
Received July 9, 2021, accepted August 13, 2021, date of publication August 26, 2021, date of current version September 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108029

Facial Expression Recognition Using Dynamic
Local Ternary Patterns With Kernel Extreme
Learning Machine Classifier
SUMEET SAURAV , RAVI SAINI, (Member, IEEE), AND SANJAY SINGH, (Senior Member, IEEE)
Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031, India

Corresponding author: Sumeet Saurav (sumeet@ceeri.res.in)

ABSTRACT Rapid growth in advanced human-computer interaction (HCI) based applications has led to
the immense popularity of facial expression recognition (FER) research among computer vision and pattern
recognition researchers. Lately, a robust texture descriptor named Dynamic Local Ternary Pattern (DLTP)
developed for face liveness detection has proved to be very useful in preserving facial texture information.
The findings motivated us to investigate DLTP in more detail and examine its usefulness in the FER task.
To this end, a FER pipeline is developed, which uses a sequence of steps to detect possible facial expressions
in a given input image. Given an input image, the pipeline first locates and registers faces in it. In the next
step, using an image enhancement operator, the FER pipeline enhances the facial images. Afterward, from the
enhanced images, facial features are extracted using the DLTP descriptor. Subsequently, the pipeline reduces
dimensions of the high-dimensional DLTP features via Principal Component Analysis (PCA). Finally, using
the multi-class Kernel Extreme Learning Machine (K-ELM) classifier, the proposed FER scheme classifies
the features into facial expressions. Extensive experiments performed on four in-the-lab and one in-the-wild
FER datasets confirmed the superiority of the method. Besides, the cross-dataset experiments performed
on different combinations of the FER datasets revealed its robustness. Comparison results with several
state-of-the-art FER methods demonstrate the usefulness of the proposed FER scheme. The pipeline with
a recognition accuracy of 99.76%, 99.72%, 93.98%, 96.71%, and 78.75%, respectively, on the CK+, RaF,
KDEF, JAFFE, and RAF-DB datasets, outperformed the previous state-of-the-art.

INDEX TERMS Facial expression recognition, dynamic local ternary pattern, principal component analysis,
kernel extreme learning machine, cross-dataset, cross-validation.

I. INTRODUCTION
Recently, there has been enormous advancement in assis-
tive technology for industrial, commercial, automobile, and
societal applications. Most of these applications require a
robust and accurate system for automatic FER to improve
the users’ adaptability. A system for automatic FER provides
crucial clues that reveal a person’s actual intention and state
of mind. A FER technology embedded robot can execute
home services like talking to children and taking care of the
elderly [1]. Furthermore, a FER system integrated with the
Advanced Driver Assistance System (ADAS) can identify
drivers’ fatigue levels. These systems can produce a warning
alarm when the fatigue level exceeds a pre-defined thresh-
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old limit [2]. Production industries can utilize FER tech-
nology to determine the worth of consumer products before
their actual launch [3]. Besides, such technology can assist
recruiters in identifying the hidden emotional state of candi-
dates [4]. In hospitals, a system for automatic FER can assist
in remotely monitor the health status of patients [5]. Finally,
as demonstrated by Ashwin and Guddeti [6], a FER system
integrated with online teaching platforms and classrooms can
improve the overall quality of teaching. Therefore, the past
decade saw tremendous advancement in FER research to
design an efficient and robust system for FER in real-world
conditions.

Techniques developed for emotion recognition over
the years are categorized based on input modalities as
vision-based methods [7], speech-based methods [8], and
hybrid methods that use a combination of audio and visual
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signals [9], [10]. Each of these sensors has its limitations
and benefits. However, in general, emotion recognition tech-
niques based on a hybrid of input modalities perform better
than methods based on a single input signal. The exist-
ing methods for vision-based FER have used RGB image
sensor [11] and depth image sensor [12]. The RGB cam-
eras, though very common and cheap, pixel-intensities in
the images captured using these sensors rapidly change due
to variations in illumination. Meanwhile, the depth sensors
capture depth information and are robust against changes
in illumination. Also, in contrast to the RGB images, depth
images solve privacy issues by hiding persons’ identification
information.

Moreover, based on the learning scheme, the exist-
ing FER techniques are classified as traditional machine
learning-based methods and deep learning-based methods.
The machine learning-based approach for FER uses a com-
bination of handcrafted feature extractor and the standard
machine learning classifiers such as the Support Vec-
tor Machine (SVM) [13], Support Vector Neural Network
(SVNN) [14], K-Nearest Neighbor (K-NN) [15], Sequen-
tial Minimal Optimization (SMO) [16], Classification Trees
(CT) [17], Multi-layer Perceptron (MLP) [18], Neural Net-
work (NN) [19], etc. In contrast to the methods based on
traditional machine learning, the FERmethods based on deep
learning techniques are end-to-end trainable. These tech-
niques use convolutional neural networks (CNNs) to extract
features automatically and classify facial expressions in static
images [20].

Although deep learning-based FER techniques have
achieved state-of-the-art results, the traditional machine
learning-based approach has also shown substantial perfor-
mance [21]. It has been due to the absence of large-scale
FER datasets. In such situations, the traditional machine
learning-based approach sometimes surpasses the deep
learning-based techniques. Deep learning techniques are
data-driven techniques, and their performance is directly pro-
portional to the amount of data. Nevertheless, one major
limitation of the traditional machine learning-based approach
for FER is designing an efficient handcrafted feature extrac-
tor that requires high skill and expertise. Therefore, current
FER research in this domain aims at developing efficient
handcrafted feature extractors that can efficiently separate
different facial expressions [14].

Designing an efficient FER system for real-world applica-
tions is not a trivial task due to several limitations induced
due to variations in illumination and facial expressions, par-
tial face occlusion, real-time performance, etc. Therefore,
in the last few years, several techniques were developed
for real-time and robust FER [22], [23]. But, despite the
enormous progress, these systems still have not achieved the
desired level of recognition accuracy and computational effi-
ciency. Real-time recognition of facial expressions in com-
plex real-world conditions remains an unsolved problem.

This work examines the effectiveness of Dynamic Local
Ternary Pattern (DLTP) in the FER task and introduces a

robust and efficient FER pipeline. The proposed pipeline
uses different image pre-processing techniques to enhance
the facial images before feature extraction using the DLTP
descriptor and its uniform variant, named uniform DLTP
(uDLTP). In the intermediate step, the pipeline utilizes
dimensionality reduction using PCA to reduce the dimen-
sions of the features. Finally, the pipeline classifies the
reduced facial features using the K-ELM classifier. Extensive
experiments were conducted in single and cross-dataset sce-
narios on five FER benchmark datasets (CK+, RaF, KDEF,
JAFFE, and RAF-DB) using well-known evaluation met-
rics, namely the recognition accuracy, precision, recall, and
F1-score, to validates the performance of the pipeline. In sum-
mary, the main contribution of the proposed work are as
follows:

• The use of the DLTP descriptor overcomes the man-
ual determination of threshold in the traditional LTP
descriptor. The threshold in DLTP is automatically
determined using local neighborhood pixel intensities.

• The proposed FER pipeline employs several image
pre-processing techniques to enhance the facial images
before feature extraction. Such a scheme improves the
discriminative power of the descriptor.

• The use of dimensionality reduction via PCA helps to
improve the accuracy and computational efficiency of
the FER pipeline. PCA reduces the dimensions of the
DLTP features without the loss of vital facial informa-
tion.

• Deployment of the K-ELM classifier improves the
recognition accuracy with reduced classification time
than the existing classifiers. The K-ELM classifier has
not been utilized much in the FER task.

• Extensive experiments are conducted on five bench-
mark FER datasets using the cross-validation and cross-
dataset testing procedures to access the performance of
the proposed FER pipeline.

The remaining paper is structured as follows: Section II
introduces the existing state-of-the-art techniques for FER.
Details of the proposed FER pipeline and its constituent
units are provided in Sect. III. Description of the experimen-
tal setup and FER datasets makes the content of Sect. IV.
Section V provides the experimental analysis results on the
FER datasets with related discussions, followed by details on
the computation time provided in Sect. VI. Finally, the paper
is closed with conclusive remarks given in Sect. VII.

II. RELATED WORK
Based on the feature extraction scheme, the methods for static
image-based FER can be classified broadly into appearance-
based methods, geometric-based methods, and methods that
use hybrid appearance and geometrical features [24]. The
former methods can be further sub-classified as the facial
texture-based methods, facial shape-based methods, and
methods that use the fusion of facial texture and shape
features [21]. This section briefly introduces the existing
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methods for FER based on traditional machine learning using
appearance features.

The FER techniques based on facial texture informa-
tion employ prominent texture descriptors such as the
Local Binary Pattern (LBP) [11], Local Ternary Pattern
(LTP) [25], Local Derivative Pattern (LDP) [26], Local Direc-
tional Texture Pattern (LDTP) [27], Gradient Local Ternary
Pattern (GLTP) [28], Improved Gradient Local Ternary Pat-
tern (IGLTP) [29], Improved Adaptive Local Ternary Pattern
(IALTP) [7], and so on. Shan et al. [11], in their seminal
work, conducted a detailed study to analyze the effectiveness
of the LBP and the Boosted-LBP descriptor in the FER
task. Although the LBP operator is a powerful and com-
putationally efficient feature descriptor, there is degradation
in its performance due to random noise and non-monotonic
variation in illumination. Guo et al. [30], proposed a robust
and efficient facial descriptor named K-ELBP for expression
recognition in static facial images. The K-ELBP operator
uses an extended variant of the uniform LBP to extract the
feature matrix of the facial images. Subsequently, the method
use covariance matrix transform in K-L transform (KLT) to
reduce the dimensions of the features. The Local Directional
Pattern (LDP) developed by Jabid et al. [26] has used direc-
tional edge response values in contrast to the grey-level inten-
sity values used in LBP. While the LDP descriptor performed
better than the LBP; however, like LBP, it also failed to extract
vital information from the uniform and near-uniform facial
regions.

To mitigate the issues of LBP and related descriptors, Tan
and Triggs [25] proposed the Local Ternary Pattern (LTP)
descriptor for the texture analysis task. Later on, to utilize
the benefits of the Sobel edge detector and the LTP operator,
Ahmed and Hossain [28] proposed a new feature descriptor
called the Gradient LTP (GLTP) for the FER task. The GLTP
operator, instead of directly extracting features from the
grayscale facial images, uses Sobel convolved facial images.
Holder and Tapamo [29] introduced an improved variant
of the GLTP descriptor, named Improved Gradient Local
Ternary Pattern (IGLTP). In other work, Saurav et al. [7] pro-
posed an improved variant of the Adaptive Local Ternary
Pattern (ALTP), named Improved ALTP (IALTP). The ALTP
descriptor, originally proposed for face recognition, com-
bines Webers’ law and LTP operator to extract enhanced
features from the facial images. Inspired by Weber’s law,
Chen et al. [31] proposed theWeber Local Descriptor (WLD)
for the FER application. WLD, unlike LBP, is robust against
noise and illumination variation. Alhussein [5], proposed
a multi-scale variant of WLD called MS-WLD to increase
the discriminative power of the descriptor. The MS-WLD,
in contrast to the originalWLD, extracts finer details from the
facial images and thus results in better performance. In other
work, Khan et al. [32] combined WLD with LBP & Discrete
Cosine Transform (DCT) and proposed a novel Weber Local
Binary Image Cosine Transform (WLBI-CT) descriptor for
the FER task.

The FER technique presented by Mahmood et al. [33] has
suggested combining the texture and orientation features
extracted from the salient facial regions. The dual feature
fusion scheme helped the FER pipeline alleviate the adverse
effect of noise, illumination, and partial face occlusions.
In [34], the authors proposed a novel framework for FER
that first selects a few prominent facial patches depending
on the position of the facial landmarks. These active patches
are further processed to obtain salient patches. Finally, fea-
tures are extracted from the salient patches using the LBP
operator. Eventually, the features are classified using the
one-versus-one (OVO) multi-class SVM classifier. In the
FER scheme presented in [35], the authors introduced a
novel Gradient Local Phase Quantization (GLPQ) descriptor
for facial feature extraction. Given an input facial image,
the GLPQ descriptor first computes the gradient magnitude
image using the Sobel operator. In the second step, from the
magnitude facial images divided into multiple regions, local
features are extracted using the LPQ descriptor and concate-
nated to obtain the global facial descriptor. Ryu et al. [27],
introduced another powerful face descriptor called the Local
Directional Ternary Pattern (LDTP). The LDTP descriptor
combines LDP and LTP and operates on gradient angle facial
images.

