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ABSTRACT Hyperspectral images are rich in both spectral information and spatial dependence information
between pixels; however, hyperspectral images are characterized by the high dimensionality of small data
sets and the spectral variance. Facing these problems, spatial dependence information as supplementary
information is a relatively effective means to solve them. And the label dependence characteristic of
hyperspectral images is excellent spatial dependence information. Therefore, to address the above issues,
based on residual network and spatial information extractor(RAS), which is based on a residual network,
pixel embedding(PE), and a spatial information extractor(SIE). At the stage of mining spectral information,
we use the residual network to mine spectral features; At the stage of mining spatial information, we utilize
the label dependency characteristic to feed the set of pixels containing the target pixels into PE. Then, a pixel
vector with location information and self-defined dimensionality is obtained. Next, this vector is fed into our
proposed SIE tomine the spatial dependency information. In multi-group ablation experiments, our proposed
model achieves overall accuracy (OA) scores of 79.16% on the 5% Indian Pines test set, 90.82% on the
1% Pavia University test set, and 92.17% on the 1% Salinas test set. Especially, the experimental results
demonstrate that the joint spectral-spatial approach is effective in improving the accuracy of hyperspectral
image classification.

INDEX TERMS Deep learning, hyperspectral image, image classification, pattern recognition.

I. INTRODUCTION
Hyperspectral images (also known as remote sensing data)
have continuous, multiband narrow spectral bands [1]. The
wide spectral range carries substantial spatial and spectral
information [2]. Due to the abundant information in hyper-
spectral images, the technology is used in many fields, such
as agriculture [3], medicine [4], and food safety [5]. In recent
years, the recognition and classification of target objects in
hyperspectral images have become an important direction for
research in the hyperspectral image field [6]. Hyperspectral
image classification is the classification of pixel points in an
image, and the usual method is to use a priori information
in the image, such as a small number of labeled training
samples, to learn to discriminate the classes corresponding to
other pixels in the hyperspectral image. Because the spectral
range of hyperspectral images is wider than that of ordinary
images, they carry more useful information in the continuous
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bands but also include large amounts of redundant infor-
mation. Therefore, hyperspectral image classification is a
challenging task. In many methods to classify the category
of pixels, they employ exclusively spectral signatures for
classification. This approach has two advantages, the con-
cept is easy to understand and can be easily implemented.
To retain the useful information while eliminating the redun-
dant information, Mahesh and Foody [13] used a support
vector machine (SVM) to perform feature selection, and the
experimental results showed good performances even under
conditions with limited samples. Zhong et al. [14] used a con-
ditional random field (CRF) algorithm trained on samples;
the trained model was able to eliminate most of the redundant
information. To further improve the classification accuracy,
Han et al. [16] proposed using a pretrained AlexNet neural
network model to deeply mine the image feature information
and significantly improve the classification accuracy.

However, this pixel-level classification approach has two
limiting factors, the high dimensionality of small data sets,
and the spectral variance [28]. For the first issue, researchers
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usually view it from the perspective of Hughes, which usually
raises two problems. First, a small number of the hyper-
spectral image labeled samples may lead to singularities
in the sample covariance matrix, which leads to problems
of unavailability of some classification methods. Second,
the high dimensional characteristics of the spectrum lead
to many parameters in the model needing to be estimated.
And this raises the problem of reduced model generalization
ability and overfitting. For the second issue, Regarding the
spectral variation, which is brought about by many factors
such as atmospheric effects, unwanted shadows, and shading,
and instrument failures [7]–[9]. This causes a significant
problem in that distinguishing some pixel categories becomes
difficult. All thesemay hinder the classification of hyperspec-
tral images.

