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ABSTRACT Wireless network coverage planning is crucial for mobile network operators and fixed wireless
network providers to estimate the performance of their networks and plan future antenna mast deployments.
To generate accurate coverage maps for target buildings, traditional wireless coverage planning tools
either require manual input of Customer-Premises Equipment (CPE) antenna locations or need to compute
received signal strength from nearby Access Points (APs) to all geolocations in the area of interest which
consumes computational resource unnecessarily. In this paper we propose a Deep Learning (DL) based
universal enhancement to wireless coverage planning tools which automatically extracts potential CPE
antenna locations from aerial images of the target buildings. We evaluate the performance of the pixel level
object detection provided by Mask Region-based Convolutional Neural Network (Mask R-CNN) trained
on an image dataset with suburban and rural residential properties across North Yorkshire, UK. We also
demonstrate a complete task flow to generate informative building coverage reports while combining the
DL based building detection with the WISDM industrial wireless coverage planning system.

INDEX TERMS Fixed wireless access network, coverage planning, convolutional neural network, instance
segmentation.

I. INTRODUCTION
Terrestrial telecommunications networks are now widely
used and serve the vast majority of the world’s popula-
tion. One important factor which significantly affects the
end-user experience is the last-mile technology [1] which is,
in most cases, the speed bottleneck of the communication net-
works, and results expensive Capital Expenditure (CAPEX)
and Operating Expenses (OPEX) to the network operators.
The traditional last-mile solution is broadband over cop-
per wire (e.g., ADSL, ADSL+ and VDSL which is also
known as FTTC) [2] which relies on the existing landline
telephone networks and has limitations on speed. Currently
the common last-mile technologies are fiber to the cabinet
(FTTC) [3] and fiber to the premises (FTTP) [3] which
use optical fiber to deliver Internet services to customers’
premises directly. FTTP brings much higher bandwidth and
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impressive speed against the traditional copper wire. How-
ever, FTTP technology requires the investment of new infras-
tructure which could be considered as non-cost-effective by
the network operators in less populated rural areas. Even in
countries with advanced infrastructure, the fiber connections
are not available to all premises. For example, according to
Connected Nations 2020 [4] published by Ofcom, 96% of
homes in the UK have access to fast broadband but only 18%
have full fiber connections.

The last-mile technology which fills in the gaps of the fiber
networks is Fixed Wireless Access (FWA) [5]. FWA uses
both dedicated fixed networks and shared mobile networks
(e.g., 4G and 5G networks) to deliver Internet services to end-
users with less infrastructural costs. Ofcom has estimated that
95% of the UK homes have access to FWA service from at
least one of the Mobile Network Operators (MNOs). With
the rollout of 5G [6] the current 5G FWA [7] devices can
achieve 150 Mbps [4] on 5G New Radio (5G-NR) bands
below 7 GHz. The future deployment of 5G-NR atMillimeter

124530 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5030-9757
https://orcid.org/0000-0001-5508-8757
https://orcid.org/0000-0003-4493-7498
https://orcid.org/0000-0002-2376-2898


Y. Chu et al.: DL Assisted FWA Network Coverage Planning

Wave (mmWave) spectrum [8] will allow the FWA to achieve
multi-Gbps level [9] which is comparable to superfast fiber
networks.