In their recent work, Revina and Emmanuel [14] pro-
posed an efficient system for FER that fuses facial features
extracted using the Scale-Invariant Feature Transform (SIFT)
and a newly proposed Scatter Local Directional Pat-
tern (SLDP) descriptor. The facial features were classified
using a new classifier called Whale-Grasshopper Optimiza-
tion Algorithm based Multi-Support Vector Neural Network
(W-GOA-based MultiSVNN). Kar et al. [36] proposed an
efficient system for automatic FER in static images. Their
designed system classifies facial images in three stages. In the
first stage, from the input facial images, the framework
extract features using the ripplet transform type II (ripplet-
II) feature extractor. In the next stage, utilizing the hybrid
of PCA and Linear Discriminant Analysis (LDA), the facial
feature dimension is reduced to obtain a compact and effi-
cient facial descriptor. In the final stage, the FER pipeline
classifies the facial features using the least-square variant
of the SVM (LS-SVM) classifier with a radial basis func-
tion (RBF) kernel. In [37], the authors proposed a technique
for FER that use an improved variant of the Completed
Local Ternary Patterns (CLTP) [38] descriptor. Similar to
IGLTP [29], the proposed feature extractor has also used
the Scharr operator to calculate gradient magnitude image.
From the gradient facial images, features are extracted using
the CLTP operator and classified using a combination of
K-NN and a Sparse Representation Classifier (SRC). The
FER system proposed by Revina and Emmanuel [39] has
used a novel noise reduction method named the Decision
Based Rule-Oriented Median Filter (DBROMF) and a new
facial descriptor called Multi-Directional Triangles Pattern
(MDTP). Facial features extracted usingMDTP are classified
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FIGURE 1. Algorithmic pipeline of the proposed facial expression recognition system.

using the SVNN classifier into one of the seven facial
expressions.

Several techniques developed for the classification of facial
expressions have also employed feature selection techniques.
By reducing the dimensions of the features, these tech-
niques achieve the fast classification of expressions besides
improving their classification accuracy. Ghosh et al. [16]
proposed a new feature selection (FS) algorithm based
on Late Hill Climbing and Memetic Algorithm (MA)
(LHCMA). The LHCMA FS algorithm achieved superior
performance than the popular FS algorithms when tested
with several facial descriptors, namely the LBP, Histogram
of Oriented Gradients (HOG), etc. In other related work,
Saha et al. [40] introduced the supervised filter harmony
search algorithm (SFHSA) for FS in the FER task. The
SFHSA algorithm use cosine similarity to remove simi-
lar features from feature vectors and minimal-redundancy
maximal-relevance (mRMR) to determine the feasibility of
the optimal feature subsets using Pearson’s correlation coef-
ficient (PCC). Their designed SFHSA algorithm, when tested
with five state-of-the-art feature descriptors using the RaF
and JAFFE datasets, achieved a notable improvement in
the recognition accuracy. The FER technique introduced by
Shanthi and Nickolas [41] has fused facial features extracted
using the LBP and Local Neighborhood Encoded Pattern
(LNEP). The chi-square statistical analysis is used to select
the most relevant features from the original high-dimensional
feature vectors and is classified using the SVM classifier.
Siddiqi et al. [42] introduced a system for FER that uses
the wavelet transform for feature extraction, a new robust
step-wise linear discriminant analysis (SWLDA) feature
selection algorithm, and a hidden Markov model (HMM)
classifier. Given the facial images, their designed FER sys-
tem first detects faces using a novel unsupervised technique
based on the active contour (AC) model. The FER pipeline

proposed by Kumar and Rajagopal [43] has used normalized
minimal feature vectors and semi-supervised Twin Support
Vector Machine (TWSVM) learning. Li and Wen [44], pro-
posed a sample awareness-based personalized (SAP) FER
method that uses the Bayesian learning method to select the
optimal classifier from the global perspective and then used
the selected classifier to identify the emotional class of each
test sample. The authors in [45] proposed a novel sparse
modified Marginal Fisher analysis (SMMFA) for the FER
task. SMMFA efficiently reduces the dimension of the facial
features and thus helps in extracting discriminant features
for FER. In another work, Li et al. [46] proposed a novel
FER scheme that uses a dynamic ensemble pruning method
called graph-based dynamic ensemble pruning (GDEP) for
the recognition of facial expression in static facial images.

Since their inception, the deep learning techniques have
proved their efficacy in solving several computer vision prob-
lems like image classification, object detection, speech recog-
nition, etc. Therefore, in the last few years, many works have
been proposed for FER in static images using deep learn-
ing [20], [47]–[56]. The deep learning algorithms are data-
dependent algorithms, whose performance linearly increases
with the amount of the dataset. Therefore, on small-scale FER
datasets like the CK+, RaF, JAFFE, KDEF, etc., the tradi-
tional machine-learning-based FER methods outperform the
deep-learning-based FERmethods. On the contrary, on large-
scale FER datasets, like RAF-DB [57], FER2013 [58], and
AffectNet [59], the deep learning CNN models have out-
performed the traditional machine-learning-based FERmeth-
ods [60].

III. PROPOSED METHODOLOGY
Figure 1 shows the block diagram of the proposed FER
pipeline. The pipeline consists of six units, namely the face
detection & landmark localization, face alignment & registra-
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FIGURE 2. Sequence of steps used for face detection & landmark localization.

tion, image enhancement, feature extraction, dimensionality
reduction, and classification. Given an input image, the face
detection & landmark localization unit detects possible faces
and corresponding facial landmarks. In the subsequent step,
the face alignment & registration unit register the facial
images and crops and scales them to a standard resolu-
tion. Afterward, the images are enhanced using an image
enhancement operation. Features are subsequently extracted
from these enhanced images using the DLTP descriptor.
In the next step, the extracted high-dimensional features are
passed through the PCA algorithm to reduce their dimen-
sion. Finally, the reduced facial features are classified into
expression labels using the K-ELM classifier. The following
section presents further details of all the constituent units of
the pipeline.

A. FACE DETECTION & LANDMARK LOCALIZATION
The face detection & landmark localization unit, as shown
in Figure 2 takes an input image and returns the location
of all possible faces and their corresponding landmarks.
Among the available face detectors, the Viola & Jones frontal
face detector [61] has been the popular choice in the FER
task. Therefore, the proposed FER pipeline has also used
the face detector to detect faces in a static input image.
However, instead of using the cascade classifier available in
the OpenCV library, the proposed pipeline has employed a
more robust and efficient cascade classifier trained on the
multi-block LBP (MB-LBP) features [62].

The face coordinates, once available, are passed to the
facial landmark detector. The detector, in turn, marks the
locations of 68 facial landmarks on the detected facial images.
The proposed FER pipeline has used Intraface [63], one of
the most widely employed landmark detectors. The Intraface
detector uses the Supervised Descent Method (SDM) pro-
posed by Xiong and De la Torre [64] to locate and track the
facial landmarks in an input image.

B. FACE ALIGNMENT & REGISTRATION
Once the face and facial landmarks information are available,
it is utilized for the face alignment and registration task,
as demonstrated in Figure 3. At first, the face alignment
& registration unit uses the landmark information of both
the left and right eyes to compute their center position and
inter-ocular distance (D), and angle between the two eye
centers. In the subsequent step, using the angle and the inter-

FIGURE 3. Sequence of steps used for face alignment & registration.

FIGURE 4. Systematic representation of step used for face cropping on a
sample facial image from the RaF dataset.

ocular distance, the input facial image is affine transformed
such that it gets horizontally aligned. Afterward, from the
transformed image, the unit crops the facial area using a
pre-defined value obtained as a multiplicative factor of the
inter-ocular distance D and calculated from its mid-point,
as shown in Figure 4. Finally, the unit crops the face and
scales it to a standard size of h× w pixels (empirically deter-
mined). The face cropping scheme removes all redundant
regions of the face and retains only the relevant area [29].
Additionally, this step ensures spatial consistency of facial
parts (nose, eyes, mouth, etc.) and thus delivers enhanced
accuracy [65].

C. IMAGE PRE-PROCESSING TECHNIQUES
Atmospheric exposure to digital images makes them inef-
fective for image processing applications [66], and an inter-
mediate image enhancement step is deemed crucial before
further processing. Therefore, the proposed FER scheme
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FIGURE 5. DLTP encoded facial images (left to right): Original image, DLTP
encoded lower image, and DLTP encoded upper image.

has utilized contrast enhancement techniques to enhance
the facial images before feature extraction. Depending on
their mode of operation, the existing techniques for con-
trast enhancement are categorized broadly into global, local,
or hybrid methods [67]. Global contrast enhancement tech-
niques transform pixel intensities of facial images using a
single transformation function. Although these techniques
work well in cases where the image is either too dark or
too bright, they fail to handle images that require selective
enhancement. In such situations, the global techniques may
create over or under enhancement problems at some parts
of the image [67]. Therefore, to resolve these issues, local
contrast enhancement techniques were developed that use
the neighboring pixels’ information during transformation.
Figure 5 shows the DLTP encoded facial images without
performing any pre-processing. These images can be used
as a reference to visually compare the results obtained after
different image enhancement operations.

1) GAMMA CORRECTION (GC)
Gamma correction (GC) is a classic image pre-processing
technique employed to enhance the contrast of digital images.
By increasing their dynamic range, the technique improves
the contrast of images that are either too dark or too
bright [68]. Still, GC performs global transformation without
considering the local context; it fails in situations where
both dark and bright regions are present in the image. Fig-
ure 6 shows the DLTP encoded images extracted from the
gamma-corrected facial image using (1). In (1), Iout and Iin
are the output and input image intensities, respectively. The
variable γ in (1) controls the shape of the transformation
function, and its optimal value is determined experimentally.

Iout = Iγin (1)

2) LOCAL CONTRAST NORMALIZATION (LCN)
The local contrast normalization (LCN), a local inten-
sity normalization algorithm, is inspired by the computa-
tional neuroscience model and has been utilized in sev-
eral FER works [69]. Mathematically expressed in (2),
intensity normalization using LCN requires subtractive and
divisive local contrast normalization. Subtractive LCN,
as the name implies, subtracts each image pixels from the
Gaussian-weighted average (µ) of its neighbors. In contrast,
the divisive LCN operation divides image pixels by the stan-

FIGURE 6. Results of Gamma correction image pre-processing operation
(left to right): Original image, Gamma corrected image, DLTP encoded
lower image, and DLTP encoded upper image.

FIGURE 7. Results of local contrast normalization image pre-processing
operation (left to right): Original image, LCN corrected image, DLTP
encoded lower image, and DLTP encoded upper image.

dard deviation (σ ) of its neighborhood. The neighborhood for
both the procedures uses kernels of different sizes. Figure 7
shows DLTP encoded facial images obtained after LCN oper-
ation.

xout =
xin − µ

max(τ, threshold)
(2)

In (2), τ = mean(σ ) and threshold = 1e-4. The output
pixel value obtained using (2) is min-max normalized with
the minimum value α set equal to 0.3 and maximum value β
set to 0.7. Finally, the normalized pixel values are multiplied
by 255 to get the final enhanced pixel output.

3) GLOBAL CONTRAST NORMALIZATION (GCN)
The global contrast normalization (GCN), as the name indi-
cates, performs contrast normalization by taking complete
image pixels’ intensity into account [70]. Similar to LCN,
GCN computation also proceeds in two steps. The first step
of the GCN operation subtracts each pixel from its mean pixel
value. In comparison, the second step of the GCN operation
divides the mean subtracted pixels by their standard devi-
ation. But, division by standard deviation amplifies sensor
noise, and thus to overcome this, LeCun et al. [71] introduced
a positive regularization parameter λ to add bias to the esti-
mate of standard deviation. Also, to avoid computation errors,
a small constant ε is added, as illustrated in (3). Figure 8
shows the GCN pre-processed image and the corresponding
DLTP encoded lower and upper facial images.

xout = s
xin − xmean

max(ε,
√
λ+ (xin − xmean)2

(3)

In (3), the values of the parameters s, λ, and ε are set equal
to 1, 100, and 1e-4, respectively. Like in LCN, the output pixel
value obtained after GCN operation is min-max normalized
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FIGURE 8. Results of global contrast normalization image pre-processing
operation (left to right): Original image, GCN enhanced image, DLTP
encoded lower image, and DLTP encoded upper image.

with the minimum value α set equal to 0.3, and maximum
value β set equal to 0.7. Eventually, the normalized pixel
values are multiplied by 255 to get the final enhanced pixel
output.

D. FEATURE EXTRACTION
For facial feature extraction, the proposed FER pipeline has
used the Dynamic Local Ternary Pattern (DLTP) descrip-
tor [72]. In contrast to the popular LTP descriptor, the DLTP
descriptor uses an automatic mechanism to determine thresh-
old τ based on Webers’ law. Additionally, the descriptor
dynamically updates the threshold depending on the pixel
intensity values. Webers’ law states that the change of a
stimulus (e.g., lighting or sound) that will be just noticeable
is a constant ratio of the original signal. The form of Webers’
law used in DLTP is expressed by (4).

1I
I
= τ (4)

In (4),1I denotes change in intensity I , and τ signifies the
proportion that remains constant. In DLTP,1I is generalized
as |In − Ic| when I is considered as Ic and In (n=1, 2. . . ,
8) is the neighboring pixel. Thus, the form of Weber’s law
used for the determination of threshold automatically can be
mathematically expressed, as in (5).

|In − Ic|
Ic

= τ (5)

Figure 9 demonstrates pattern encoding scheme using the
DLTP descriptor. The threshold τ determined automatically
(using (5)) for every neighboring pixel (see Figure 9(b)) is
applied around the center pixel value Ic of 3× 3 neighboring
pixels In (n=1, 2 . . . , 8). Neighbor pixels that falls in between
Ic + τ and Ic- τ are quantized to 0, while those below Ic
- τ to −1 and the remaining above Ic + τ to 1 using (6).
In (6), SDLT P denotes the quantized value of the surround-
ing neighbors and is shown in Figure 9(c). Similar to LTP,
in DLTP also, the generated quantized value is further divided
into negative patterns (Figure 9(d)) and positive patterns (Fig-
ure 9(e)). The resulting negative and positive binary patterns
are then multiplied with fixed weights (see Figure 9(f) and
Figure 9(g)) and are summed up to give DLTP encoded
lower and upper decimal values, as shown in Figure 9(h)
and Figure 9(i), respectively. Mathematical formulation used
for the conversion of upper and lower DLTP coded values to

FIGURE 9. Dynamic local ternary pattern calculation (a) a 3 × 3 pixels
window (b) automatic dynamic threshold calculation (c) calculation of the
sign patterns based on the generated thresholds (d)-(e) lower and upper
binary patterns (f)-(g) fixed weight for lower and upper binary pattern
multiplication, and (h)-(i) lower and upper encoded decimal value.

positive (upper) PDLT P and negative (lower) NDLT P decimal
values are expressed in (7) and (8), respectively.

