. However, novel approaches based on
attention layers, such as Transformer [128] and bidirectional
encoder representations from transformer (BERT) [129],
have become mainstream in natural language processing
(NLP). By paying attention to the input weights that con-
tribute more to the output, the attention-based models
can capture very long-range dependence with a relative

importance to each data point. The remarkable achievements
in NLP have led to a time-series anomaly detection domain.
In this regard, several works [73], [109], [120] employing
Transformer are presented recently.

5) OTHERS
Hierarchical temporal memory (HTM) is considered to be
one of the most promising next-generation deep learning
algorithms. It is designed to embody the structure and interac-
tion of pyramidal neurons in the neocortex [69]. It comprises
of stacked cells in a tree shape, and the columns of cells are
activated by the input and the previous states of connected
neighbors. HTM can capture and predict sequence patterns
and thus is beneficial to anomaly detection in time-series
data. what makes HTM more unique is that it continuously
learns temporal patterns from streaming data without back-
propagation. Hence, HTM requires minimal human interven-
tion to be trained in an unsupervised manner.

C. ANOMALY CRITERIA
The models addressed above learn the representation of the
given data in an unsupervised or semi-supervised manner by
minimizing a defined objective (loss) function. The objective
differs according to the model architecture and is generally
related to the decision criteria for abnormality.

Once the models are trained, they are applied to the sys-
tems and machinery state diagnoses. In general, diagnostic
results are expressed in numeric to help understand a given
status. We call this numeric indicator an anomaly score. The
greater it is, the more likely the state is to be abnormal.
Specifically, when the score exceeds a certain threshold,
the corresponding data point is determined as an anomaly.
In the past, domain experts decided this threshold empirically,
but now it is decided according to the model-training result.
Some models [68], [69], [110]–[112], [120], [121] employ an
adaptive threshold that continuously adjusts to the changes
in data over time. The schemes for deriving an anomaly
score can be classified into three types, as depicted in Fig. 8:
a reconstruction error, a prediction error, and a dissimilarity.
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1) RECONSTRUCTION ERROR
In general, AE, VAE, GAN, and Transformers use recon-
struction errors as anomaly scores. AE-based models includ-
ing [29], [51], [62], [72], [104], [114] reconstruct input data
by extracting features from them. VAE-based models such
as [68], [112], [113] estimate the data distribution and gen-
erate samples from it, which are very similar to the input
data. GAN-based models explicitly generate samples that are
as similar as possible to the input data with the generator,
as in [53], [59], [74], [115]. Recently, Transformer with a
stacked encoder-decoder structure, which consists only of
attention mechanisms, is employed in several works [73],
[109], [119], [120]. In particular, Zhao et al. [73] con-
sider both prediction and reconstruction errors jointly in
their model. Even though these models use different train-
ing schemes and objective functions, they calculate anomaly
scores similarly. They reconstruct or generate data analogous
to the input data and measure the residual between the input
and generated data.

2) PREDICTION ERROR
There are two ways to derive anomaly scores from the
prediction model. One applies a binary label based on the
probability of the data point being classified as a normal,
as proposed in [116], [119]. The prediction error indicates
whether the expected label matches the ground truth. The
other approach is to predict the expected value for the next
time steps, as proposed in [69], [110], [111], [121]. In this
case, the prediction error is the residual between the expected
value and the observation. The second one is more practical
than the first because the labels are insufficient in the real
world.

3) DISSIMILARITY
Dissimilarity-based one measures how far the value derived
by the model exists from the distribution or cluster of the
accumulated data. There are various methods for measuring
the similarity, such as the Euclidean distance, the Minkowski
distance, the cosine similarity, and the Mahalanobis
distance.

In the temporal hierarchical one-class (THOC) net-
work [60] and TCN-Gaussian mixture model (GMM) [117],
time-series features are extracted by a dilated RNN and
TCN, respectively. Then, they are clustered using a similar
deep support vector data description, or their distribution
is estimated using a GMM. THOC measures the similarity
between features and clusters using cosine similarity, and
TCN-GMM uses the Mahalanobis distance. The similarity
obtained from the models is subtracted from one to obtain
an anomaly score. Conversely, multi-stage TCN [118] uses a
multivariate Gaussian distribution to estimate the distribution
of prediction errors rather than the features of training data.
Then, the anomaly score is determined by measuring the
Mahalanobis distance between the current prediction error
and the pre-estimated error distribution.

VI. COMPARATIVE REVIEWS
In this section, we provide experimental performances of var-
ious methods on real-world datasets for time-series anomaly
detection.