So how to weaken these problems and thus improve the
accuracy of hyperspectral classification has become crucial
for researchers to study. Considering the hyperspectral image
itself, since hyperspectral images are inherently 3-D and
pictorial, the spatial information that complements spectral
behavior naturally makes them a useful source of information
in addition to the spectrum. A concept closely related to
spatial information is spatial dependency, which refers to the
spatial relationship between neighboring pixels. According
to Tobler’s first law of geography, the similarity between two
objects on the same geographical surface is inversely propor-
tional to their distance [10]. Therefore, spatially related pixels
are called neighboring pixels, and all these neighboring pixels
are in the same neighborhood. Therefore, the introduction
of spatial dependence offers the possibility to improve pixel
classification. Early attempts to incorporate spatial informa-
tion into hyperspectral classification date back more than a
decade, and some successful studies have shown its ability to
improve the classification. In addition, spatial dependence is
associated with label dependence(see Figure 1), which refers
to the correlation of labels of neighboring pixels, where the
labels of pixels in a small area are likely to be the same. So we
can utilize this factor to improve the classification effect.
To the best of our knowledge, we are the first to apply deep
learningmethods to extract the spatial information underlying
the label dependencies.

FIGURE 1. The label dependency diagram. If a pixel’s category is 1, then
its surrounding labels are also 1 with a high probability, and then the
surrounding pixels can be used as spatial information (context
information).

Based on this knowledge, it is necessary to extract the
spatial information in the image as a complement to the spec-
tral information and thus enhance the classification ability.
Extracting both the spatial and spectral information from
hyperspectral images. Then fusing the two pieces of informa-
tion in a certain way to complete a classified task is deserving
of attention. Tarabalka et al. [35] proposed a spectral–spatial
classification scheme. He segmented the images by cluster-
ing, the segmentation provides an adaptive neighborhood for
each pixel and uses an pixel wise SVMmethod. Tao et al. [36]
built two different learning procedures for spatial and spectral
information, sparse spectral feature learning and multi-scale
spatial feature learning. Zhao et al. [37] introduced game
theory into hyperspectral image classification and uses condi-
tional random fields to model the images while taking spatial
background information into account. However, these models
are complex and have more parameters than our proposed
model, and are not easy to fit. Other researchers have mined
the spatial-spectrum information from some interesting per-
spectives. Ma et al. [38] proposed a spatial-spectum ker-
nel generation module, and the experimental results show
that the module is effective. Zhu et al. [39] proposed a
triple-branch progressive fusion residual network for classi-
fication. Ma et al. [40] proposed a dual-branch interactive
spatial-channel collaborative attention enhancement network
(SCCA-net) for classification. And many researchers have
investigated this issue. convolutional neural networks(CNN)
are not only outstanding in general image processing, but also
perform well in hyperspectral images and are often used to
capture spatial information. Slavkovikj et al. [11] presented
a CNN framework for HSI classification where the proposed
model is capable of able to learn spatial

information. 2D and 3D CNNs are widely used for
hyperspectral classification because of the excellent infor-
mation mining performance. Gao et al. [31] proposed a
two-dimensional spectral image method that makes full use
of spectral values and spatial information. The problem of
heterogeneous noise caused by the traditional data process-
ing method with small area pixel blocks or one-dimensional
spectral vectors as input units is solved. Liu et al. [32]
extracts features from spectral and spatial dimensions by
applying 3D convolution, thus capturing important identifi-
cation information encoded in multiple adjacent frequency
bands. Makantasis et al. [12] combined random principal
component analysis (RPCA) and CNN into a new model
(named RPCA-CNN) for the joint extraction of spectral and
spatial information. Li et al. [30] proposed a new CNN-based
method to encode hyperspectral image features and pre-
dict them by a voting strategy. According to their experi-
mental results, the CNN model does work well. However,
CNN-based models still have some problems, such as limited
perception fields and difficulty in generalization. On one
hand, a large convolutional kernel limits the depth of informa-
tion extracted by the CNN, while a small convolutional kernel
(3 × 3, 5 × 5) limits the perceptual domain. On the other
hand, CNN-based models cannot adapt to different sizes of
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the same shaped region. For example, If the model is trained
on a 48 × 48 square area, it must be retrained on a 36 ×
36 area if it is desired to predict a 36 × 36 square area.
In conclusion, in order to solve the problem of using

exclusively spectral information and limited CNN receptive
fields. we propose a combined deep learning model (RAS).
Our model consists of two modules, the spectral information
module, and the spatial information module. The spectral
information extraction module is mainly composed of resid-
ual networks, and the spatial information module is mainly
composed of many spatial information extractor(SIE) and
pixel embedding(PE). And to abbreviate the name of the
model, so we call it RAS.