SDLTP (Ic, In) =


−1, if In < Ic − τ
0, if Ic − τ ≤ In ≤ Ic + τ
+1, if In > Ic + τ

(6)

PDLTP =
7∑
i=0

SP (SDLTP(i))× 2i (7)

where,

SP (v) =

{
1, if v > 0
0, otherwise

NDLTP =
7∑
i=0

SN (SDLTP(i))× 2i (8)

where,

SN (v) =

{
1, if v < 0
0, otherwise

Figure 10 illustrates the procedure used to capture the tex-
tural information from a sample facial image using the DLTP
descriptor. Given an input facial image, the procedure extracts
the DLTP encoded positive PDLT P and negative NDLT P
images by executing the sequence of steps, as demonstrated
in Figures 10(a)-(m). Once extracted, the feature extraction
scheme divides these images into multiple m × n regions
(see Figures 10(n)-(o)). Afterward, the scheme concatenates
the local facial features in the form of histograms computed
from each of these cells, as shown in Figures 10(p)-(q).
Finally, the scheme concatenates the DLTP extracted positive
and negative histograms to obtain the final high-dimensional
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FIGURE 10. Systematic representation of feature extraction scheme using DLTP descriptor.

FIGURE 11. Scatter plot showing DLTP features of different facial expressions in lower dimensional space.

facial feature. Similar to uniform LBP, histograms corre-
sponding to the uniform variant of the DLTP descriptor has
59-bins. Positive HPDLTP and negative HNDLTP histograms for
both DLTP and uDLTP are computed for each facial image
region using (9) and (10), respectively.

HPDLTP (τ ) =
m∑
r=1

n∑
c=1

f (PDLTP(r, c), τ ) (9)

HNDLTP (τ ) =
m∑
r=1

n∑
c=1

f (NDLTP(r, c), τ ) (10)

where,

f (a, τ ) =

{
1, if a = τ
0, otherwise

In (9)-(10), m and n denotes the width and height of the
DLTP and uDLTP encoded facial image region, respectively.
The value of τ ranges from 0-58 and 0-255 in the case of
uDLTP and DLTP, respectively.
The DLTP extracted facial features are high-dimensional,

and a major fraction of these features are redundant. These
high-dimensional features hamper the performance of the
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classifier and increase its computational cost. Therefore, this
work has utilized dimensionality reduction using PCA to
reduce the dimensions of the features. Figure 11 shows the
scatter plot of the high-dimensional DLTP features obtained
from the RaF category-2 7-expression dataset. The PCA
reduced DLTP features are projected to three-dimensional
feature space using LDA for visualization. A closer look at
the scatter plot reveals that the DLTP features corresponding
to fear, disgust, happiness, and sadness expressions are sep-
arable. Still, for the rest of the three classes, namely anger,
sadness, and neutral, some overlaps exist in the reduced fea-
ture space. It may be due to some extent of similarities among
the facial expression images belonging to anger, sadness, and
neutral.

E. PRINCIPAL COMPONENT ANALYSIS (PCA)
In machine learning applications, it is often desirable to
reduce the number of input features. High-dimensional
features dramatically impact the performance of machine
learning classifiers. Technically, in the machine learning
community, the problem is referred to as the curse of dimen-
sionality. It states that having a large feature vector may
not always be useful [73]. Therefore, over the years, several
dimensionality reduction techniques were developed [74].
These techniques aim to reduce the feature space of the
high-dimensional feature vectors without any adverse impact
on the classifiers’ performance.

Principal component analysis (PCA) is one of the
most widely used dimensionality reduction techniques [75].
It comes under the category of unsupervisedmachine learning
techniques and strives to find the PCA space. For input high-
dimensional data, the PCA space consists of orthonormal and
uncorrelated principal components (PCs). The PCs indicate
the direction of maximum variance, and their optimal number
is a hyperparameter that is determined experimentally.

The high-dimensional features obtained from the DLTP
and uDLTP descriptors contain a lot of redundant informa-
tion. Feature vectors containing too many features slow down
the classification process. It also leads to degradation in the
classification accuracy of the classifier. Therefore, dimen-
sionality reduction via PCA not only reduces the computa-
tional and memory budget of the FER system but enhances
its recognition accuracy as well. In literature, there are two
methods used to compute the principal components (PCs) of
data [76]. The first method uses the covariance matrix, while
the second uses SVD (singular value decomposition). The
covariance matrix-based method computes PCs in two steps,
in which the first step calculates the covariance matrix of the
feature matrix. The second step calculates the eigenvalues
and eigenvectors of the covariance matrix, and thus, the PCs.
The SVD-based method calculates the PCs of the PCA space
using the SVD method [76].

F. KERNEL-EXTREME LEARNING MACHINE (K-ELM)
CLASSIFIER
This work has used the Kernel Extreme Learning Machine
(K-ELM) classifier for the multi-class classification of facial

expressions. The K-ELM classifier is the kernelized vari-
ant of the extreme learning machine (ELM) classifier [77].
The naive ELM classifier is a single-layer feed-forward neu-
ral network (SLFN). Because of its fast training compared
to the traditional back-propagation-based neural networks,
the ELM classifier has been used in several existing works
related to pattern classification [78]. The ELM and K-ELM
classifiers are not iterative and use a simple matrix inversion
operation during training to compute the output weights,
as discussed by Huang et al. [79]. Additionally, in the train-
ing phase, the input weights (value of connections between
the input layer and the hidden layer) of the ELM classifier
are randomly generated and kept fixed.

To understand the working of the K-ELM classifier, one
can refer to the internal details of the ELM classifier shown
in Figure 12. The first layer of the ELM termed the input
layer is connected to the n-dimensional DLTP feature vector
x ∈ Rd . The second layer, named the hidden layer, transforms
input features from the original feature space to a higher
dimensional feature space. With L hidden neurons, the hid-
den layer transforms n-dimensional feature vectors into an
L-dimensional transformed feature vector. Each hidden neu-
ron receives feature vectors as input, and the necessary com-
putation that takes place inside a neuron indexed by i is given
by (11).

g (x;wi, bi) = g (x.wi + bi) (11)

In (11), the function g is called the activation function,
wi is the input weight vector that reflects the strength of
connection between all the input neurons and the ith hidden
neuron, the bias of the ith node is denoted by bi. The value of
i ranges from 1 to L (number of hidden neurons). Although
there are numerous activation functions, this work has used
the sigmoid activation function, and thus, using the sigmoid
activation function, operation in (11) is re-written, as in (12).

g (x;wi, bi) =
1

1+ exp[−(x.wi + bi)]
(12)

The transformed feature vector obtained from all the hid-
den neurons for a single n-dimensional facial feature vector
x is mathematically expressed, as in (13).

h (x) = [g (x;w1, b1) , . . . , g (x;wL , bL)] (13)

The third layer of the ELM, named the output layer, con-
tainsC neurons equal to the number of facial expressions. Let
βi,j denote the output weight between the ith hidden node and
the jth output node. The mathematical expression involved
in the computation of the value of an output node j is given
by (14).

fj (x) =
L∑
i=1

βi,j × g (x;wi, bi) (14)

Also, in the vectorized form, for a facial image with feature
vector x, the output vector obtained from the output node is
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FIGURE 12. Internal details of the extreme learning machine (ELM) classifier.

written as

f (x) = [f1 (x) , . . . , fC (x)] = h (x) β (15)

where,

β =


β1
β2
...

βL

 =

β1,1 · · · β1,C
β2,1 · · · β2,C
...

. . .
...

βL,1 · · · βL,C


Once the classifier is trained, during the recognition pro-

cess, for a sample test facial image with feature vector x, its
corresponding category is determined as expressed in (16),
i.e., the classifier selects the output node that has the maxi-
mum magnitude as the output class.

label (x) = argj=1,...,Cmaxfj (x) (16)

Training an ELM classifier requires a labeled FER dataset.
Let’s assume there are N training sample pairs (images with
their corresponding labels) in the dataset. At first, for each
facial image, feature vector x is obtained using the DLTP
descriptor. Also, labels of all the facial images can form a
matrix denoted as T = [l1, . . . , lN ]T . Here l1 represents
the one-hot encoded binary label of an input facial image.
During training, the ELM classifier only determines the opti-
mal values of the output weight matrix β i,j where j=1,. . . ,C,
as the input weights and biases {wi, bi}i=1,...,L are randomly
generated and remains fixed.

Let us assume that there are N training samples in the
FER dataset. Also, for each image, xk (k=1,2,. . . ,N) denotes
the DLTP extracted feature vector. Also, let yk denotes the
predicted output label and T = [l1, . . . , lN ]T be the one-hot

encoded actual facial labels, then in the matrix form, (14) can
be written as

Hβ = Y (17)

where,

H =

 h(x1)
...

h(xN)

 =
 g (x1;w1, b1) · · · g (x1;wL , bL)

...
. . .

...

g (xN ;w1, b1) · · · g (xN ;wL , bL)


and

Y =

 y1
...

yN

 =
 y1,1 · · · y1,C

...
. . .

...

yN ,1 · · · yN ,C


During training phase, the ELM classifier tries to minimize

the training error ‖T−Hβ‖2 and the norm of output weight
‖β‖. It can be formulated as a constrained-optimization prob-
lem [79] and mathematically expressed as

minimize: ψ (β, ξ) =
1
2
‖β‖2 +

C
2
‖ξ‖2

subject to: Hβ = T− ξ (18)

The constantC , in (18) is a regularization parameter. It aids
in improving the generalization performance of the classifier,
and its optimal value is determined experimentally.

To solve the constrained optimization problem expressed
in (18), the Lagrange multiplier technique is used [80]. The
technique determines the value of output weight β based on
the nature of the matrix ( IC + HTH). In case, the matrix
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( IC +HTH) is not singular, the value of β is obtained as

β =

(
I
C
+HTH

)−1
HTT (19)

In case, the matrix ( IC + HTH) is singular, the value of β
is determined as

β = HT
(
I
C
+HHT

)−1
T (20)

Upon closely examining (19) - (20), one can find that the
matrix dimensions of ( IC +H

TH) is L × L while that of ( IC +
HHT ) is N × N . Therefore, depending on the sample size of
the dataset, the solutions in (19)-(20) is used to determine the
values of the output weight β [79].

The original ELM classifier described above works very
well in situations where the type of activation function to be
used is known. However, when the feature vectors are not
linearly separable, and none of the activation functions work,
there comes the role of the K-ELM classifier. Also, to achieve
satisfactory results, the classical ELM classifier requires a
large number of hidden nodes, which results in higher com-
putational complexity and a longer training time [81]. The
K-ELM classifier uses kernels that maps the features into
higher dimensional space. Also, the RBF kernels required is
much less in K-ELM than the hidden nodes in a conventional
ELM classifier. These properties of the K-ELM classifier
enhance the recognition accuracy and computational effi-
ciency of the FER system. The performance of the K-ELM
classifier is insensitive against the randomness of parameters
than the counterpart ELM classifier.

A K-ELM classifier makes use of the kernel technique
which states that given two input vectors xi and xj, the dot
product of their mapped features represented by h(xi) · h(xj)
can be replaced by a kernel function φ(xi, xj). It is based on
theMercers’ condition and the output vector f(x) of a K-ELM
can be represented as

f (x) = h (x)β = h (x)HT
(
I
C
+HHT

)−1
T

=

 φ(x, x1)
...

φ(x, xNk )

( I
C
+8

)−1
T (21)

where,

8 = HHT
=

 φ (x1, x1) · · · φ (x1, xN )
...

. . .
...

φ (xN , x1) · · · φ (xN , xN )


where, N denotes the number of training samples selected
randomly from the training set. This work has used the Gaus-
sian function as the kernel φ, which is expressed as

φ
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

σ 2

)
(22)

In (22), the parameter σ denotes the spread (i.e., standard
deviation) of the Gaussian function. The K-ELM classifier

FIGURE 13. Sample prototypical facial image from the CK+ 7-expression
dataset (left to right): Anger, Disgust, Fear, Happy, Neutral, Sad, and
Surprise.

has two hyperparameters, namely the Gaussian kernel spread
(kernel parameter) σ and the regularization factor C . In this
study, the optimal values of these hyperparameters are deter-
mined manually using the grid-search procedure.

IV. EXPERIMENTAL SETUP
This section discusses the evaluation results of the experi-
ments performed on various FER datasets to determine the
optimal values of the hyperparameters in the proposed FER
pipeline. These include determining the optimal facial image
and the cell size, the right number of principal components
(PCs), and the values of the kernel and regularization parame-
ter of the K-ELM classifier. It also provide details of different
FER benchmark datasets used in these experiments. These
experiments were carried out in theMATLAB 2015a environ-
ment running on a laptop with 16GB RAM and Windows 10
operating system.