TABLE 4. Summary of datasets used in the experiments.

A. EXPERIMENTAL SETUP
To compare the performances of the presented methods,
the following public time-series datasets are used:
• Secure Water Treatment (SWaT) [57]: Multi-variate
time-series data collected over 11 days from water treat-
ment test-bed, a small-scale cyber-physical system. The
last 4 days of data contain 36 attacks. The objectives and
the duration of these attacks are diverse. To get more
information or request for the dataset, please refer to the
SWaT website.4

• Water Distribution (WADI) [58]: Multi-variate time-
series data from water distribution pipelines collected
over 16 days. Each series includes various network traf-
fic, sensor and actuator measurings. Out of 16 days,
14 days contain data under normal conditions, and two
days under attack scenarios. Please refer to the WADI
website5 for more details.

• Mars Science Laboratory Rover (MSL) [110]: Multi-
variate time-series data recorded from Mars Science
Laboratory rover. Training and testing testbeds are sep-
arated, and the anomalies in the testing testbed are all
labelled. The data is available at the public storage.6

Several previous works of research have reported the per-
formances of the anomaly detection methods on the datasets
described in Table 4. The reported performances are used if
available, and the other performances are obtained from our
experiments. Detection results on SWaT [57] are available
in [60], [72], and [109]; WADI [58] in [72], [109], and [108];
MSL [110] in [72], [108], and [68].

For performance evaluation, we adopt three standard eval-
uation metrics: Precision, Recall, and F1-score. They take the
following form:

Precision =
TP

TP+ FP
, (16)

Recall =
TP

TP+ FN
, (17)

F1-score = 2 ·
Precision · Recall
Precision+ Recall

, (18)

4https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
5https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/
6https://s3-us-west-2.amazonaws.com/telemanom/data.zip
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TABLE 5. Hyper-parameters values used for each method. The methods marked with † indicate their papers also provided the performances of some
other models measured under the same environment. The MSCRED [51] jointly uses three-sized sliding windows in the original work, and we have
reflected this in our experiments.

TABLE 6. Anomaly detection accuracy in terms of precision (%), recall (%), and F1-score, on three datasets with ground-truth anomalies. * did not apply
point adjustment on the WADI dataset, results in poor Recall and F1-score relatively.

where TP are the true positives that stand for the number
of the detected true anomalies, FP are false positives that
mean the incorrectly detected ones, and FN are false negatives
that are undetected anomalies. Precision is the proportion of
samples that are true anomalies among those predicted by
the model as anomalies. Recall is the proportion of anoma-
lies predicted by the model out of entire anomaly samples.
Therefore, the higher Recall is, themore anomalies are caught
without omission. At the same time, the higher Precision is,
the fewer false alarms occur. Because Precision andRecall are
inversely proportionate to each other in general, the threshold
must be adjusted to evaluate model performance for different
purposes. In many real-world scenarios, it is important for
the system to detect as many actual attacks or anomalies as
possible at the cost of few false alarms. Therefore, we focus

more on Recall and F1-score than Precision in the experi-
ments. Moreover, we report the best results of each model on
all datasets for a fair comparison because different thresholds
may result in different metric scores.

Anomaly detection methods for time-series data require
various hyper-parameters tuned for the optimal performance.
Since the optimal values of the hyper-parameters are not the
same for each method, we report the used values in Table 5.
Typical hyper-parameters include down sampling ratio, win-
dow size, point adjustment, and learning rate. In most case,
time-series data used to be down-sampled prior to the exper-
iments to model data of longer time frames under a fixed
capacity of the model. According to [72], down-sampling
speeds up learning by reducing the size of the data and also
has a denoising effect. In addition, slicing each series using a
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FIGURE 9. Experimental results on SWaT and MSL. The RNN-based and
transformer-based models that capture temporal dependencies
outperform DAGMM, the non-temporal modeling method.

window of a fixed length is a common practice. Point adjust-
ment is a technique to boost the recall of the detection model.
Typical anomalies in datasets tend to be temporally adjacent.
If the model successfully detects any of the anomalies within
the segment when it makes decision for every time step,
the evaluation process regards the whole contiguous segment
of the anomalies as detected.