The proposed spatial information extractor is based on
the transformer in the field of natural language processing.
transformer performs extremely well in the area of natural
language processing(NLP), both in speech and in semantic
extraction. Based on two aspects, we migrated the trans-
former to the field of hyperspectral image processing. First
of all, from a spectral aspect, a pixel can be analogous to a
sentence(see Figure 2). Because both can be considered as a
vector and both represent certain meanings. The pixel vector
represents the land situation, while the word vector represents
a word. In addition, from a spatial aspect, the pixels around a
pixel can be analogous to the context of a word in the corpus.
Based on these two analogies, we can input pixel sequences
into the language model like sentences. Motivated by these
analogies, we propose an improved transformer-SIE based on
a language model.

FIGURE 2. A pixel vector (data vector) with a sequence of words is
converted into a word vector (data vector) of the same form as a pixel
vector.(word2vec is a method in the field of natural language processing;
transforming word sequences into word vectors.)

Therefore, SIE is an approach to adapt transformer to HSI
feature extraction and classification. SIE acquires the global
receptive fields through the self-attention(SA) mechanism.
Thus it can capture richer global background information.
It enables better extraction of spatial dependency informa-
tion from label dependencies. Given an input region, the SA
mechanism can capture the relationship between two differ-
ent pixels without caring about their spatial distance. Com-
pared with the mentioned CNN models, SA is more flexible,
and this feature makes it possible to dynamically select the
context, which is the crux of obtaining spatial information.
In addition, 1 × 1 convolution network layers are used to

increase the information interaction between channels while
reducing the feature dimension and the number of parameters,
which is conducive to improved training.

This model not only uses SIE with global receptive domain
to mine spatial dependencies from the labels, but also com-
bines the spatial information with the spectral information
to do the final classification task. The results of various
comparison experiments and ablation experiments show that
RAS is relatively effective in solving the problems of poor
generalization ability and limited receptive fields using exclu-
sively spectral information. The main contributions of this
article are as follows:
• We take advantage of the label dependence characteristic
in hyperspectral images to obtain spatial dependence
information from them.

• To better extract the spatial dependence information,
we draw inspiration from NLP domain methods to
design SIE and PE for hyperspectral images.

The rest of this paper is organized as follows. Section II
describes the RAS algorithm, and Section III describes the
data set and evaluation method with parameter settings.
Section IV reports the experimental results and analyzes
them. Section V gives a discussion of some issues in this
paper, and Section VI draws a conclusion of this paper.

II. PROPOSED APPROACH
Figure 3 shows the RAS model. First, we prepare two
identical training datasets and feed them into the spectral
information module and the spatial information module,
respectively. In the upper module of the figure, we use two
residual blocks to extract useful information in the image and
eliminate redundant information in the image, thus retaining
the spectral information in it. In the lower module of the
figure. As it is described in Figure 1. Suppose we want to
predict a given target pixel, then we simultaneously flat it and
the pixel region (context) around it into a pixel sequence as
well. This is the input pixel sequence. Then the pixel sequence
is transformed using pixel embedding(PE) to convert that
pixel vector to a pixel vector of self-defined dimensions(We
take five neighboring pixels as a group and change the pixel
dimension to their average dimension by PE.). After that,
the pixel sequence is fed into a multilayer SIE to automat-
ically mine the contextual information between pixels and
obtain spatial dependence information. Finally, the obtained
spatial information is stitched with the spectral informa-
tion after complete concatenation processing to obtain the
spectral-spatial information. The prediction is performed by
the softmax function.

Therefore, based on the above process, four main works
are carried out in this setion.
• In subsection A. We introduce the inspiration for ResNet
to be used for spectral information extraction, and the
formula deduction.

• In subsection B. We introduce why PE is used, and
the specific formulas, diagrams, and computer process
charts for PE.
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FIGURE 3. RAS algorithm model. P1, P2, . . . , Pn are is the pixel vector after flattening. E1, E2, . . . , En are the embedded pixels after the
pixel embedding(PE) process. T1, T2, . . . , Tn are the encoded pixel sequence processed through multiple SIE layers. n represents the
maximum pixel sequence length. In the spectral information model, the ? represents two feature summing operations and the ×

represents two feature concatenating operations. FC is a fully connected layer.