Coverage planning is critical to MNOs and FWA providers
to balance the costs and profits before building new masts,
and to estimate the Quality of Service (QoS) of the existing
wireless access points (APs). It is common to use terrain
and surface elevation data and different propagation models
to build a point-to-point wireless signal path profile and to
estimate the received signal strength [10]. The wireless cov-
erage can be estimated by repeated applying the path profile
on different combinations of APs and customer locations.
There are several commercially available coverage planning
tools such as Google Network Planner [11], CHIRplus_TC
[12] (from LStelcom), PROGIRA plan [13], Network plan-
ning [14] (from Cellular Expert), cnHeat [15] (from Cam-
biumNetworks), and CellNetwork [16] (fromCelPlan). From
the demonstrations of these tools, we can find that to generate
the coverage map, it is common for the tools to require
manual inputs of the Customer-Premises Equipment (CPE)
antenna locations, or alternatively computing the path pro-
files from the APs to all Geographical Information System
(GIS) [17] ‘‘pixels’’ within the interested area. The size of
the pixels usually varies depending on the availability of the
data, for example the LIDAR Composite DSM 2017 [18]
provides the terrain elevation model of England with spatial
resolutions (pixel size) between 25 cm and 2 meters. The
former method requires human involvement, which mostly
becomes the bottleneck of the system. The second method
consumes a significant amount of computational resource,
particularly for high spatial resolution cases and moreover,
the coverage map needs to be generated again if there are
changes to APs. In this paper, we present the idea of a
Deep Learning (DL) [19] based universal enhancement to
these planning tools to utilize the computing resource more
effectively without the requirements of human involvement.

A. MOTIVATIONS
Wireless signal propagation is sensitive to the locations and
elevations of the AP and CPE antennas as well as the
obstacles along the signal path [20]. It becomes even more
sensitive once the signal moves to higher frequencies with
narrower antenna beams. It is very likely that the signal
propagation environment changes drastically after moving
the CPE antenna just a couple ofmeters. For example, moving
the antenna from one side of a pitched roof to the other
could result the differences between line-of-sight (LoS) and
non-line-of-sight (NLoS) paths which will largely determine
the QoS.

To accurately capture the signal coverage on customer
premises, a coverage planning tool should be able to identify
the potential locations for CPE antennas where acceptable
received signal strength is anticipated. As far as we are aware,
this is yet to be addressed in the coverage planning tools.
On the other hand, considering the safety and time scale of the
field engineers who install the CPEs, roof edges are common

locations for them tomount the antennas, because it is fast and
easy to access the roof edges without the risks of damaging
the tiles while maintaining elevation. The other common
antenna mounting point is the top of a chimney which mostly
has the highest elevation of a property. However, a chimney
is usually difficult to find on relatively modern properties.
Inspired by these, we propose the idea of using DL based
computer vision methods to identify property roof edges as
potential antenna mounting points and feed the locations to
coverage planning tools to generated detailed signal path
profiles.

B. RELATED WORK
Artificial Intelligence (AI) has been advanced rapidly in the
past a few years and as a major subset of the AI technologies,
DL has already been widely used in many real-life appli-
cations such as object classification and detection, speech
recognition and language translation [21]. The capability
of Deep Neural Networks (DNNs) [22] and Convolutional
Neural Networks (CNNs) [23] has resulted many power-
ful tools for image processing tasks which would be diffi-
cult to complete with traditional computer vision methods.
The performance of object detection has been improving
rapidly with the development of Region-based CNN (R-
CNN) [24]. The later subbranches Faster R-CNN [25] and
Mask R-CNN [26] have brought sematic segmentation and
instance segmentation to object detection tasks for images
and videos [27]. The readily available large image datasets
such as PASCAL VOC [28], Microsoft COCO [29], and
ImageNet [30] make it possible to train the DNNs to identify
most commonly seen objects. The pretrained DNNs models
such as AlexNets [31], ResNets [32] and GoogLeNets [33]
allow the application developers to use them as backbones
and to quickly adopt to different types of object detection and
classification tasks. For example, pretrained GoogLeNets and
ResNets are used as the backbones to automatically diagnose
skin lesions to prevent the further development of cutaneous
cancer due to melanoma [34], [35]. UNet [36] is used as the
basis to develop a rapid diagnostic tool to identify COVID-19
from chest CT images [37]. Pretrained ResNet-101 backbone
is utilized to count the number of potato and lettuce plants
from Unmanned Aerial Vehicle (UAV) imagery [38]. Faster
R-CNN with the same ResNet-101 backbone is also used for
the identification ofworking industrial chimneys from remote
sensing images [39].