B. RESULTS AND ANALYSIS
We compare a wide range of state-of-the-arts in multivariate
time series anomaly detection, categorized as follows:
• AE:DAGMM[103],MSCRED [51], OmniAnomaly [68]
• VAE: LSTM-VAE [112], USAD [72]
• GAN:MAD-GAN [59]
• RNN: THOC [60]
• Transformer: GTA [109]
• GNN: GTA [109], GDN [108]
Table 6 shows the anomaly detection accuracy in terms

of Precision, Recall, and F1-score of the state-of-the arts on
the benchmark datasets (SWaT, WADI, and MSL). Except
for specific cases, we tried to employ the same experimental
settings as much as possible to fairly compare the perfor-
mance. If the comparison under the same settings is not
plausible, we used the settings reported in the original paper.
Each of these methods prioritizes a different metric as the
authors choose specific thresholds depending on their goal.
Therefore, we pick the F1-score as a baseline and sort the
methods for SWaT correspondingly.

The result shows no clear one-size-fits-all method for
all the datasets and no notable distinction in performance
depending on their structure. Therefore, we interpret the
results from several perspectives.

1) MODELING TEMPORAL DEPENDENCIES
Compared to DAGMM [103], designed to treat multivari-
ate data without temporal information, RNN-based models

FIGURE 10. Experimental results on SWaT, MSL, and WADI. The
dimension of the dataset affects the performance.

show superiority (see Fig. 9). The average F1-scores of the
RNN-based models on SWaT and MSL datasets are 1.87%
and 14.90% higher than those of DAGMM, respectively. This
is because they can take long sequences as input and capture
the temporal dependencies.

LSTM-VAE [112] replaces the feed-forward network in a
VAE with LSTM. MSCRED [51] is a CNN-based AE that
reconstructs a feature map that contains both the aggregated
information of observations and the inter-correlation between
variables within a fixed-size sliding window. Between the
encoder and the decoder, it captures the spatiotemporal
dependencies from the feature maps across the previous
time steps using ConvLSTMs. MAD-GAN [59] employs
LSTM-RNN as both generator and discriminator to learn
the temporal context in a generative adversarial training
fashion and reconstructs the original time series explicitly.
THOC [60] adopts multi-layers of dilated RNNs to model
temporal dependencies with a wide range of lengths.

Most RNN-based methods outperform DAGMM, but with
the exception of LSTM-VAE on MSL. We argue that the
main reason behind this phenomenon lies in the process over
the latent variables; Although LSTM-VAE uses LSTM for
sequence modeling, it ignores the temporal dependencies
among latent variables. Meanwhile, OmniAnomaly [68] con-
nects stochastic latent variables in the middle of encoder and
decoder with a linear Gaussian state-space model to model
the temporal dependencies with inherent stochasticity. As a
result, the approaches without modeling temporal depen-
dency are not suitable for time-series anomaly detection.

2) PARALLEL PROCESSING FOR LONG SEQUENCES
Despite the powerful capability of sequence modeling, one
drawback of RNN is that it restricts parallelization because
it computes its output sequentially. Meanwhile, Transformer
takes a sequence at once, so parallel processing is possible.
Furthermore, it can reflect contextual information at once
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by computing contributions between all-time steps through
a self-attention mechanism. This property is significant to
sequence modeling because a longer sequence can provide
more information. Consequently, compared to DAGMM,
GTA that aims to adopt Transformer achieves overall 6.98%
and 30.01% improvements in terms of the best F1-score
on SWaT and MSL datasets, respectively. GTA also shows
5.11% and 10.64% improvements compared to the overall
mean of the F1-score of the RNN-based model on SWaT and
MSL datasets, respectively.

3) DIMENSION OF THE DATASETS
As shown in Fig. 10, we can see that the overall perfor-
mances in terms of the best F1-score on the WADI dataset
are significantly lower compared to the other datasets (SWaT
and MSL), except for GNN-based methods. Recall that the
dimension of the WADI dataset is 112, double that of SWaT
and MSL, as described in Table 4. When we feed the 2D
feature map that defines correlations between variables, such
as a covariance matrix, to the deep-neural network-based
models, the amount of feature expression and computation
will be more than quadrupled compared to SWaT and MSL.
In particular, in reconstruction-based models with deep lay-
ers, the amount of computation is overloaded for each layer.
Undoubtedly, the poor results for WADI are expected.

4) INTER-CORRELATIONS BETWEEN ATTRIBUTES
Despite several factors affecting performance, we can see that
there is no remarkable difference in the results on the WADI
dataset when simply comparing models that undergo dimen-
sionality reduction in the preprocessing stage with those that
do not. We argue that the possible reason is that some impor-
tant features are lost during dimensionality reduction.