FIGURE 4. The process of obtaining spectral information.

• In subsection C . We introduce the spatial information
extractor, which details the action of the self-attention
mechanism, and its diagram of the global attention
mechanism. The reason why we use 1 × 1 convolution
is introduced.

• In subsection D. We introduce feature fusion, and their
formulas.

A. RESIDUAL NETWORK
Convolution networks plays a very important role in the field
of image processing, which can deeply explore the spectral
information contained in images as well as eliminate the
redundant information in images.We refer to the residual net-
work proposed by He et al. [18] to design the residual block.
Its structure in detail is shown in Figure 4. The residual
network consists of mainly two residual blocks, which con-
tain three convolutional units, and the convolutional units are

divided into two categories, one contains one convolutional
kernel of size (128, 5 × 5), a Batch Normalization, and
activation function ReLU. the other contains one convolu-
tional kernel of size (64, 5 × 5), a Batch Normalization,
activation function ReLU. The formula of residual networks
is as follows.

H (x)(k+1) = x(k−1) + F(x)k (1≤k≤2). (1)

where, H (x) represents the input of the next residual
block. F(x) represents the output of the current residual
block, and x represents the output of the previous resid-
ual block. k represents that kth residual block.

B. PIXEL EMBEDDING
The purpose of PE is to transform the original pixel vector
into a vector of new self-defined dimensions. (see Figure 6) It
was added to the spatial information module for two reasons.

119222 VOLUME 9, 2021



Z. He et al.: Spectral-Spatial Classification of Hyperspectral Images Using Label Dependence

FIGURE 5. Spatial information extractor(SIE) details.

FIGURE 6. The detailed process of pixel embedding. The linear mapped
pixels are pixels processed through the linear transformation (LT), while
positional embedding is the learned positional embedding(LPE). The
capital letters in the circles are abbreviations of the names above their
circles. n represents the maximum pixel sequence length.

First, PE allows different input dimensions to be used for
this model and can transform the initial vector dimensions
into dimensions that fit the model. Second, PE can also be
used to reduce the input dimensions to speed up the training.
PE consists of an Linear mapped pixels(LMP) and a posi-
tional embedding [19], [20].

1) LINEAR MAPPED PIXELS
We obtain LMP by linear transformation(LT) of the input
pixels. As shown in Figure 6.

LT (X ) = W TX . (2)

where, LT is an abbreviation for linear transformation. LMP
can be obtained after LT.W is the weight of the learned linear
information extractor. X is the original pixel vector.

2) POSITION EMBEDDING
Position embedding is a common technique used in NLP to
encode the location of words. Here it is used to encode the
position information of each pixel to generate a sequence of
pixels. Position encoding works in the self-attention stage.
Suppose a pixel vector is to be computed with two identical
pixel vectors for attention, if there is no position encoding
to show the difference, then the same attention value will be
obtained, but in general the pixel is not associated with the

same two pixels.

LPE(X ) = X + P. (3)

where, LPE is the abbreviation for learned position embed-
ding, and P is a position matrix having the same shape as X .
The P is concretely calculated as follows.

P(pos, 2i) = sin(
pos

10000
2i
d

). (4)

P(pos, 2i+ 1) = cos(
pos

10000
2i
d

). (5)

where, pos represents the position of a value in the pixel
vector, 2i represents an even position and 2i + 1 represents
an odd position. d represents the dimensionality of a pixel
vector.

C. SPATIAL INFORMATION EXTRACTOR
Since the birth of the Transformer [27], Transformer the
NLP world has received great praise, such as in machine
translation [21], question answer [22], [23], language under-
standing [24] and other areas of top performance. Based on
transformer architecture, we propose a spatial information
extrator model as shown in Figure 5. This has the advantage
that the spatial information in the hyperspectral images can
be extracted efficiently.