A. DATASET DETAILS
This section provides details of the five FER datasets, namely
the CK+, JAFFE, RaF, KDEF, and RAF-DB, used in the
experiments.

1) CK+ DATASET
The first dataset used in experiments is the extended Cohn-
Kanade (CK+) dataset [82]. The dataset contains emo-
tion sequences of people from different age range (18 to
30 years), origin (African-American, Asian or Latino), and
sex (male and female) displaying eight facial expressions,
namely anger, contempt, disgust, fear, happiness, neutral,
sad, and surprise. However, the proposed experimental setup
considers classifying only seven prototypical facial image
samples belonging to anger, disgust, fear, happiness, neutral,
sad, and surprise. These images are taken from 309 labeled
video sequences in the dataset and belong to 106 subjects.
Following the standard procedure in static image FER, from
the video sequences of expressions, the custom CK+ dataset
uses only the last frame for neutral class, and the three peak
frames in the case of the other six facial expressions [29],
[56]. Thus, the final CK+ dataset has anger (135), disgust
(177), fear (75), happiness (207), neutral (309), sad (84), and
surprise (249), resulting in 1236 images. Figure 13 shows
sample facial images of seven prototypical expressions from
the dataset.

2) JAFFE DATASET
The next dataset used in the experiments is the Japanese
Female Facial Expression (JAFFE) dataset [83]. This dataset
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FIGURE 14. Sample prototypical facial images from the JAFFE
7-expression dataset (left to right): Anger, Disgust, Fear, Happy, Neutral,
Sad, and Surprise.

FIGURE 15. Sample prototypical facial images from the RaF category-1
7-expression dataset (left to right): Anger, Contempt, Disgust, Fear, Happy,
Sad, and Surprise.

contains facial images of seven facial expressions, namely
anger, disgust, fear, happiness, neutral, sad, and surprise.
There are 213 images in the dataset created with the participa-
tion of ten Japanese female actresses. Figure 14 shows sample
facial images from the JAFFE dataset.

3) RaF DATASET
The performance of the proposed FER pipeline is validated
on yet another FER dataset. The dataset, named the Rad-
boud Faces (RaF) dataset has facial images of eight facial
expressions belonging to 67 subjects [84]. Same as the CK+
dataset, during the RaF dataset preparation, too, the subjects
displayed anger, disgust, fear, happiness, contemptuous, sad-
ness, surprise, and neutral facial expressions, looking straight,
slightly left, and right. There are 201 images per facial expres-
sion for each of the three gaze directions in the dataset.
Experiments were performed on the facial images belonging
frontal and combined three gaze direction. From the original
RaF dataset, four categories of the dataset are prepared and
used in the experiments.

The first category, named the RaF category-1 dataset, con-
tains images belonging to anger, contempt, disgust, fear, hap-
piness, sadness, and surprise. There are 469 (=67× 7) images
in the dataset with 67 images each from the seven facial
expressions. Sample images from the RaF category-1 dataset
is shown in Figure 15.

The second category, named the RaF category-2, also
consists of facial images of seven expressions (anger, dis-
gust, fear, happiness, neutral, sad, and surprise) and has a
distribution similar to the RaF category-1 dataset. However,
the contempt class present in category-1 is replaced by the
neutral in this category. Figure 16 displays sample images
from this category of the RaF dataset.

The third category of the RaF dataset, named the RaF
category-3, contains facial images belonging to all the
eight prototypical expressions (anger, contempt, disgust, fear,
happy, neutral, sad, and surprise) and has 536 (=67 ×
8) images. This category is more challenging as there is more

FIGURE 16. Sample prototypical facial images from the RaF category-2
7-expression dataset (left to right): Anger, Disgust, Fear, Happy, Neutral,
Sad, and Surprise.

FIGURE 17. Sample prototypical facial images from the RaF category-3
8-expression dataset (left to right): Anger, Contempt, Disgust, Fear, Happy,
Neutral, Sad, and Surprise.

resemblance between the contempt and disgust expressions,
which might confuse the classifier and degrades its perfor-
mance. Figure 17 shows registered facial expression images
from this category of the RaF dataset.

The proposed work has utilized another variant of the RaF
dataset named the RaF category-4 dataset for fair compar-
ison of the performance of the proposed FER techniques
with the deep learning-based FER scheme introduced by
Sun et al. [48]. The RaF category-4 dataset is an enhanced
variant of the RaF category-2 dataset. However, in contrast
to category-2, it contains frontal facial images with three
gaze directions and has 2-times more images than the RaF
category-2 dataset.

4) KDEF DATASET
The fourth in-the-lab dataset used in the experiments is the
Karolinska Directed Emotional Face (KDEF) dataset [85].
A total of 70 actors (35 females and 35 males) in the age
group of 20 and 30 years, wearing a particular type of gray T-
shirt, participated in the dataset creation. Each actor displayed
seven emotional expressions while being photographed by
cameras placed at five different angular locations. Moreover,
during the photo sessions, the female actors did not wear
earrings, eyeglasses, and make-up. The male actors, on the
other hand, did not have beards and mustaches. The dataset
was created in two sessions and contained images from both
sessions. This study evaluated the performance of the pro-
posed FER pipeline on the 980 frontal expression imageswith
distribution: anger (140), disgust (140), neutral (140), fear
(140), happy (140), sad (140), and surprise (140). Figure 18
shows sample prototypical facial images from the KDEF 7-
expression FER dataset.

5) RAF-DB DATASET
The RAF-DB dataset is a real-world FER dataset gathered
using image URLs obtained from Flicker [57]. The dataset
is very challenging as it has facial images captured under
different illumination conditions and has images with partial
occlusion. The study used 12,271 images as the training set
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FIGURE 18. Sample prototypical facial images from the KDEF
7-expression dataset (left to right): Anger, Disgust, Fear, Happy, Neutral,
Sad, and Surprise.

FIGURE 19. Sample prototypical facial images from the RAF-DB
7-expression dataset (left to right): Anger, Disgust, Fear, Happy, Neutral,
Sad, and Surprise.

and 3,068 images as test data in the experiments. Facial
expression images from the dataset displayed in Figure 19
clearly show that the images in the dataset are from different
ethnicities and poses and are thus challenging compared to
in-the-lab FER datasets.

B. PARAMETER SELECTION
Designing an efficient FER pipeline involves tuning several
hyperparameters. It is essential to find the optimal values of
these hyperparameters to achieve better performance. There-
fore, the initial experiments were performed to determine
the optimal values of different hyperparameters, namely the
facial image and cell size, values of the regularization param-
eter (C) and kernel parameter (γ ) of the K-ELM classifier,
and the number of principal components (PCs).

1) DETERMINATION OF OPTIMAL FACIAL IMAGE AND CELL
SIZE
A series of experiments using eight different combinations
of facial image and cell sizes were performed on the RaF
category-3 8-expression dataset using both the DLTP and
uniform DLTP (uDLTP) descriptor. Intuitively, there can be
several combinations of face and cell sizes; however, out of
them, these eight combinations maintain a balance between
the computational cost and the recognition accuracy. Essen-
tially, the face and cell size determine the dimensions and
effectiveness of the feature vectors. From the facial image
cells, the designed FER pipeline first extracts the DLTP and
uDLTP histogram features. Subsequently, these features are
L2-normalized and concatenated to represent the complete
facial information. The experiments have used ten rounds
of 10-fold cross-validation (CV) and measure the perfor-
mance in terms of accuracy, precision, and F1-score. The
regularization parameter C and kernel parameter (γ ) of the
K-ELM classifier were fixed to a constant value of 100 and
200, respectively.

Tables 1 and 2 summarizes the analysis result of the
experiments conducted using the DLTP and uDLTP features,
respectively. Analyzing the results of Table 1, it becomes

clear that a high-dimensional feature vector may not always
enhance the recognition accuracy of a FER system. On the
contrary, an optimal combination of image and cell size often
boosts recognition accuracy. Out of eight, the FER pipeline
achieved the best performance using a facial image and cell
sizes of 156 × 106 and 14 × 13, respectively. Using the
45056-dimensional DLTP feature vector on the RaF category-
3 dataset, the ten runs of 10-fold CV achieved a mean recog-
nition accuracy of 95.52±0.38%. Out of the ten, the best
10-fold CV achieved recognition accuracy, precision, recall,
and F1-score of 96.10%, 96.14%, 96.08%, and 96.07%,
respectively.

Similar to DLTP, the uDLTP variant also achieved optimal
performance using an image size of 156 × 106 and a cell
size of 14 × 13 (see Table 2). On the RaF category-3 dataset
using 10384-dimensional uDLTP feature vector, the ten
runs of 10-fold CV using K-ELM classifier achieved mean
recognition accuracy of 95.07±0.46% with the best 10-fold
CV achieving recognition accuracy, precision, recall, and
F1-score of 95.72%, 95.78%, 95.71%, and 95.70%, respec-
tively.

2) DETERMINATION OF K-ELM CLASSIFIERS’ PARAMETERS &
OPTIMAL IMAGE ENHANCEMENT TECHNIQUE
The next set of experiments aimed at determining the optimal
values of the K-ELM parameters, namely the regularization
coefficient C and the kernel parameter (γ ). A total of eight
grid-search experiments were performed corresponding to
each of the FER datasets using the different combinations
of the two feature extractors (DLTP and uDLTP) and three
image enhancement operators, namely the Gamma correction
(GC), Local Contrast Normalization (LCN), and Global Con-
trast Normalization (GCN). These grid-search experiments
use the optimal facial image and cell size determined in
the previous experiments. The values of C and γ in the
grid-search experiments were taken in the range of 1 to 10 in
the logarithmic scale of base 2.

Figure 20 shows results of the experiments conducted on
the RaF category-3 8-expression dataset. For Gamma correc-
tion (GC), the value of0 used is 3.5 (empirically determined),
and the LCN operation has used a Gaussian filter of size
21 × 21 and 25 × 25 in its first and the second steps of
computation, respectively. Analyzing the results of Figure 20,
one can find that on the RaF category-3 8-expression dataset,
features extracted using the uDLTP operator from the GC
enhanced facial images achieved the optimal performance.
And it corresponds to the value of the K-ELM classifier
C and γ equal to 1024 and 512, respectively. On the RaF
category-3 dataset, the ten runs of the 10-fold CV using
the GC-uDLTP feature achieved mean recognition accuracy
of 96.55±0.37%, whereas the best 10-fold CV attained a
recognition accuracy of 96.99%.

Figures 21 and 22 show the analysis results of experiments
on RaF category-1 and category-2 datasets, respectively.
On the RaF category-1 dataset, DLTP features extracted from
GCN enhanced facial images achieved optimal performance
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TABLE 1. Performance evaluation of DLTP features using different combinations of image and cell sizes on the RaF category-3 8-expression dataset.
(Bold: best result.)

TABLE 2. Performance evaluation of uDLTP features using different combinations of image and cell sizes on the RaF category-3 8-expression dataset.
(Bold: best result.)

FIGURE 20. Performance of pre-processing operations and feature
extractors on the RaF category-3 8-expression dataset.

FIGURE 21. Performance of image pre-processing operators and feature
extractors on the RaF category-1 7-expression dataset.

using the K-ELM classifier having the value of C and γ
equal to 64 and 1024, respectively. Ten runs of the 10-fold
CV achieved a mean recognition accuracy of 97.91±0.29%,

FIGURE 22. Performance of image pre-processing operators and feature
extractors on the RaF category-2 7-expression dataset.

while the best 10-fold CV achieved recognition accu-
racy of 98.50%. Moreover, on the RaF category-2 dataset,
as shown in Figure 22, features extracted by the DLTP
descriptor using GC enhanced facial images displayed the
best performance. It corresponds to the values of C and γ
of the K-ELM classifier equal to 1024 and 512, respectively.
The mean accuracy of the 10-runs of 10-fold CV recorded
on this category of the RaF dataset is 97.66±0.28%, with the
best 10-fold CV producing a recognition accuracy of 98.08%.

Grid-search experiments using 10-runs of the 10-fold CV
were also conducted on the CK+ dataset to determine the
optimal values of parameters of the K-ELM classifier and the
suitable image enhancement technique. On the CK+ dataset,
the DLTP features obtained from the GC (having 0 value
of 3) enhanced facial images achieved the best performance
(see Figure 23). The ten runs of 10-fold CV using K-ELM
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FIGURE 23. Performance of image pre-processing operators and feature
extractors on the CK+ 7-expression dataset.

FIGURE 24. Performance of image pre-processing operators and feature
extractors on the KDEF 7-expression dataset.

classifier with C and γ values of 512 and 1024, respectively,
achieved mean recognition accuracy of 99.66±0.06%. At the
same time, on the CK+ dataset, the best 10-fold CV attained
recognition accuracy of 99.76%.

Figure 24 displays the analysis results of the experi-
ments conducted on the KDEF 7-expression dataset. Refer-
ring to the results of Figure 24, one can find that on the
KDEF dataset, too, the DLTP features extracted from the GC
enhanced facial images demonstrate the best performance.
The optimal value of K-ELM classifier parameters obtained
from the grid-search analysis is 1024 and 128 for C and γ ,
respectively. On the KDEF dataset, the 10-runs of 10-fold
CV achieved a mean recognition accuracy of 91.35±0.37%.
At the same time, the best 10-fold CV attained recognition
accuracy of 91.84%.