Meanwhile, GNN-based models (GTA and GDN) achieve
a relatively higher F1-score on theWADI dataset. While GTA
greatly benefited from the sequence modeling ability of the
Transformer, GDN, which does not consider temporal depen-
dencies yielded notable results by simply learning the graph
structure of the relationship between variables. We believe
that the major factor lies in the dependencies between fea-
tures. SWaT and WADI provide the network traffic, mea-
surements from sensors and actuators under several control
processes. These attributes are not entirely independent of
each other, and thus there exist inter-correlations between the
attributes within the associated equipment and control pro-
cesses. Therefore, trivial variations in one sensor or actuator
can affect other associated attributes within the same group.
As a result, we observe that the graph structure learning with
attention mechanism is more effective on datasets in which
the elements are strongly related.

VII. GUIDELINES FOR PRACTITIONERS
Most current anomaly detection methods are highly specific
to certain use cases. This means that there is no one-size-fits-
all approach. In this respect, we provide guidelines for model
selection according to the purpose and the circumstances of

FIGURE 11. Strategies for anomaly detection in time-series data:
(a) real-time vs. early-warning; (b) sliding windows vs. incremental
update.

each application. Intuitive visualizations of our guidelines are
provided in Fig. 11. We also discuss the training techniques
that should be considered.

A. DETECTION STRATEGIES
Time-series data is not very different from data in other
domains. However, there are unique properties of the time
series structure, and there are several aspects of the environ-
ment in which the data are generated and analyzed that could
affect the success of an anomaly detection algorithm.

1) REAL-TIME vs. EARLY WARNING
When an anomaly can incur severe damage, an early warning
method can alert the removal of potential factors in advance.
On the other hand, real-time detection methods are beneficial
because only the actual anomalies are processed. Hence,
it could reduce unnecessary costs caused by false positives.
• Real-Time: Online business and finance require real-
time anomaly detection to respond quickly to inci-
dents [130]. Also, monitoring manufacturing equipment
in real-time is mandatory to reliably maintain a man-
ufacturing capacity. Recently, cyber-physical systems
(CPS) [131] have integrated physical and computa-
tional capabilities to remotely control substantial sys-
tems in real-time. They react immediately to dynamic
changes and reduce human intervention. Generally,
GRU- [60], [68], [113], [114] and CNN-based mod-
els [53], [62], [115] using reconstruction errors provide
real-time anomaly detection capabilities. The inference
time of each model can vary with computational com-
plexity and computing resources. The models with
high computational complexity take longer to make the

VOLUME 9, 2021 120059



K. Choi et al.: Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines

decision. Conversely, the models paired with extensive
computation resources generally output the result faster.
However, GRU is a type of the RNN that sequentially
processes the observations. Thus, the inference time of
the reconstruction-basedmodels using GRUwill be con-
stant regardless of the computation resources unless data
parallelism is not supported. Meanwhile, CNN-based
reconstruction models handle given input data at once,
and thus, they can process more features and longer
sequences with sufficient computation resources.

• Early Warning: Maintenance costs in manufacturing
plants constitute a substantial portion of the total pro-
duction cost. Once a severe failure has occurred in
facilities, the operators will lose vast amounts of time
and costs due to an unscheduled downtime for repair.
In this regard, a condition-driven preventive main-
tenance (PdM) [132] scheme has been introduced.
Improved time-series anomaly detection algorithms that
can predict future breakdowns are required to suc-
cessfully perform PdM. Autoregressive algorithms that
accumulate historical information in their model can
predict possible faults. In particular, LSTM- [110], [111]
and HTM-based models [121] have been widely used
to predict faults in time-series data. The main chal-
lenges in anomaly prediction include false alarms and
missed anomalies [133], [134]. Therefore, selection of
an optimal threshold for anomaly detection is particu-
larly important. A higher threshold value will suppress
false alarms, but may miss the actual anomalies. On the
contrary, a lower threshold will capture more anomalies
but result in more false alarms.

2) SLIDING WINDOW vs. INCREMENTAL UPDATE
There are two propositions to infer context from time-series
data. A time-series model either processes all of the histor-
ical data points or incrementally update the outputs for the
newest items. These approaches are called sliding windows
and incremental updates, respectively.
• Sliding Window: Some models can only feed-forward
data of fixed sizes. TCN- [116]–[118] and CNN-based
methods [53], [62], [115] fall into this category, and the
size of the window affects the length of the temporal
dependency modeled by the neural network. Therefore,
practitioners should carefully choose an appropriate
window size depending on the nature of the dataset
(e.g., time lags between multivariate series and the fre-
quency of subsequent anomalies). Excessive window
sizes can cause anomalies to be overlooked, whereas
insufficient window sizes can render the model inca-
pable of capturing long-term dependencies. For exam-
ple, Zhang et al. [51] compared the anomaly detection
performance for varying window sizes, and chose the
optimal value showing the maximum performance.