1) SELF ATTENTION
Attention is a technique that allows models to focus on
important information and learn to absorb it fully [29]. The
self-attention mechanism is a variant of the attentional mech-
anism that is less dependent on external information. It is
more adept at capturing the internal relevance of features [15].
The self-attention mechanism obtains global receptive fields
and contextual information by capturing a broader range of
information. Figure 8 shows the difference between the global
receptive field and the limited receptive field. The global
receptive field can capture the global information, while the
limited receptive field can only capture the limited informa-
tion. The specific computation process of the attention mech-
anism can be summarized in two processes: the first process
is to compute the weighting coefficients based on Query and
Key, and the second process is to compute the sum of the
weights of Value based on the weighting coefficients [26].
SIE uses self-attention, while [17] uses the Multiple Head
self-attention mechanism (MHSA). We use self-attention
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FIGURE 7. (Left) Scaled dot-product attention and (Right) SA mechanism
for the pixel sequence.

FIGURE 8. (Left) Global receptive field versus (Right) limited receptive
field in a pixel sequence.

instead of MHSA for two reasons. First, the original authors
set up multiple heads because they wanted to mine more fea-
ture information, but when Li et al. [25] used regularization to
test the attention of each head, they found that they could not
extract their ‘‘jurisdiction’’ by initialization as we thought.
In addition, we only need spatial information mining, so we
need to ensure the purity of information extraction. Second,
MHSA requires more training time than single-headed. The
specific calculation process, as shown in Figure 7.

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (6)

where,Q,K ,V represent query, key, value. d is the dimension
of the input data.

2) CONVOLUTION 1 × 1
We use 1 × 1 convolution to integrate the spatial informa-
tion in hyperspectral images for the following reasons: First,
without changing the spatial structure of the image, using
the full connection layer will destroy the spatial structure of
the image, while 1 × 1 convolution layer will not destroy
the spatial structure of the image. Second, cross-channel
information transfer, for example, a filter having a convolu-
tion kernel size of 64 and a filter having a convolution kernel
size of 1 × 1 and a convolution kernel number of 28, wherein
that output layer size is equal to the output layer size obtained
by a filter having a convolution kernel size of 3 × 3 and a
convolution kernel number of 28, and the original 64 channels
can be understood as cross-channel linear combination into
28 channels, which is the information interaction between
channels. Thirdly, reducing the parameter, and reducing the
dimension is reducing the parameter. Since that featuremap is

small, the parameter is reduced accordingly, which is equiv-
alent to convolution on the channel number of the feature
map, compressing the featuremap to extract the feature twice,
so that the feature expression of the new feature map is better.

CN (x) = σ (σ (W1x + b1)W2 + b2) (7)

where, CN represent that convolution result of two layers
1 × 1, σ representing the activation function ReLU,
W represents the weight, and b represents the bias.

D. FEATURE FUSION
In order to maintain the integrity of the spectral and spatial
information, we use feature concatenation to connect the two
features.

Output = concat([OutputResNet ,OutputSIE ]) (8)

where, Output represent that result of feature fusion, concat
is an abbreviation for concatenate. The classification of the
output is finally done by the softmax function.

III. DATA SETS, EVALUATION METRICS AND PARAMETER
SETTINGS
In this section, we detail three popular public datasets, namely
Indian Pines, Pavia University, and Salinas. all experimental
metrics and training parameter settings in the experiments are
also detailed.

A. DATA SETS
Here we will introduce three popular datasets and describe in
detail their number of pixels and number of categories.

1) INDIAN PINES DATA SET
The first test dataset used for hyperspectral image classifi-
cation in this paper is Indian Pines. In 1992, the air-borne
visual infrared imaging spectrometer (AVIRIS) imaged 145
× 145 hyperspectral images of an Indian pine tree in Indiana,
USA. AVIRS continuously imaged 220 wavebands of ground
objects at an imaging wavelength of 0.4-2.5 µm and a spatial
resolution of approximately 20 m. However, because 20 of
these bands are not reflected by water, researchers generally
use only the remaining 200 bands as subjects. The dataset
includes a total of 21,025 pixels, but only 10,249 pixels
represent features; the remaining 10,776 pixels are limited
to background. The dataset contains 16 ground object cate-
gories, as shown in Table 1.