The final set of experiments are performed on the JAFFE
dataset to find the optimal values of the hyperparameters of
the K-ELM classifier. Figure 25 presents the analysis results
of different feature extraction schemes plotted against the
mean recognition accuracy of the 10-runs of the 10-fold CV.
A closer look at Figure 25 shows that the combination of GC
image pre-processing operation and the DLTP feature extrac-

FIGURE 25. Performance of image pre-processing operators and feature
extractors on the JAFFE 7-expression dataset.

FIGURE 26. Curves showing variations in accuracy with number of PCs on
the RaF category-3 8-expression dataset. (Best viewed in color.)

tion scheme achieved the best performance on the JAFFE
dataset. The optimal values of the K-ELM parameters that
resulted in the best performance are equal to 128 for C and
256 for γ . Also, on this dataset, the 10-runs of the 10-fold
CV achieved mean recognition accuracy of 95.38± 1.00%.
Further, the best 10-fold CV achieved recognition accuracy
of 96.62% on the JAFFE dataset.

3) DETERMINATION OF PRINCIPAL COMPONENTS (PCs)
Dimensionality reduction experiments using PCA were also
performed on the FER datasets to determine the optimal
number of principal components (PCs). These experiments
use features extracted using eight different combinations of
the feature extractor and image enhancement techniques,
namely the DLTP, uDLTP, GC-DLTP, GC-uDLTP, GCN-
DLTP, GCN-uDLTP, LCN-DLTP, and LCN-uDLTP. Further,
these experiments utilize the optimal values of the K-ELM
classifier parameters determined in the earlier experiments.
In all these experiments, the values of PCs were varied from
32 to 320 at an equal interval of 32.

On the RaF category-3 8-expression dataset, as shown
in Figure 26, the PCA-reduced GC-DLTP features with
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FIGURE 27. Curves showing variations in accuracy with number of PCs on
the RaF category-1 7-expression dataset. (Best viewed in color.)

FIGURE 28. Curves showing variations in accuracy with number of PCs on
the RaF category-2 7-expression dataset. (Best viewed in color.)

192 PCs achieved the best mean recognition accuracy
of 96.29±0.49%. Among the ten runs, the best 10-fold CV
attained recognition accuracy of 97.01%. Figure 27 shows the
analysis results of experiments on the RaF category-1 dataset.
On the RaF category-1 dataset, with 320 PCs, the DLTP
feature extraction scheme without any image pre-processing
technique achieved maximum performance. Also, the ten
runs of 10-fold CV achieved mean recognition accuracy
of 97.81±0.19%, and the corresponding best 10-fold CV
attained recognition accuracy of 98.08%. Finally, on the
RaF category-2 7-expression dataset, as shown in Figure 28,
the GC-DLTP features achieved superior performance with
just 288 PCs. The 10-runs of 10-fold CV, on this variant
of the RaF dataset, attained a mean recognition accuracy
of 97.53±0.27%, and the best 10-fold CV achieved recog-
nition accuracy of 97.89%.

Upon closely examining the analysis results of Figure 29,
one can find that on the CK+ dataset, with just 288 PCs,
the PCA-reduced GC-DLTP features using 10-runs of the
10-fold CV achieved maximum mean recognition accuracy
of 99.52±0.16%. At the same time, the best 10-fold CV
on the CK+ dataset achieved average recognition accuracy
of 99.76%. Figure 30 shows the analysis results of dimension-

FIGURE 29. Curves showing variations in accuracy with number of PCs on
the CK+ 7-expression dataset. (Best viewed in color.)

FIGURE 30. Curves showing variations in accuracy with number of PCs on
the KDEF 7-expression dataset. (Best viewed in color.)

ality reduction experiments performed on the KDEF dataset.
These experiments have utilized the features obtained using
different combinations of image enhancement and feature
extraction techniques and the values of the K-ELM classifier
parameters determined previously. Like the CK+ dataset,
on the KDEF dataset, too, the PCA-reduced GC-DLTP fea-
tures with 160 PCs achieved the best performance. The mean
recognition accuracy of 10-runs of 10-fold CV on the KDEF
dataset is 93.34±0.53%. The best 10-fold CV, on the other
hand, achieved recognition accuracy of 93.98%.

The final set of dimensionality reduction experiments is
conducted on the JAFFE dataset to determine the optimal
number of PCs. A closer look at the performance evalua-
tion results shown in Figure 31, one can find that on the
JAFFE dataset, with just 128 PCs, the GC-DLTP features
achieved maximum performance. On this dataset, the ten
runs of 10-fold CV achieved mean recognition accuracy
of 94.78±1.5%, and the corresponding best 10-fold achieved
recognition accuracy of 96.71%.

V. RESULTS AND DISCUSSION
This section provides detailed evaluation results of the pro-
posed FER pipeline on the CK+, JAFFE, KDEF, RaF, and
RAF-DB datasets. It also outlines the details of the evaluation
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FIGURE 31. Curves showing variations in accuracy with number of PCs on
the JAFFE 7-expression dataset. (Best viewed in color.)

procedures adopted to evaluate the performance of the pro-
posed pipeline. Finally, it reports comparative analysis results
with the existing works on the FER datasets.

A. EVALUATION PROCEDURES
For performance validation, the proposed FER pipeline has
used two evaluation procedures viz the cross-validation [29],
and cross-dataset [11]. Moreover, for a fair comparison with
the existing works, the performance has been evaluated using
four metrics (recognition accuracy, precision, recall, and
F1-score). The following section provides details of different
evaluation procedures and metrics.

1) CROSS-VALIDATION
The pattern recognition tasks usually use K-fold cross-
validation (CV) to measure the performance of a classifier
in two scenarios: (a) available data is not sufficient, and
(b) distribution of the dataset into training and test set is
not known. In these scenarios, K-fold CV is performed by
randomly dividing the data roughly into K equal parts. For
each fold, a classifier is trained on the (K-1) data parts and
tested on the remaining. Afterward, the test accuracy obtained
on each fold of the 10-fold CV is summed up and divided by
K to get the average accuracy. Since the dataset is divided
randomly in the 10-fold CV, its multiple runs each time give
different average accuracy. Therefore, as suggested byHolder
and Tapamo [29], the proposed FER testing protocol has
utilized ten runs of 10-fold CV and uses their mean accuracy
as the final measure of the performance.

2) CROSS-DATASET EVALUATION
Another evaluation procedure though not widely used but
often accompany the K-fold CV is the cross-dataset evalu-
ation procedure. As the name indicates, this evaluation pro-
cedure uses one of the FER datasets as a training set and
the other one as the testing set. The cross-dataset evaluation
procedure, by default, the best performance evaluation pro-
cedure, is utilized to access the generalization capability and
robustness of the FER systems.

TABLE 3. Confusion matrix on the RaF category-3 8-expression dataset
using PCA reduced GC-DLTP features.

3) DETAILS OF THE PERFORMANCE METRICS
In the classification task, the recognition accuracy alone is
not enough to measure the robustness of a classifier. There-
fore, over the years, researchers developed several metrics
to evaluate the robustness of the classifier. As suggested
by Carcagni et al. [65], this study has also adopted various
performance metrics viz precision, recall, and F1-score, other
than recognition accuracy, to evaluate the robustness of the
proposed FER pipeline. These metrics are briefly discussed
below for the sake of completeness.

Recognition accuracy is usually employed as the initial
measure of the performance and is calculated by dividing
the number of correct by the total number of predictions.
The mathematical formula used for the calculation of the
recognition accuracy, is expressed as

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(23)

where, FN, TP, TN, and FP denotes the number of false
negatives, true positives, true negatives, and false positives
in the prediction results, respectively.

Precision is another metric used to evaluate the robustness
of the classifier and indicates its exactness. Its low value indi-
cates a large number of false positives (FP) in the prediction.
The precision, as expressed in (24), is defined as the ratio of
correct predictions (TP) to all predictions (sum of TP & FP).

Precision =
TP

TP+ FP
(24)

The recall is another widely used evaluation metric and
obtained by dividing the number of correctly classified sam-
ples by the total number of data samples. The mathematical
formulation used to compute recall is expressed, as in (25).

Recall =
TP

TP+ FN
(25)

In contrast to precision, recall is the indicator of classi-
fiers’ completeness, and its low value indicates many false
negatives in the prediction. It led to the development of yet
another metric called the F1-score. The F1-score measures
the balance between precision and recall and is obtained
by (26).

F1− score =
2∗precision∗recall
precision+ recall

(26)
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TABLE 4. Confusion matrix on the RaF category-1 7-expression dataset
using GCN-DLTP features.

TABLE 5. Confusion matrix on the RaF category-2 7-expression dataset
using GC-DLTP features.

TABLE 6. Confusion matrix on the RaF category-4 7-expression dataset
using PCA-reduced DLTP features.

B. RESULTS ON THE RaF DATASET
On the RaF category-3 8-expression dataset, utilizing the
10-fold CV testing procedure, the proposed FER pipeline
using GC-uDLTP features achieved recognition accuracy,
recall, precision, and F1-score equal to 97.01%, 97.01%,
97.06%, and 97.01%, respectively (see Figure 20). Also,
on this dataset, as shown in Figure 26, the GC-DLTP
feature with PCA reduced dimensions achieved 10-fold
CV recognition accuracy, recall, precision, and F1-score
of 97.01%, 97.01%, 97.07%, and 97.00%, respectively.
Therefore, compared to the original GC-uDLTP features,
the recognition accuracy of PCA-reduced GC-DLTP features
are comparatively similar. However, PCA-reduced DLTP fea-
tures with 192 PCs are significantly smaller in size than the

10384-dimensional uDLTP features. Upon closely examining
the confusion matrix results of Table 3, one can observe that
the K-ELM classifier trained on PCA-reduced GC-DLTP fea-
tures is very efficient in recognizing facial images belonging
to anger, disgust, happiness, and surprise. However, it failed
to classify a few facial images belonging to contempt, fear,
neutral, and sad. The failed cases might be due to some extent
of resemblance between the facial expression pairs, which
may have deceived the classifier.

Figure 21 shows the performance analysis results of the
proposed FER pipeline on the RaF category-1 7-expression
dataset. On this dataset, out of different combinations
of image enhancement operations and feature extractors,
the DLTP features extracted from the GCN pre-processed
facial images performed best. The combination achieved
10-fold CV recognition accuracy, recall, precision, and
F1-score of 98.51%, 98.51%, 98.51%, and 98.50%, respec-
tively. The results of dimensionality reduction using PCA on
the RaF category-1 7-expression dataset shown in Figure 27
illustrate that the PCA-reduced DLTP features performed
well compared to other variants. Using just 320 PCs, the
10-fold CV achieved recognition accuracy of 98.08%, recall
of 98.08%, precision of 98.10%, and F1-score of 98.07%.
Looking at the confusion matrix results of Table 4, one
can find that the classifier trained on GCN-DLTP features
correctly classified all the facial images belonging to anger,
contempt, and disgust classes. However, the pipeline misclas-
sified a few sample facial images from the fear, happiness,
sadness, and surprise classes.

As shown in Figure 22, on the RaF category-2 7-expression
dataset, the GC-DLTP features achieved the best perfor-
mance. On this dataset, out of the ten, the best 10-fold
CV run using GC-DLTP feature and K-ELM classifier
achieved recognition accuracy, recall, precision, and F1-score
of 98.08%, 98.08%, 98.09%, and 98.07%, respectively. The
proposed FER scheme using GC-DLTP + K-ELM correctly
classified all the facial images belonging to the anger, dis-
gust, happiness, and neutral facial expressions (see Table 5).
However, out of the 67 samples from the fear, sadness, and
surprise classes, the classifier misclassified 5, 2, and 2 facial
samples, respectively. The analysis report of the experiments
conducted on PCA reduced features (see Figure 28) shows
that on the RaF category-2 dataset, with just 288 PCs, the ten
runs of 10-fold CV achieved mean recognition accuracy
of 97.53±0.27%. There is a marginal gap of 0.21% in the
accuracy of the classifier trained on the original 45056-
dimensional GC-DLTP feature vector and the PCA-reduced
GC-DLTP features having 288 PCs.

On the RaF category-4 dataset, the 10-runs of 10-fold
CV using DLTP features attained a mean recognition accu-
racy of 99.43±0.09% using the pre-determined values of
the K-ELM regularization parameter (C) and kernel param-
eter γ values equal to 256 and 1024, respectively. The
uDLTP variant, on the other hand, attained a mean recog-
nition accuracy of 99.45±0.08% using the K-ELM regular-
ization parameter (C) and kernel parameter γ value equal to
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TABLE 7. Comparison results with state-of-the-art FER methods on the RaF dataset. (Bold: best result.)

TABLE 8. Confusion matrix on the CK+ 7 expression dataset using PCA
reduced GC-DLTP features.

32 and 256, respectively. The best 10-fold CV using uDLTP
achieved recognition accuracy, recall, precision, and F1-score
of 99.64%, 99.57%, 99.58%, and 99.57%, respectively. Fur-
thermore, on the RaF category-4 dataset, the 10-runs of
10-fold CV using PCA-reduced DLTP and uDLTP features
with 288 and 160 PCs achieved the mean recognition accu-
racy of 99.62±0.09% and 99.55±0.01%, respectively. There-
fore, on the RaF category-4 dataset, the PCA-reduced DLTP
features performed well compared to PCA-reduced uDLTP
features. The best 10-fold CV results of PCA-reduced DLTP
features achieved recognition accuracy, recall, precision, and
F1-score of 99.72% (see Table 6) and the trained classifier
correctly classified most of the facial images belong to all the
seven expressions.