• Incremental Update: Incremental models update the
predictions for new data via marginal computa-
tions. They are particularly beneficial in streaming

environments in which data items are supplied one-
by-one. Moreover, the computational benefits should
not be underestimated. Methods based on sliding win-
dows must maintain the entire data stream in mem-
ory for additional processing, which involves larger
computations at each timestep. Autoregressive models,
such as GRUs and LSTMs, are inherently incremental
models because they maintain a compact summary of
past data in their hidden states. For instance, some of
the LSTM-based methods [110], [111] support incre-
mental updates. However, many methods [29], [51],
[69], [104] require references to past data for pre- or
post-processing using AEs or other networks. For these
methods, the incremental features are limited.

B. TRAINING AND PREPROCESSING TECHNIQUES
In addition to the detection phase, anomaly detectionmethods
have a wide range of design choices for training.

1) LOSS FUNCTION
Time-series anomaly detection models are trained using dif-
ferent types of loss functions depending on how they model
the normality of the data. The types of loss functions include
an adversarial loss, a reconstruction loss, a prediction loss,
and a negative log-likelihood.
• Adversarial Loss: Since the pioneering work of Good-
fellow et al. [135], adversarial formulation has been
widely used [136], [137] to improve the modeling capa-
bility of generative modules. This technique was also
adopted in previous studies [59], [74], [115] for time-
series anomaly detection. The discriminator primarily
serves as a helper for the generative component. After
training, it can also be used to generate anomaly score,
as in [53], [59]. A typical adversarial formulation is
given as the following two-player game:

min
G

max
D

V (D,G) = Ex∼pdata(X )
[
logD(x)

]
+Ez∼pz(Z )

[
log (1− D(G(z)))

]
,

(19)

whereD andG are the discriminator and generator mod-
ules, respectively. Although the results generated by the
models trained with an adversarial loss can be remark-
able, the most challenging issue is that the simultaneous
dynamic training of two competing models is inherently
unstable. Due to the unstable training process, the mod-
els may fall into failure modes instead of converging to
the optima. A typical failure mode is a mode collapsing
that the generator always outputs the same value from
multiple inputs.

• Reconstruction Loss: AE is a preferred choice for
anomaly detection, provided that AE trained with nor-
mal training data reconstructs normal data well. Several
methods [29], [51], [104], [114] use AEs, optionally in
conjunction with other modules. They use reconstruc-
tion losses as training loss functions, so that so that the
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AE is trained to capture the normality of the training
data. A typical reconstruction loss takes the following
form:

L(St , S ′t ) =
∥∥St − S ′t∥∥ , (20)

where St is the observed data point at time step t , and S ′t
is the reconstructed data point at timestep t .

• Prediction Loss: Prediction-based approaches detect
anomalies by comparing the predictions with real obser-
vations [100], [111]. The prediction model is trained
using a prediction loss so that the model is forced to
produce an accurate prediction using past data or rela-
tionship among features. The prediction loss is similar
to (20), except that S ′t indicates the prediction for the
real observation St . This training scheme is applied in
the inference time as is, and thus is beneficial for the
early warning system.

• Negative Log-Likelihood: A group of generative mod-
els that can estimate the log-likelihood of input data
commonly uses negative log-likelihood (NLL) as a
training loss. Minimizing NLL maximizes the esti-
mated likelihood of a dataset such that the model cap-
tures the notion of normality present in the dataset.
GMMs are a type of generative model [103], [117]
that includes NLL in their loss functions. Note that
the NLL is optimized in different ways. For exam-
ples, TCN-GMM [117] maximizes the log-likelihood
presented in (21) using the expectation-maximization
algorithm.

J (θ ) =
K∑
k=1

wk
1

(2π)D/2 |6k |
1/2 e

−
1
2 (x−µk)T6

−1
k (x−µk),

(21)

where θ indicates the GMM parameters, {6k , µk ,

wk}Kk=1, andD is the number of dimensions in the feature
vectors. In contrast, DAGMM [103] maximizes a similar
loss term that uses gradient descent in an end-to-end
fashion.
VAE, another class of generative models, is trained with
an evidence lower bound (ELBO), as in (22), which is
a lower bound of the log-likelihood. VAE-based meth-
ods [73], [112], [113] use ELBO for training.