Variants of CNNs are also widely used on building extrac-
tion and segmentation from aerial / satellite images. The
authors of [40] have proposed four different CNN architec-
tures to map the building across the landscape of continen-
tal United States using the 1-meter resolution aerial images
from National Agriculture Imagery Program. In [41] the
authors have prepared a high-resolution dataset with build-
ings labeled across a 450 km2 area in New Zealand and pro-
posed several Fully Convolutional Network (FCN) models to
extract building footprints. Building boundary regularization
is proposed in [42] to refine the building footprint predictions
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TABLE 1. Summary of related work.

from Mask R-CNN. Faster Edge Region CNN (FER-CNN)
is proposed in [43] to improve the building detection results
particularly for buildings with irregular shapes. The work
in [44] has presented a bounding box rotation method for
Mask R-CNN to improve the precision of building extraction
from Google Earth images. The work in [45] has applied
Framed Field Learning to UNet architectures to tackle the
issue of footprint predictions for buildings with irregular
shapes, particularly for buildings with holes inside the foot-
prints. The reviewed works are summarized in Table 1.

C. CONTRIBUTIONS
In this paper we apply the state-of-the-art DL based com-
puter vision methods to assist the wireless network coverage
planning tools to identify the potential CPE antenna mount-
ings points thereby producing accurate and detailed coverage
estimation reports. The main contributions of our work are
threefold:

1) Our work tackles common issues of current wireless
coverage planning tools including the requirement of
manual inputs of CPE antenna locations and the inef-
ficient computational resource usage for generating
areal coverage maps which also leads to inadaptability
to network changes. The DL based computer vision
methods automatically locate potential CPE antenna
mounting points and significantly reduces the amount
of path profile computations required to generate accu-
rate coverage estimation maps.

2) Our work is made generally compatible with wireless
network coverage planning tools which have the capa-
bility of computing point-to-point path profiles. The
only input our work requires is either the address or the
latitude and longitude coordinates of the target building
which needs a coverage report. The map tools we use

to acquire static aerial images of the target building are
freely accessible to the public.

3) Our work is open-ended. Later in the paper we show
the effectiveness of the DL based building detection
after training with a relatively small dataset. By sim-
ply replacing or extending the dataset with the images
including buildings with different styles from the target
regions, the building detection will adapt to be applica-
ble worldwide. We have made our work accessible1 so
the readers can easily use our trained building detection
directly or train with customized datasets according to
their applications.

The rest of the paper is organized as follows. Section II
introduces the coverage planning tool, the DL based approach
and the image dataset we prepare for the proposed coverage
planning task. Section III presents the details of training
the DNN and the results of building detection and wireless
coverage planning. Section IV discusses the applicability
and scalability of the proposed work for wider applications,
as well as potential improvements that can be implemented
to improve the results. Section V concludes the paper and
proposes future research directions.

II. METHODS AND MATERIALS
This section describes the methods and materials we use
to identify potential CPE antenna mounting points for a
property.

A. WIRELESS COVERAGE PLANNING TOOL
In this paper we use WISDM developed by Wireless Cov-
erage Ltd [46] to generate point-to-point path profiles to
evaluate the propagation between the APs and the poten-
tial CPE antenna mounting points. WISDM is an industrial

1https://github.com/yc541/Project-AWARE
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coverage modelling system which is able to visualize the
network coverage in real time, supporting the spectrum from
2 GHz to 120 GHz. Fig. 1 shows an example of the coverage
computed by WISDM for a test AP (the red push pin marker
in the center) we deploy at a site near the Hammerton railway
station about 15 km away from the York city center, UK. For
consistency and simplicity, all test APs we use in this paper
are operating at the center frequency of 5 GHz with a 20MHz
bandwidth. The Effective Isotropic Radiated Power (EIRP)
is 36 dBm and all AP and CPE antennas are isotropic. The
height of the APs is set to 20 m above the ground, which is
mostly acceptable in the test suburban and rural areas in North
Yorkshirewith low-rise buildings. The height of CPEs is set to
8 m above the ground or the surface elevation, whichever the
greater. In practice the parameters of the APs and CPEs need
to be configured according to the local spectrum regulations
and the licenses held by the network operators for accurate
results. Different antenna patterns can be used as input to
WISDM to estimate the coverage more accurately.