2) PAVIA UNIVERSITY DATA SET
The Pavia University hyperspectral data were imaged by
an airborne reflectance optical spectral imager
(Re-flective Optics Spectrographic Imaging System,
ROSIS-03) in 2003 at 610 × 340 over Pavia, Italy. ROSIS
continuously imaged 115 wavebands of the ground surface
at an imaging wavelength of 0.43-0.86 µm and a spatial
resolution of approximately 1.3 m, but 12 wavebands were
deleted due to noise. The remaining 103 wavebands are
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TABLE 1. The number of samples of each class in the Indian Pines
dataset.

TABLE 2. The number of samples of each class in the Pavia University
dataset.

generally used as research objects. The dataset has a total
of 2,207,400 pixels, but only 42,776 of these pixels are
available as feature pixels; the remaining 2,164,624 pixels
are background pixels. In addition, the dataset includes nine
ground object categories, as shown in Table 2.

3) SALINAS DATASET
The Salinas dataset was also captured by the AVIRIS Imaging
Spectrometer and includes a 512 × 217 pixel hy-perspectral
image of the Salinas Valley in California, USA. AVIRIS
continuously imaged 224 bands of surface fea-tures with an
imaging spatial resolution of approximately 3.7 but 20 of
the bands were affected by noise and deleted. The remaining
204 bands are generally used as subjects. The dataset has a
total of 111,104 pixels, but only 54,129 pixels are available
as feature pixels; the remaining 56,975 pixels are background
pixels. In addition, the dataset includes 16 ground object
categories, as shown in Table 3.

B. EVALUATION METRICS
The OA, AA, and the Kappa coefficient (Kappa) were used
to evaluate the classification ability of the proposed model.
The specific calculations are as follows.

OA =

∑n
i=1 hii∑n
i=1 Ni

(9)

TABLE 3. The number of samples of each class in the Salinas dataset.

where, n is the number of classes of the hyperspectral
image feature object, Ni is the number of the ith cate-
gory image element, and hii is the number of the ith category
image element that is correctly classified.

AA =
1
n

n∑
i=1

hii
Ni

(10)

where, N represents the number of sample pixels for testing
in the total training sample, n represents the number of cate-
gories, and hii is the number of pixels correctly classified in
the ith category.

kappa =
N

∑N
i=1mii −

∑N
i=1mi+m+i

N 2 −
∑N

i=1mi+m+i
(11)

where, mii represents the value of the i-th row and
i-th column. mi+ denotes the sum of row i, m+i denotes the
sum of column i. N is the total number of samples.

C. PARAMETER SETTINGS
In order to ensure the rigour of the experiment, we randomly
divided the experimental data set and the test data set, and
set the random division status to 5. We set the value of batch
size to 128 andwe used a rigorous research approach, running
200 epochs in each experiment. We experimented with multi-
ple groups of learning rates, 0.1, 0.001, 0.005, 0.0001; finally
we chose the best result of 0.01 for the whole experiment.
To speed up the model convergence, we choose the Adam
optimizer. Also the loss function we use is the cross-entropy
loss function.

IV. EXPERIMENTS
Four main works were carried out in this section.
• In subsection A. To ensure fair comparisons in our
experiment, our model is compared with three recent
models (BERT, 2D-CNN, and 3D-CNN) and three
classic models (ResNet, AlexNet, DenseNet) on three
classic datasets. The experimental results are reported
in Tables 4–6, which show the results on the Indian
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TABLE 4. The classification accuracies of different methods on the Indian Pines images tested on training sets of 5%, 10%, and 15% of the total sample
size. Red entries indicate the best results. Blue entries indicate the second-best results.

TABLE 5. The classification accuracies of different methods on the Pavia University images tested on training sets of 1%, 5%, and 10% of the total sample
size. Red entries indicate the best results. Blue entries indicate the second-best results.

TABLE 6. The classification accuracies of different methods on the Salinas images are tested on training sets of 1%, 5%, and 10% of the total sample size.
Red entries indicate the best results. Blue entries indicate the second-best results.

TABLE 7. Experimental results of various attentional mechanisms. Red indicates the first under this evaluation criterion. Blue indicates the second under
this evaluation criterion.