J (θ ) = Eq
[
log p(x, z)

]
− Eq

[
log q(z)

]
. (22)

They do not simply generate a data instance similar
to the input but also approximate the unknown prior
distribution using training data.

2) BATCH LEARNING vs. ONLINE UPDATE
A common challenge in time-series data is the nonstation-
ary nature of data, as discussed in Section II-B. Following
the changes in data distribution, we suggest two types of
approaches to updating the model accordingly.
• Batch Learning: Deep learning typically assumes a sta-
tionary distribution of data, and deep neural network

models are trained using a large batch of data sampled
from the same distribution as the test distribution. There-
fore, most deep learning-based methods should provide
a new batch of training data to fine-tune the model.
This training scheme may be problematic when the sys-
tem administrator cannot re-collect data after each data
update.

• Online Update: The above problem can be mitigated
when the model supports online update. It enables
fine-tuning of the model with newly appended data
without the need to re-train the model from scratch.
HTM-based methods have such capabilities [69], [121],
but online updates are rarely found in deep-learning
models because the nonstationary assumption of data
distribution is rather unconventional in machine learn-
ing. Among deep learning-based approaches, some
methods [110], [111] adjust their thresholds for binary
decision-making.
We can consider continual learning as an alternative.
Continual learning, however, suffers from the plasticity-
stability dilemma. Neural networks are known to do well
on forward-transfer, and thus the parameters should be
plastic to learn a new task. At the same time, they should
be stable not to forget the important features. How-
ever, a fine-tuning to new tasks makes the parameters
rapidly forget what they previously learned. We call this
phenomenon catastrophic forgetting [138]. Common
approaches to mitigating catastrophic forgetting include
regularization-, dynamic network architectures-, and
memory replay-based methods. Representative meth-
ods for each approach include elastic weight consolida-
tion [139], dynamically expandable network [140], and
deep generative replay [141].

3) DENOISING
Noise in time-series data is an inevitable factor induced by
sensors. Noise, which is hardly distinguishable from anoma-
lies, may degrade the performance of anomaly detection.
Therefore, diverse techniques have been proposed to make
the model effectively learn the normality of the data by
removing the noise in advance.
• Smoothing:The exponentiallyweightedmoving average
is a recursive smoothing filter that performs a scheme in
which weight is assigned to the current observation the
most and decays exponentially as one traverses the past.
Although this method is effective, it has a problem that
we should determine the level of denoising.

• Transformation: Signals bear representation in both the
time and frequency domains. Wavelet transform and
fast Fourier transform decompose signals into multiple
resolutions to extract frequency characteristics. The dif-
ference between the transformed data and the original
data is regarded as a noise.

• Estimation: Kalman filter removes noisy data by repre-
senting them in a state-space model and applying prob-
abilistic estimation [142].

VOLUME 9, 2021 120061



K. Choi et al.: Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines

• Deep Learning: If the training dataset is small compared
with the model capacity, the deep-learning model can
memorize the dataset. Hence, the model learns the noise.
In this case, it is difficult to distinguish between noise
and anomalies. A denoising autoencoder is a general
deep learning-basedmethod that addresses this problem.
It trains the AE to restore the original input by adding
random noise. Thus, it does not reconstruct the input as
is, but instead, robustly learns the representation of the
features to prevent overfitting.

VIII. CONCLUSION
For many years, data-driven decisions have been made
across businesses and industry to provide better products
and services to a global community. Analytical techniques
for extracting beneficial information from large volumes of
data collected from various sources offer many opportunities.
Moreover, identifying and troubleshooting unexpected events
from time-series data can help prevent accidents and financial
losses. Deep learning-based approaches have been attracting
a considerable amount attention because of their incredible
capability to resolve these problems.

In this paper, we discussed the characteristics of time-series
data and the anomalies detected therein. We also described
various applications of anomaly detection in several indus-
tries, including manufacturing, energy management, cloud
infrastructure, and structural health monitoring. Because
there has been a historical interest in anomaly detection
in time-series data, we briefly presented some traditional
approaches and described challenging issues regarding this
topic. As the complexity of the system increases while
the refined data and labels for analysis remain insufficient,
the demand for unsupervised deep learning-based time series
anomaly detection continues to increase. In this regard,
we provide a review of the latest deep learning-based anomaly
detection methods for time-series data from several perspec-
tives and report the evaluation results on three real-world
benchmark datasets. Finally, we finish with guidelines for
model selection and training techniques.
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