FIGURE 1. Coverage of an example AP from WISDM.

In Fig. 1 the small red and green dots are the properties
obtained from theOrdnance SurveyAddressBase [47] service
covering all addresses within a 10 km radius centered by
the AP. The green dots indicate that these properties have
clear LoS and the received signal power above the minimum
required level and the red dots indicate the signal power is
below a specified target or do not have clear LoS. Fig. 2 shows
the zoomed map of an area near the AP in Fig. 1 so more
details can be viewed. The small red and green dots are
the latitude and longitude coordinates of the centroid points
of the addressed properties returned from Ordnance Survey
AddressBase.WISDM computes the path profile between the
AP and the property centroid points based on the Bluesky dig-
ital terrain model (DTM) [48] (5 m resolution) and Bluesky

FIGURE 2. Path profile with LoS blocked.

digital surface (also known as clutter) model (DSM) [48] (2m
resolution covering elevated objects such as buildings and
trees).

The left-hand-side of the path profile is the AP and the CPE
is on the right-hand-side. In the path profile in Fig. 2 we can
see an elevated obstacle near the CPE disrupting the Fresnel
Zone Clearance [49] and blocking the RF LoS path. From the
map we can see this obstacle is likely to be the building about
20 m to the east of the target property (there is a small green
dot just under the character ‘‘0’’ of the 0.4 km tick, overlayed
by the path profile graph). In Fig. 3 the location of the CPE
antenna is moved a couple of meters to the south edge of the
same building (blue push pin marker) and the path profile
indicates that the RF propagation is free from any obstacles
therefore this property can be covered by the AP.

B. OVERALL TASK FLOW
Fig. 4 presents the overall task flow, from the customer input
to a detailed coverage report indicating potential CPE antenna
mounting locations. The customer here could be a network
operator who is planning to set up a new mast or a property
owner who is looking to purchase a fixed wireless CPE.
The information required from the customer is the address
or latitude and longitude coordinates of the target property.
WISDM is able to find the latitude and longitude coordinates
of the property if the address is given. The latitude and
longitude coordinates are used as input to the Microsoft Bing
Maps API [50] to download a 600 × 600 pixels static map
at zoom level 20 (this is roughly a 90 × 90 m area with
building level details). Static maps from other sources should
be applicable as long as the resolution is similar. We select
Microsoft Bing Maps because the roofs of the buildings are
adjusted to match the building footprints. Other static maps
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FIGURE 3. Path profile with LoS.

(e.g., GoogleMaps [51]) could have some aerial images taken
from tilted angles (rather than zero nadir angle), therefore
searching the elevation data for the building edge latitude
and longitude coordinates could return unexpected results
(e.g., roof edge has a street level elevation). Mask R-CNN
is used to extract the target building from the static map and
Canny Edge Detection [52] is applied on the predicted mask
to extract the edge pixels. A subset of the edge pixels is
selected and converted to latitude and longitude coordinates
using Web Mercator projection [53]. Then WISDM uses the
latitude and longitude coordinates to generate point-to-point
path profiles to evaluate the coverage from nearby APs to
the target property. To use the Web Mercator projection,
equations (1) and (2) can convert latitude and longitude coor-
dinates to the pixel coordinates at global level:

x =
256
2π

2z (λ+ π) (1)

y =
256
2π

2z
(
π − ln

[
tan

(π
4
+
ϕ

2

)])
(2)

where x and y are the global pixel coordinates, z is the zoom
level (20 in this paper), λ and ϕ are the longitude and latitude.

Equations (3) and (4) can be used to reversely compute
latitude and longitude coordinates from x and y:

λ =
2π

2z256
x− π (3)

ϕ = 2
[
tan−1

(
eπ−

2π
2z256 y

)
−
π

4

]
(4)

The final outputs are binary path profile results (pass or
failure) from all APswithin 10 km range of the target property
in JSON format [54], and indicative map images visually
showing the path profile results for all APs. For example,
in Fig. 4 the map image at the end of the task flow indicates
that there is no coverage (red dots) from the selected AP at
the southwest side of the property while the other sides have
good coverage (green dots). Alternatively, more markers can
be used to indicate different levels of received signal power,
thereby making the result images more informative. We will
leave this for the readers to elaborate more according to their
requirements.