Table 7 summarizes the comparison results of the proposed
FER pipeline on the RaF dataset. As per the standard,
the table compares the 10-fold CV recognition accuracy with
related state-of-the-art FER methods [48], [65]. The FER
technique proposed by Carcagni et al. [65] using HOG +
SVM has achieved 10-fold CV accuracy of 94.90% and
92.90% on the RaF category-1 and category-3 FER datasets,
respectively. Using a similar testing protocol, on the RaF
category-1 dataset, the proposed GCN-DLTP + K-ELM
achieved recognition accuracy of 98.51%. Also, on the RaF
category-3 8-expression dataset, the proposed FER pipeline
using PCA-reduced GC-DLTP features achieved recogni-
tion accuracy of 97.01% and thus surpassed the recogni-
tion accuracy (92.90%) achieved by the HOG features by a
substantial margin (4.11%). Besides, on the RaF category-4

7-expression, the proposed FER pipeline has surpassed the
recognition accuracy of 99.17% reported by Sun et al. [48].
On this dataset, the proposed DLTP + PCA + K-ELM
obtained recognition accuracy of 99.72%. In summary, on the
RaF dataset, the proposed FER method achieved superior
performance than the state-of-the-art machine learning and
deep learning-based FER methods.

C. RESULTS ON THE CK+ DATASET
The CK+ FER dataset is the most popular dataset utilized
to evaluate the performance of the static image-based FER
methods. Based on the analysis results displayed in Fig-
ure 23, one can find that on the CK+ dataset, the GC-
DLTP features performed well compared to other feature
extraction techniques. On this dataset, ten runs of the 10-fold
CV achieved mean recognition accuracy of 99.66±0.06%.
The best 10-fold CV, on the other hand, achieved recognition
accuracy, precision, recall, and F1-score of 99.76%, 99.86%,
99.80%, and 99.83%, respectively. Figure 29 shows the per-
formance analysis results obtained by varying the number
of principal components (PCs) on the CK+ dataset. With
an increase in the number of PCs, the pipeline registers an
increment in the mean recognition accuracy. Among the sev-
eral combinations of the pre-processing and feature extraction
scheme, the PCA-reduced GC enhanced DLTP descriptor
achieved the best mean recognition accuracy (99.52±0.16%)
using 288 PCs. Table 8 shows the confusion matrix corre-
sponding to the best performing 10-fold CV, along with the
values of different performance metrics, namely precision,
recall, F1-score. On the CK+ dataset, the proposed FER
scheme achieved recognition accuracy, precision, recall, and
F1-score of 99.76%, 99.84%, 99.84%, and 99.84%, respec-
tively. With just 288 PCs, the proposed FER pipeline success-
fully classified all the facial images from the anger, disgust,
fear, happy, and sad classes. However, the K-ELM classifier
trained on the PCA-reduced GC-DLTP descriptor failed to
correctly classify few sample images belonging to the sur-
prise (2 out of 249) and neutral (1 out of 309) expression
classes.

Table 9 summarizes the comparison results of the pro-
posed FER pipeline on the CK+ dataset. The proposed FER
scheme has achieved competitive performance similar to sev-
eral state-of-the-art traditional machine learning-based FER
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TABLE 9. Comparison results with state-of-the-art FER methods on the CK+ 7-expression dataset. (Bold: best result.)

TABLE 10. Confusion matrix on the KDEF 7-expression dataset using PCA
reduced GC-DLTP features.

methods [5], [21], [29], [35], [37], [65], [86], [87] and deep-
learning-based FERmethods [47], [48], [50], [56], [88], [89].
On the CK+ dataset, the proposed FER pipeline employ-
ing the person-independent (PI) 10-fold CV setting achieved
recognition accuracy of 99.76% using both GC-DLTP and
PCA-reduced GC-DLTP features. The previous best recog-
nition accuracy of 99.68% on this dataset has been reported
by the LBF-NN method [56]. Also, the CNN introduced by
Li et al. [89] has achieved a 10-fold CV accuracy of 97.38%
on the dataset. In summary, on the CK+ dataset, the proposed
FER pipeline using the DLTP descriptor performed well than
several state-of-the-art machine-learning and deep-learning
methods for FER in static images.

D. RESULTS ON THE KDEF DATASET
A closer look at the performance analysis results of Figure 24,
one can find that on theKDEF 7-expression dataset, theDLTP
features extracted from GC enhanced facial images attained
optimal performance. On the dataset, the 10-runs of 10-fold
CV produced a mean recognition of 91.35±0.37%, while
the best 10-fold CV obtained recognition accuracy, recall,
precision, and F1-score of 91.84%, 91.84%, 91.78%, and
91.69%, respectively.

As shown in Figure 30, on the KDEF 7-expression dataset,
the PCA-reduced GC-DLTP features with 160 PCs achieved
the best performance. The 10-runs of 10-fold CV achieved

mean recognition accuracy of 93.34±0.53%, and the corre-
sponding best 10-fold CV accomplished recognition accu-
racy, recall, precision, and F1-score of 93.98%, 93.98%,
93.94%, and 93.93%, respectively. Upon closely examining
the confusion matrix results of Table 10, one can find that
the PCA-reduced GC-DLTP features performed satisfacto-
rily in classifying sample facial images belonging to fear
and sadness. Out of 26 misclassified samples from the fear
class, 11 got classified to surprise, 5 to sad, 5 to anger,
1 to happy, 3 to neutral, and the final one to disgust. The
trained classifier successfully classified more than 95% of
samples belonging to anger, disgust, happiness, neutral, and
surprise. Overall, in contrast to the CK+ and RaF datasets,
the pipeline performed poorly on the KDEF dataset. One
possible reason can be the under-exposed facial images in
the dataset. Such lightening conditions might have adversely
affected the effectiveness of the facial features.

Table 11 compares the performance of the proposed
FER pipeline to other state-of-the-art techniques on the
KDEF dataset. On this dataset, the state-of-the-art FER
method using LTP+ HOG+ SVM has achieved recognition
accuracy of 93.34% [87]. Though the technique achieved
good recognition accuracy, the high dimensionality of the
fused features might have increased the overall computa-
tional cost of the system. Meanwhile, the proposed FER
pipeline using GC-DLTP features achieved recognition accu-
racy of 91.84%, while the PCA-reduced GC-DLTP descriptor
with only 128 PCs achieved recognition accuracy 93.98%.
Therefore, on the KDEF dataset, the proposed FER pipeline
registers a 0.64% improvement in the recognition accuracy
with a multi-fold improvement in the execution speed. The
PCA-reduced GC-DLTP features with much smaller feature
dimensions achieved better performance than the original
GC-DLTP features. It indicates the effectiveness of dimen-
sionality reduction via PCA in the proposed FER scheme.

E. RESULTS ON THE JAFFE DATASET
On the JAFFE 7-expression dataset, as shown in Figure 25,
the DLTP features extracted from the GC enhanced facial
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TABLE 11. Comparison results with state-of-the-art FER methods on the KDEF 7-expression dataset. (Bold: best result.)

TABLE 12. Confusion matrix on the JAFFE 7-expression dataset using
PCA-reduced GC-DLTP features.

images achieved the best performance. Ten runs of 10-fold
CV achieved a mean recognition accuracy of 95.38±1.00%
with the best 10-fold CV registering recognition accu-
racy of 96.71% along with the precision of 96.74%, recall
of 96.74%, and F1-score of 96.73%. Also, analyzing the per-
formance analysis results obtained by varying the number of
PCs on the JAFFE 7-expression dataset (see Figure 31), one
can find that on this dataset, the PCA-reduced GC-DLTP fea-
tures also achieved optimal performance. With just 128 PCs,
the FER pipeline using PCA-reduced GC-DLTP features
achieved mean recognition accuracy of 94.78±1.5% using
10-runs of the 10-fold CV. Table 12 shows the confusion
matrix results corresponding to the best-performing 10-fold
CV using PCA-reduced GC-DLTP features. The trained
K-ELM classifier achieved average recognition accuracy,
precision, recall, and F1-score of 96.71%, 96.78%, 96.73%,
and 96.72%, respectively. Looking at the table results,
it becomes apparent that with only 128 PCs, the pipeline
correctly classified all sample facial images from anger,
happiness, and neutral classes. However, the classifier got
entangled and wrongly classified a few sample images from
disgust, fear, sadness, and surprise classes.

Table 13 presents comparative analysis results of the pro-
posed FER pipeline with the related state-of-the-art tech-
niques on the JAFFE 7-expression dataset. Out of the existing
methods, the FER scheme using the IALTP descriptor [7] has
achieved the highest 10-fold CV accuracy of 97.60%. Never-
theless, the IALTP descriptor requires manual determination
of the threshold and thus may not be realistic. The proposed
FER scheme using the DLTP descriptor, on the other hand,
does not have such constraints and is thus fit for real-world
applications. The FER pipeline introduced by Alhussein [5]
using MS-WLD + SVM has achieved 7-fold CV accuracy
of 97.00%. However, the pipeline is not computationally

efficient than the proposed FER pipeline using PCA-reduced
GC-DLTP features.

One possible reason for the low accuracy of the DLTP
descriptor on the JAFFE dataset can be the non-optimal val-
ues of the hyperparameters (optimal size of the cropped face
and the facial regions). These hyperparameters were deter-
mined on the RaF dataset and kept fixed for the rest. Never-
theless, the proposed FER pipeline using the DLTP descrip-
tor achieved a significant boost in the recognition accuracy
compared to the related IGLTP descriptor [29] and other
competitive descriptors [30], [32], [35], [37], [47]. Finally,
the pipeline also demonstrated competitive performance sim-
ilar to the state-of-the-art deep learning-based FER tech-
niques [50], [89]. In summary, on the JAFFE 7-expression
dataset, the proposed FER pipeline achieved competitive
performance compared to other related techniques based on
hand-crafted and deep-learned features.

F. RESULTS ON THE RAF-DB DATASET
Further, to test the robustness of the proposed FER pipeline
in complex real-world conditions, the pipeline is trained and
tested on the RAF-DB dataset. Researchers widely use the
RAF-DB dataset to test the robustness of the FER system in
real-world conditions of partial face occlusion, illumination
variation, etc.

The RAF-DB dataset has been utilized extensively in the
FER works based on deep learning techniques or the con-
volutional neural network (CNN). Only a few works are
available in the literature that has utilized the dataset to
evaluate the performance of FER methods based on tradi-
tional machine learning. On the RAF-DB dataset, the baseline
results reported by Li and Deng [57] has achieved recognition
accuracy of 72.71%, 74.35%, and 77.28% using LBP +
SVM, HOG+ SVM, and Gabor+ SVM, respectively. How-
ever, as reported in Table 14, the proposed FER scheme has
performed well and achieved an accuracy of 78.75% and
78.46%, using the DLTP + K-ELM and uDLTP + K-ELM,
respectively. Therefore, compared to the traditional texture
and shape descriptor, the proposed DLTP descriptor is robust
against illumination and partial face occlusion. Hence, it is
suitable for FER in complex real-world conditions.

G. CROSS-DATASET PERFORMANCE EVALUATION
A FER pipeline trained on one FER dataset often performs
poorly on another dataset. Degradation in the performance
might be due to the variation in the feature distribution of
emotions across datasets. Therefore, besides cross-validation,
the study has used the cross-dataset testing procedure to
evaluate the generalization performance of the proposed FER
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TABLE 13. Comparison results with state-of-the-art FER methods on the JAFFE 7-expression dataset. (Bold: best result.)

TABLE 14. Comparison results with state-of-the-art FER methods on the
RAF-DB 7-expression dataset. (Bold: best result.)

pipeline. In contrast to cross-validation, the cross-dataset
evaluation directly measures the discriminative power of the
descriptor [48], [87].

As the name indicates, in the cross-dataset testing proce-
dure, one of the FER datasets is used as training and the
other as the test dataset. Table 15 reports the cross-dataset
evaluation results conducted on the possible train and test
combinations of the four FER datasets. The proposed FER
pipeline has achieved competitive test accuracy than the state-
of-the-art FER methods. The pipeline trained on the KDEF
dataset achieved a classification accuracy of 83.33% on the
CK+ test dataset, which is much better than the previously
reported test accuracy of 78.85% [87].

Moreover, the proposed FER pipeline employing the DLTP
descriptor attained better test accuracy of 86.17% in con-
trast to the previously reported 75.13% [48], using the RaF
category-4 dataset as the training set and CK+ dataset as
the test set. Furthermore, the FER technique introduced
by Shan et al. [11] has achieved test recognition accuracy
of 41.30%, using the CK+ dataset as the training and the
JAFFE dataset testing set. On a similar dataset configuration,
the proposed FER pipeline using uDLTP descriptor has also
achieved competitive test recognition accuracy of 42.25%.
It demonstrates the usefulness of the DLTP/uDLTP feature
extractor and the K-ELM classifier. Upon closely examin-
ing the results of Table 15, one can find that the DLTP
descriptor, in contrast to the uDLTP descriptor, has performed
well on most of the train-test combinations of the FER
datasets. It indicates that dimensionality reduction, though
it works well on standalone FER datasets, it results in loss
of useful information that, in most cases, results in low
cross-dataset test accuracy. Nevertheless, trade-offs between

accuracy and speed exist between the 45056-dimensional
DLTP and 10384-dimensional uDLTP descriptors. Depend-
ing on the application, the FER pipeline using uDLTP might
be suitable than the pipeline using the DLTP descriptor.