Pines, Pavia University, and Salinas datasets, respec-
tively.

• In subsection B. We not only compare the single-headed
attention mechanism with the multi-headed attention
mechanism but also add some pooling layers to the
attention mechanism for comparison.

• In subsection C . We compare feedforward with
1 × 1 convolution and also compare 2 × 2 convolution
and 3 × 3 convolution to demonstrate the advantage
of 1 × 1 convolution.

• In subsection D. We perform ablation experiments on
the whole model to prove that our spatial information
module, PE, SIE and spectral information module are

effective. Detailed comparative data are shown
in Tables 7-9. we perform a large number of ablation
experiments to prove the validity of our model.

A. EXPERIMENTAL RESULTS OF DIFFERENT METHODS
1) RESULT ON THE INDIAN PINE DATASET
The Indian Pines dataset contains 16 classes of sam-
ples containing 10,249 pixels available for classification.
Table 4 clearly shows that our algorithm outperforms both the
traditional and recent algorithms. Our proposed model shows
that fusing spatial and spectral information positively affects
the classification results. BERT benefits from the information
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TABLE 8. Experimental results of various SIE structures. Red indicates the first under this evaluation criterion. Blue indicates the second under this
evaluation criterion.

TABLE 9. Experimental results of different submodules. Red indicates the first under this evaluation criterion. Blue indicates the second under this
evaluation criterion.

FIGURE 9. Indian Pine dataset classification results.(a) Ground truth (b) AlexNet (c) ResNet (d) DenseNet (e) Bert (f) 2D-CNN (g) 3D-CNN
(h) RAS.

mining of the transformer in the full field of view. The final
results are also very good and exceed our AA on the 10%
training set by 0.6%, indicating that the transformer structure
is quite important in image processing. RAS plays a promi-
nent role in the feature mining and feature fusion processes.
Figure 9 shows the classification results on the 1% training
set. The experimental results demonstrate the strong perfor-
mance of our proposed algorithm for spectral-spatial feature
mining.

2) RESULT ON THE PAVIA UNIVERSITY DATASET
The largest difference between the Pavia University and
Indian Pines datasets is that although the former includes
only nine categories, the total amount of data is much larger

than in the Indian Pines dataset. Table 5 shows that the OA,
AA, and Kappa of our algorithm outperform those of the
other algorithms. In addition, the prediction accuracy of our
algorithm increases as the training set increases. 3D-CNN
relies on powerful spatial feature extraction and thus performs
well. Figure 10 shows the classification results on the 1%
training set. These figures clearly show that the accuracy of
classification increases as the number of training samples
increases. The classification accuracy of the RAS algorithm
is better than that of the other models.

3) RESULT ON THE SALINAS DATASET
The number of pixels in the Salinas dataset reaches
1,111,044, and there are 54,129 datasets available for
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FIGURE 10. Indian Pine dataset classification results.(a) Ground truth (b) AlexNet (c) ResNet (d) DenseNet (e) Bert (f) 2D-CNN
(g) 3D-CNN (h) RAS.

classification. Even using a 1% dataset as the training set,
as clearly shown in Table 6, our algorithm still has a strong
ability to mine information. Figure 11 shows the results of
training set classification using only 1% of the total sam-
ples, clearly demonstrating that our algorithm is very pow-
erful at mining and fusing spectral information with spatial
information.

B. EXPERIMENTAL RESULTS OF DIFFERENT ATTENTIONAL
MECHANISMS
In this section, we compare the effects of different
types of attention mechanisms on the experimental results.
We used 5% (Indian Pines), 1% (University of Pavia), and
1% (Salinas) from the three datasets as training sets. Here,
a ‘‘1’’ represents the traditional attention mechanism; a ‘‘2’’
represents average pooling as the attention mechanism, and a
‘‘3’’ represents global average pooling as the attention mech-
anism. Multiple numbers represent operations using multiple
simultaneous attention mechanisms. Table 7 clearly shows
that the models with attention mechanisms are more accurate
than models without attention mechanisms. The experimen-
tal results of the combined attention mechanism model are
better than those of the single attention mechanism model
and surpass the base model by 0.39% in Kappa (Salinas).
The traditional attention mechanism model and the global
average pooling attention mechanism model function better

alone than combined because the global average pooling
attentionmechanism canmine only one feature; thus, the gen-
eralizability of the model is limited. The experimental results
show that the self-attention mechanism we adopted performs
sufficiently well for information mining.

C. EXPERIMENTAL RESULTS OF 1 × 1 CONVOLUTION AND
FEEDFORWARD
In this section, we compare two spatial information min-
ing structures: FeedForward and convolution. Table 8 shows
the effects of several different sizes of convolution kernels
and FeedForward on the results, showing that adding either
Convolution or FeedForward has a positive effect on the
results. The 3 × 3 convolution works better than does the
2× 2 convolution: we hypothesize that odd convolution sizes
can place the features in the center after convolution, while
even convolution sizes force a trade-off for features. Because
the 1× 1 convolution does not destroy the spatial structure of
the image, the experimental results of the 1 × 1 convolution
are better than FeedForward.

D. EXPERIMENTAL RESULTS OF DIFFERENT SUBMODULES
To demonstrate whether each part of the model is valid,
we do ablation experiments on the spatial information mod-
ule, spectral information module, PE, and SIE, respectively.
Table 9 shows the experimental results of the different
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FIGURE 11. Indian Pine dataset classification results.(a) Ground truth (b) AlexNet (c) ResNet (d) DenseNet (e) Bert (f) 2D-CNN
(g) 3D-CNN (h) RAS.

FIGURE 12. Indian Pine dataset classification results (a) RAS-no-SpatialInformationModule (b) RAS-no-SIE (c) RAS-no-PE
(d)RAS-no-SpectralInformationModule (e) RAS.

submodules on the three datasets. In this case, we used 15%
of the total Indian Pines samples, 10% of the total Pavia
University samples, and 10% of the total Salinas samples
for training. The experimental results indicate that each sub-
module plays an important role. In the Indian Pines dataset,
our proposed SIE is important for constructing the rela-
tionships between pixels. On the Pavia University dataset.
PE has little effect, and we speculate that it may be related
to the fact that the vectors of hyperspectral pixels do not
overlap. The experimental results do not differ substantially
between the submodules, which we speculate may be due
to the larger training dataset. In Salinas, useful information
was retained and redundant information was eliminated. SIE
plays a critical role in mining spatial information and the
ResNet model played also an extremely important role in this
process. The experimental results show that the prediction

accuracy declines significantly when the SIE is removed.
The sample classification results are shown in the following
images (Figure 12: Indian Pines; Figure 13: Pavia University;
Figure 14:Salinas dataset).

V. DISCUSSION
In this study, we fused spectral and spatial information to
build a powerfulmodel. Effectively, the problem of inaccurate
pixel classification caused when only spectral information is
used is addressed. However, some aspects still need further
improvement. For example, for dataset dividing, although
random dividing is more natural. However, it may cause
some problems, for example, a category with little data is
divided into fewer training parts, which can lead to imperfect
features learned by the model and thus be unfavorable for
classification.
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FIGURE 13. Pavia University data set classification results (a) RAS-no-SpatialInformationModule (b) RAS-no-SIE
(c) RAS-no-PE (d)RAS-no-SpectralInformationModule (e) RAS.

FIGURE 14. Salinas dataset classification results (a) RAS-no-SpatialInformationModule (b) RAS-no-SIE (c) RAS-no-PE
(d)RAS-no-SpectralInformationModule (e) RAS.

VI. CONCLUSION
In this paper, we propose a joint spectral-spatial model called
RAS. The spectral features are mined using a spectral infor-
mation extractor. We exploit the label dependence property
in hyperspectral images and use the surrounding pixels of
pixels to be classified as spatial information. These pixels are
then fed into SIE together for training, thus mining the asso-
ciation between pixels used as a complement to the spectral
information. The two kinds of information are fully retained
by feature fusion and used for the final classification. Abla-
tion experiments are conducted by performing on multiple
datasets. Our model relatively effectively solves the prob-
lems of weak classification ability using only spectral infor-
mation and limited receptive fields. Finally, our algorithm
achieves relatively good results on three widely used public
datasets.
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