Low cross-dataset test accuracy in the FER task has
remained a challenging problem due to the obvious biases
caused by diverse subjects and diverse data collection condi-
tions, i.e., the training and testing dataset are not independent
and identically distributed. One can adopt the domain adap-
tion technique that might enhance the cross-dataset test accu-
racy by learning invariant representations across domains
(datasets). Further, training instances from different datasets
can be combined for training and evaluating the models dur-
ing cross-dataset testing.

VI. COMPUTATION TIME
Table 16 shows the execution time (in milliseconds) taken
by the feature extractor and the K-ELM classifier (with and
without the dimensionality reduction) on the CK+ dataset.
The feature extraction time per image and the classification
time with and without dimensionality reduction are calcu-
lated in a MATLAB 2015a environment running on a laptop
with 16GB RAM and Intel i9-8950HK processor running at
2.90 GHz. The analysis results of Table 16 show that the
uniform variant of theDLTP (uDLTP) descriptor, as expected,
consumes less time in feature extraction than the original
DLTP. Furthermore, the classifier attains 25 and 13 times
boost in the execution speed using PCA-reduced DLTP and
uDLTP features, respectively. Different components of the
proposed pipeline have also attained multi-fold improvement
in the execution speed than those reported in the litera-
ture [41]. The results demonstrate the usefulness of dimen-
sionality reduction via PCA in improving the execution speed
of the proposed FER pipeline without much degradation in its
recognition accuracy. In summary, the proposed FER pipeline
is computationally efficient and suitable for applications that
demand real-time classification of facial expressions.

VII. CONCLUSION
This research conducted an extensive study to analyze the
role of dynamic local ternary patterns (DLTP) for FER in
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TABLE 15. Results of cross-dataset evaluation using different combinations of the FER datasets. (Bold: best result.)

TABLE 16. The computation time in milliseconds (ms) for feature
extraction and classification on a single facial image (DR: Dimensionality
reduction and FS: Feature selection). (Bold: best result.)

static images. An efficient FER pipeline was proposed, which
uses a sequence of steps to classify facial expressions. Firstly,
using an image preprocessing operation, the FER pipeline
enhances the facial images. In the subsequent step, fea-
tures are extracted from the enhanced facial image using
the DLTP descriptor. Afterward, the pipeline reduces the
features’ dimensions via the principal component analysis
(PCA). Finally, the proposed pipeline classified the reduced
features using the K-ELM classifier. The study utilized both
the cross-validation and cross-database testing procedures to
evaluate the performance of the proposed pipeline. The pro-
posed FER pipeline using 10-fold CV achieved amean recog-
nition accuracy of 99.76%, 99.72%, 93.98%, and 96.71%,
on the CK+, RaF, KDEF, and JAFFE datasets, respectively.
Also, tested on the validation set of the RAF-DB dataset,
the pipeline attained a classification accuracy of 78.75%.
The cross-dataset evaluation using different combinations
of the FER datasets also reflected the discriminative power of
the DLTP descriptor. Comparative analysis with state-of-the-
art FER methods showed the usefulness of the proposed FER
pipeline using the DLTP descriptor. The designed pipeline
is robust and computationally efficient and thus suitable for
real-world applications. Future work will develop a more

robust gradient DLTP descriptor and design the FER method
using the fusion of facial texture and shape features extracted
using DLTP and HOG, respectively.

REFERENCES
[1] T.-H.-S. Li, P.-H. Kuo, T.-N. Tsai, and P.-C. Luan, ‘‘CNN and LSTM based

facial expression analysis model for a humanoid robot,’’ IEEE Access,
vol. 7, pp. 93998–94011, 2019.

[2] M. R. Jeong and B. C. Ko, ‘‘Driver’s facial expression recognition in real-
time for safe driving,’’ Sensors, vol. 18, no. 12, p. 4270, Dec. 2018.

[3] M. S. Bouzakraoui, A. Sadiq, and N. Enneya, ‘‘A customer emotion
recognition through facial expression using POEM descriptor and SVM
classifier,’’ in Proc. 2nd Int. Conf. Big Data, Cloud Appl., Mar. 2017,
pp. 1–6.

[4] Y. S. Su, H. Y. Suen, and K. E. Hung, ‘‘Predicting behavioral competencies
automatically from facial expressions in real-time video-recorded inter-
views,’’ J. Real-Time Image Process., vol. 19, pp. 1011–1021, Jan. 2021.

[5] M. Alhussein, ‘‘Automatic facial emotion recognition using weber local
descriptor for e-Healthcare system,’’ Cluster Comput., vol. 19, no. 1,
pp. 99–108, Mar. 2016.

[6] T. Ashwin and R. M. R. Guddeti, ‘‘Automatic detection of students’ affec-
tive states in classroom environment using hybrid convolutional neural
networks,’’ Educ. Inf. Technol., vol. 25, pp. 1–29, Mar. 2019.

[7] S. Saurav, S. Singh, R. Saini, andM. Yadav, ‘‘Facial expression recognition
using improved adaptive local ternary pattern,’’ in Proc. 3rd Int. Conf.
Comput. Vis. Image Process. Singapore: Springer, 2020, pp. 39–52.

[8] J. Zhao, X.Mao, and L. Chen, ‘‘Speech emotion recognition using deep 1D
& 2D CNN LSTM networks,’’ Biomed. Signal Process. Control, vol. 47,
pp. 312–323, Jan. 2019.

[9] E. Avots, T. Sapiński, M. Bachmann, and D. Kamińska, ‘‘Audiovisual
emotion recognition in wild,’’Mach. Vis. Appl., vol. 30, no. 5, pp. 975–985,
2019.

[10] S. Oh, J.-Y. Lee, and D. K. Kim, ‘‘The design of CNN architectures
for optimal six basic emotion classification using multiple physiological
signals,’’ Sensors, vol. 20, no. 3, p. 866, Feb. 2020.

[11] C. Shan, S. Gong, and P. W. McOwan, ‘‘Facial expression recognition
based on local binary patterns: A comprehensive study,’’ Image Vis. Com-
put., vol. 27, no. 6, pp. 803–816, 2009.

[12] M. Z. Uddin, M. M. Hassan, A. Almogren, A. Alamri, M. Alrubaian,
and G. Fortino, ‘‘Facial expression recognition utilizing local direction-
based robust features and deep belief network,’’ IEEE Access, vol. 5,
pp. 4525–4536, 2017.

[13] J. Chen, R. Xu, and L. Liu, ‘‘Deep peak-neutral difference feature for
facial expression recognition,’’ Multimedia Tools Appl., vol. 77, no. 22,
pp. 29871–29887, Nov. 2018.

120866 VOLUME 9, 2021



S. Saurav et al.: FER Using Dynamic Local Ternary Patterns With K-ELM Classifier

[14] I. M. Revina and W. R. S. Emmanuel, ‘‘Face expression recognition
with the optimization based multi-SVNN classifier and the modified LDP
features,’’ J. Vis. Commun. Image Represent., vol. 62, pp. 43–55, Jul. 2019.

[15] M. Nazir, Z. Jan, and M. Sajjad, ‘‘Facial expression recognition using
histogram of oriented gradients based transformed features,’’Cluster Com-
put., vol. 21, no. 1, pp. 539–548, Mar. 2018.

[16] M. Ghosh, T. Kundu, D. Ghosh, and R. Sarkar, ‘‘Feature selection for facial
emotion recognition using late hill-climbing based memetic algorithm,’’
Multimedia Tools Appl., vol. 78, no. 18, pp. 25753–25779, Sep. 2019.

[17] S. Zhou, G. Feng, and J. Xie, ‘‘Facial expression recognition based
on classification tree,’’ in Proc. Chin. Conf. Biometric Recognit. Cham,
Switzerland: Springer, 2014, pp. 128–135.

[18] H. Boughrara, M. Chtourou, C. B. Amar, and L. Chen, ‘‘Facial expression
recognition based on a mlp neural network using constructive training
algorithm,’’Multimedia Tools Appl., vol. 75, no. 2, pp. 709–731, 2016.

[19] T. Li, C. Du, T. Naren, Z. Chen, S. Liu, J. Zhou, and X. Xu, ‘‘Using feature
points and angles between them to recognise facial expression by a neural
network approach,’’ IET Image Process., vol. 12, no. 11, pp. 1951–1955,
Nov. 2018.

[20] D. K. Jain, P. Shamsolmoali, and P. Sehdev, ‘‘Extended deep neural net-
work for facial emotion recognition,’’ Pattern Recognit. Lett., vol. 120,
pp. 69–74, Apr. 2019.

[21] Y. Liu, Y. Li, X. Ma, and R. Song, ‘‘Facial expression recognition with
fusion features extracted from salient facial areas,’’ Sensors, vol. 17, no. 4,
p. 712, Mar. 2017.

[22] K. Bahreini, W. van der Vegt, and W. Westera, ‘‘A fuzzy logic approach to
reliable real-time recognition of facial emotions,’’Multimedia Tools Appl.,
vol. 78, no. 14, pp. 18943–18966, Jul. 2019.

[23] Y. Li, J. Zeng, S. Shan, and X. Chen, ‘‘Occlusion aware facial expression
recognition using CNN with attention mechanism,’’ IEEE Trans. Image
Process., vol. 28, no. 5, pp. 2439–2450, May 2018.

[24] A. R. Rivera, R. Castillo, and O. Chae, ‘‘Local directional number pattern
for face analysis: Face and expression recognition,’’ IEEE Trans. Image
Process., vol. 22, no. 5, pp. 1740–1752, May 2012.

[25] X. Tan and B. Triggs, ‘‘Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions,’’ IEEE Trans. Image Process.,
vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[26] T. Jabid, M. H. Kabir, and O. Chae, ‘‘Facial expression recognition using
local directional pattern (LDP),’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2010, pp. 1605–1608.

[27] B. Ryu, A. R. Rivera, J. Kim, and O. Chae, ‘‘Local directional ternary
pattern for facial expression recognition,’’ IEEE Trans. Image Process.,
vol. 26, no. 12, pp. 6006–6018, Dec. 2017.

[28] F. Ahmed and E. Hossain, ‘‘Automated facial expression recognition using
gradient-based ternary texture patterns,’’ Chin. J. Eng., vol. 2013, pp. 1–8,
Dec. 2013.

[29] R. P. Holder and J. R. Tapamo, ‘‘Improved gradient local ternary patterns
for facial expression recognition,’’ EURASIP J. Image Video Process.,
vol. 2017, no. 1, p. 42, Dec. 2017.

[30] M. Guo, X. Hou, Y. Ma, and X. Wu, ‘‘Facial expression recognition using
ELBP based on covariance matrix transform in KLT,’’ Multimedia Tools
Appl., vol. 76, no. 2, pp. 2995–3010, 2017.

[31] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikainen, X. Chen, and W. Gao,
‘‘WLD:A robust local image descriptor,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 9, pp. 1705–1720, Sep. 2010.

[32] S. A. Khan, A. Hussain, andM. Usman, ‘‘Reliable facial expression recog-
nition for multi-scale images using weber local binary image based cosine
transform features,’’Multimedia Tools Appl., vol. 77, no. 1, pp. 1133–1165,
Jan. 2018.

[33] A. Mahmood, S. Hussain, K. Iqbal, and W. S. Elkilani, ‘‘Recognition of
facial expressions under varying conditions using dual-feature fusion,’’
Math. Problems Eng., vol. 2019, pp. 1–12, Aug. 2019.

[34] S. L. Happy and A. Routray, ‘‘Automatic facial expression recognition
using features of salient facial patches,’’ IEEE Trans. Affective Comput.,
vol. 6, no. 1, pp. 1–12, Jan. 2014.

[35] S. Kherchaoui and A. Houacine, ‘‘Facial expression identification
using gradient local phase,’’ Multimedia Tools Appl., vol. 78, no. 12,
pp. 16843–16859, Jun. 2019.

[36] N. B. Kar, K. S. Babu, A. K. Sangaiah, and S. Bakshi, ‘‘Face expression
recognition system based on ripplet transform type II and least square
SVM,’’Multimedia Tools Appl., vol. 78, no. 4, pp. 4789–4812, 2019.

[37] Y. Luo, X.-Y. Liu, Y. Zhang, X.-F. Chen, and Z. Chen, ‘‘Facial expression
recognition based on improved completed local ternary patterns,’’ Opto-
electronics Lett., vol. 15, no. 3, pp. 224–230, May 2019.

[38] T. H. Rassem and B. E. Khoo, ‘‘Completed local ternary pattern for
rotation invariant texture classification,’’ Sci. World J., vol. 2014, pp. 1–10,
Apr. 2014.

[39] I. M. Revina and W. R. S. Emmanuel, ‘‘MDTP: A novel multi-directional
triangles pattern for face expression recognition,’’Multimedia Tools Appl.,
vol. 78, no. 18, pp. 26223–26238, Sep. 2019.

[40] S. Saha, M. Ghosh, S. Ghosh, S. Sen, P. K. Singh, Z. W. Geem, and
R. Sarkar, ‘‘Feature selection for facial emotion recognition using cosine
similarity-based harmony search algorithm,’’ Appl. Sci., vol. 10, no. 8,
p. 2816, 2020.

[41] P. Shanthi and S. Nickolas, ‘‘An efficient automatic facial expression
recognition using local neighborhood feature fusion,’’ Multimedia Tools
Appl., vol. 80, no. 7, pp. 1–26, 2020.

[42] M. H. Siddiqi, R. Ali, M. Idris, A. M. Khan, E. S. Kim, M. C. Whang,
and S. Lee, ‘‘Human facial expression recognition using curvelet feature
extraction and normalizedmutual information feature selection,’’Multime-
dia Tools Appl., vol. 75, no. 2, pp. 935–959, 2016.

[43] M. P. Kumar and M. K. Rajagopal, ‘‘Detecting facial emotions using
normalized minimal feature vectors and semi-supervised twin support
vector machines classifier,’’ Int. J. Speech Technol., vol. 49, no. 12,
pp. 4150–4174, Dec. 2019.

[44] H. Li and G. Wen, ‘‘Sample awareness-based personalized facial expres-
sion recognition,’’ Int. J. Speech Technol., vol. 49, no. 8, pp. 2956–2969,
Aug. 2019.

[45] Z. Wang, L. Zhang, and B. Wang, ‘‘Sparse modified marginal Fisher
analysis for facial expression recognition,’’ Int. J. Speech Technol., vol. 49,
no. 7, pp. 2659–2671, Jul. 2019.

[46] D. Li, G.Wen, X. Li, and X. Cai, ‘‘Graph-based dynamic ensemble pruning
for facial expression recognition,’’ Int. J. Speech Technol., vol. 49, no. 9,
pp. 3188–3206, Sep. 2019.

[47] B. Yang, J. Cao, R. Ni, and Y. Zhang, ‘‘Facial expression recognition using
weighted mixture deep neural network based on double-channel facial
images,’’ IEEE Access, vol. 6, pp. 4630–4640, 2017.

[48] N. Sun, Q. Li, R. Huan, J. Liu, and G. Han, ‘‘Deep spatial-temporal feature
fusion for facial expression recognition in static images,’’Pattern Recognit.
Lett., vol. 119, pp. 49–61, Mar. 2019.

[49] A. Ullah, J. Wang, M. S. Anwar, U. Ahmad, U. Saeed, and Z. Fei, ‘‘Facial
expression recognition of nonlinear facial variations using deep locality
de-expression residue learning in the wild,’’ Electronics, vol. 8, no. 12,
p. 1487, Dec. 2019.

[50] A. Sun, Y. Li, Y.-M. Huang, Q. Li, and G. Lu, ‘‘Facial expression recog-
nition using optimized active regions,’’ Hum.-Centric Comput. Inf. Sci.,
vol. 8, no. 1, p. 33, Dec. 2018.

[51] J. Shao andY. Qian, ‘‘Three convolutional neural networkmodels for facial
expression recognition in the wild,’’ Neurocompting, vol. 355, pp. 82–92,
Aug. 2019.

[52] K. Li, Y. Jin, M. W. Akram, R. Han, and J. Chen, ‘‘Facial expression
recognition with convolutional neural networks via a new face cropping
and rotation strategy,’’ Vis. Comput., vol. 36, no. 2, pp. 1–14, 2019.

[53] K. Mohan, A. Seal, O. Krejcar, and A. Yazidi, ‘‘Facial expression recog-
nition using local gravitational force descriptor-based deep convolution
neural networks,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–12, 2020.

[54] D. Li, X. Zhao, G. Yuan, Y. Liu, and G. Liu, ‘‘Robustness comparison
between the capsule network and the convolutional network for facial
expression recognition,’’ Appl. Intell., vol. 51, no. 4, pp. 1–10, 2020.

[55] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between cap-
sules,’’ in Proc. Adv. neural Inf. Process. Syst., 2017, pp. 3856–3866.

[56] I. Gogić, M.Manhart, I. S. Pandžić, and J. Ahlberg, ‘‘Fast facial expression
recognition using local binary features and shallow neural networks,’’ Vis.
Comput., vol. 36, no. 1, pp. 1–16, 2018.

[57] S. Li and W. Deng, ‘‘Reliable crowdsourcing and deep locality-preserving
learning for unconstrained facial expression recognition,’’ IEEE Trans.
Image Process., vol. 28, no. 1, pp. 356–370, Jan. 2018.

[58] I. J. Goodfellow et al., ‘‘Challenges in representation learning: A report on
three machine learning contests,’’ in Proc. Int. Conf. Neural Inf. Process.
Springer, 2013, pp. 117–124.

[59] A. Mollahosseini, B. Hasani, and M. H. Mahoor, ‘‘AffectNet: A database
for facial expression, valence, and arousal computing in the wild,’’ IEEE
Trans. Affect. Comput., vol. 10, no. 1, pp. 18–31, Jan./Mar. 2017.

[60] T.-H. Vo, G.-S. Lee, H.-J. Yang, and S.-H. Kim, ‘‘Pyramid with super
resolution for in-the-wild facial expression recognition,’’ IEEE Access,
vol. 8, pp. 131988–132001, 2020.

[61] P. Viola andM. J. Jones, ‘‘Robust real-time face detection,’’ Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, 2004.

VOLUME 9, 2021 120867



S. Saurav et al.: FER Using Dynamic Local Ternary Patterns With K-ELM Classifier

[62] K. Martin, ‘‘Efficient metric learning for real-world face recognition,’’
Graz Univ. Technol., Graz, Austria, Tech. Rep., 2013. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.494.9447&rep
=rep1&type=pdf

[63] X. Xiong and F. D. la Torre, ‘‘Supervised descent method and its appli-
cations to face alignment,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 532–539.

[64] X. Xiong and F. D. la Torre, ‘‘Supervised descent method for solving non-
linear least squares problems in computer vision,’’ 2014, arXiv:1405.0601.
[Online]. Available: http://arxiv.org/abs/1405.0601

[65] P. Carcagnì, M. Del Coco, M. Leo, and C. Distante, ‘‘Facial expression
recognition and histograms of oriented gradients: A comprehensive study,’’
SpringerPlus, vol. 4, no. 1, p. 645, Dec. 2015.

[66] S.-C. Huang, B.-H. Chen, and W.-J. Wang, ‘‘Visibility restoration of
single hazy images captured in real-world weather conditions,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 24, no. 10, pp. 1814–1824,
Oct. 2014.

[67] S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi,
andM. Shoyaib, ‘‘An adaptive gamma correction for image enhancement,’’
EURASIP J. Image Video Process., vol. 2016, no. 1, pp. 1–13, Dec. 2016.

[68] J. G. G. Salas and J. L. Lisani, ‘‘Local color correction,’’ Image Process.
Line, vol. 1, pp. 260–280, Sep. 2011.

[69] A. T. Lopes, E. de Aguiar, A. F. D. Souza, and T. Oliveira-Santos, ‘‘Facial
expression recognition with convolutional neural networks: Coping with
few data and the training sample order,’’ Pattern Recognit., vol. 61,
pp. 610–628, Jan. 2017.

[70] D. A. Pitaloka, A. Wulandari, T. Basaruddin, and D. Y. Liliana, ‘‘Enhanc-
ing CNN with preprocessing stage in automatic emotion recognition,’’
Procedia Comput. Sci., vol. 116, pp. 523–529, Jan. 2017.

[71] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[72] S. Parveen, S. Ahmad, N. Abbas, W. Adnan, M. Hanafi, and N. Naeem,
‘‘Face liveness detection using dynamic local ternary pattern (DLTP),’’
Computers, vol. 5, no. 2, p. 10, May 2016.

[73] P. Indyk and R. Motwani, ‘‘Approximate nearest neighbors: Towards
removing the curse of dimensionality,’’ in Proc. 13th Annu. ACM Symp.
Theory Comput. (STOC), 1998, pp. 604–613.

[74] L. V. D. Maaten, E. O. Postma, and H. J. V. D. Herik, ‘‘MATLAB tool-
box for dimensionality reduction,’’ MICC, Maastricht Univ., Maastricht,
The Netherlands, Tech. Rep., 2007.

[75] B. Schölkopf, A. Smola, and K.-R. Müller, ‘‘Kernel principal compo-
nent analysis,’’ in Proc. Int. Conf. Artif. Neural Netw. Berlin, Germany:
Springer, 1997, pp. 583–588.

[76] J. Shlens, ‘‘A tutorial on principal component analysis,’’ 2014,
arXiv:1404.1100. [Online]. Available: http://arxiv.org/abs/1404.1100

[77] A. Iosifidis, A. Tefas, and I. Pitas, ‘‘On the kernel extreme learningmachine
classifier,’’ Pattern Recognit. Lett., vol. 54, pp. 11–17, Mar. 2015.

[78] Deepika, S. Vashisth, and S. Saurav, ‘‘Histogram of oriented gradients
based reduced feature for traffic sign recognition,’’ in Proc. Int. Conf. Adv.
Comput., Commun. Informat. (ICACCI), Sep. 2018, pp. 2206–2212.

[79] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, ‘‘Extreme learningmachine
for regression and multiclass classification,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2011.

[80] Z. Huang, Y. Yu, J. Gu, and H. Liu, ‘‘An efficient method for traffic sign
recognition based on extreme learning machine,’’ IEEE Trans. Cybern.,
vol. 47, no. 4, pp. 920–933, Apr. 2016.

[81] Y. Zeng, X. Xu, D. Shen, Y. Fang, and Z. Xiao, ‘‘Traffic sign recogni-
tion using kernel extreme learning machines with deep perceptual fea-
tures,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1647–1653,
Jun. 2017.

[82] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
‘‘The extendedCohn-Kanade dataset (CK+): A complete dataset for action
unit and emotion-specified expression,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2010, pp. 94–101.

[83] M. J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, and J. Budynek,
‘‘The Japanese female facial expression (JAFFE) database,’’ in Proc. 3rd
Int. Conf. Autom. Face Gesture Recognit., 1998, pp. 14–16.

[84] O. Langner, R. Dotsch, G. Bijlstra, D. H. J. Wigboldus, S. T. Hawk, and
A. van Knippenberg, ‘‘Presentation and validation of the radboud faces
database,’’ Cognit. Emotion, vol. 24, no. 8, pp. 1377–1388, 2010.

[85] D. Lundqvist, A. Flykt, and A. Öhman, ‘‘The Karolinska directed emo-
tional faces (KDEF),’’ CD ROM from Dept. Clin. Neurosci., Psychol.
Sect., Karolinska Institutet, Solna, Sweden, 1998, p. 2, vol. 91, no. 630.

[86] S. A. M. Al-Sumaidaee, M. A. M. Abdullah, R. R. O. Al-Nima, S. S. Dlay,
and J. A. Chambers, ‘‘Multi-gradient features and elongated quinary pat-
tern encoding for image-based facial expression recognition,’’ Pattern
Recognit., vol. 71, pp. 249–263, Nov. 2017.

[87] K. Lekdioui, R. Messoussi, Y. Ruichek, Y. Chaabi, and R. Touahni, ‘‘Facial
decomposition for expression recognition using texture/shape descrip-
tors and SVM classifier,’’ Signal Process., Image Commun., vol. 58,
pp. 300–312, Oct. 2017.

[88] S. Xie, H. Hu, and Y. Wu, ‘‘Deep multi-path convolutional neural network
joint with salient region attention for facial expression recognition,’’ Pat-
tern Recognit., vol. 92, pp. 177–191, Aug. 2019.

[89] K. Li, Y. Jin, M. W. Akram, R. Han, and J. Chen, ‘‘Facial expression
recognition with convolutional neural networks via a new face cropping
and rotation strategy,’’Vis. Comput., vol. 36, no. 2, pp. 391–404, Feb. 2020.

SUMEET SAURAV received the master’s degree
from the Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad, India, in 2014.
He is currently pursuing the Ph.D. degree. He is
also working as a Scientist with the CSIR-Central
Electronics Engineering Research Institute, Pilani,
Rajasthan, India. He is involved in various projects
sponsored by the Government of India on Arti-
ficial Intelligence. His research interests include
computer vision, machine learning, deep learn-

ing architectures for vision-based applications, and FPGA-based real-time
implementation of computer vision algorithms.

RAVI SAINI (Member, IEEE) received the mas-
ter’s degree in electronics from DAVV, Indore,
India, in 2000, the M.Tech. degree from Pan-
jab University, India, in 2002, and the Ph.D.
degree in electronics fromKurukshetra University,
Kurukshetra, India. He is currently working as a
Senior Scientist with the CSIR-Central Electronics
Engineering Research Institute, Pilani, Rajasthan,
India. His research interests include VLSI Archi-
tectures, ASIC and ASIP Design, HDLs, and
FPGA prototyping.

SANJAY SINGH (Senior Member, IEEE) received
the M.Sc. and M.Tech. degrees and the Ph.D.
degree in electronics from Kurukshetra Univer-
sity, Kurukshetra, India, in 2005, 2007, and
2015, respectively. He is currently working as a
Senior Scientist with the CSIR-Central Electronics
Engineering Research Institute (CEERI), Pilani,
Rajasthan, India, where he is also the Head of
the Cognitive Computing Group. He is actively
handling several industrial and the Government of

India sponsored projects related to computer vision and machine learning.

120868 VOLUME 9, 2021