C. MASK R-CNN
Instance segmentation is required to identify the target build-
ing from an aerial image, particularly when the target building
is visually connected to other buildings (or other irrelevant
structures such as sheds and storage units) nearby. To dif-
ferentiate object instances of the same class, Mask R-CNN
is developed from Faster R-CNN which is designed for
semantic segmentation tasks. Faster R-CNN implements a
two-stage object detection [25]: it first produces candidate
bounding boxes using the Regional Proposal Network (RPN)
then extracts features from the bounding boxes and conducts
object classification. Mask R-CNN [26] shares the same
two-stage framework but outputs an additional binary mask
for each Region of Interest (RoI) at the second stage (Fig. 5).
RoIAlign [26] is introduced to improve the RoI misalignment
due to the quantization errors caused by RoIPool [55] to
achieve per-pixel level accuracy.

D. IMAGE DATASET
We have prepared a dataset of 200 aerial images to fine tune
pretrained Mask R-CNN models to extract building edges.
All images are 600× 600 pixels obtained using GoogleMaps
API [51] at 20 zoom level to cover details of buildings. The
center latitude and longitude coordinates are always within
the target building which requires a wireless coverage report.

FIGURE 4. Overall task flow.
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FIGURE 5. Instance segmentation using mask R-CNN from [26].

The dataset2 covers aerial images of suburban and rural res-
idential buildings in North Yorkshire taken from both nadir
and tilted angles, with various shapes and roof tile types.
Fig. 6 shows some samples of the dataset with buildings
labeled with the open-source annotation tool LabelMe [56].
Within the dataset, 150 images are used as the training set and
the rest 50 images are used as evaluation set.

III. IMPLEMENTATION DETAILS AND RESULTS
This section presents the implementation details of the tasks
in Fig. 4 and compares the Mask R-CNN detection perfor-
mance using different pretrained backbone networks.

2https://drive.google.com/file/d/1KKwxUfkRL3GYmyULLFLof0
SDHBf11W1C/view?usp=sharing

A. IMPLEMENTATION DETAILS
The tasks in Fig. 4 are implemented using Python 3.8 with
Mask R-CNN training and inference using the open-source
Machine Learning library PyTorch [57]. We have fine-tuned
several Mask R-CNNs with different backbones, including
ResNet34, ResNet50 and ResNet101 backbones pretrained
on ImageNet, DeepLabv3-ResNet101 backbone pretrained
on a subset of COCO, and ResNet50 backbone pretrained on
COCO. The optimizer is Stochastic Gradient Descent (SGD)
with the initial learning rate sets to 0.005, momentum sets to
0.9 and weight decay sets to 0.0005. The learning rate decays
every 3 epochs with gamma sets to 0.1. During inference we
limit the number of detections per image to 5 (5 output masks
per image), the first mask with the center pixel covered is
selected as the detection of the target building. All the tasks
are implemented on a PC with a GeForce RTX 2070 GPU
with 8GB memory.

B. TARGET BUILDING DETECTION RESULTS
Standard COCO metrics are used to evaluate performance
of the detection, including Average Precision (AP) which is
the mean AP averaged across the APs of 10 Intersection of
Union (IoU) thresholds from 0.5 to 0.95, AP50 and AP75 are
the APs with 0.5 and 0.75 IoU thresholds, APM is the AP
for medium objects with area greater than 322 pixels but less
than 962 pixels, and APL is the AP for large objects with area

FIGURE 6. Samples of the dataset.
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TABLE 2. Bounding box average precision.

TABLE 3. Mask average precision.

FIGURE 7. Detection results of mask R-CNN with ResNet50 backbone pretrained on COCO.

greater than 962 pixels. The image dataset we prepared for
training does not include any small objects with area less than
322 pixels so APS is not applicable. APm and APbb denote the
AP of masks and bounding boxes respectively.

Table 2 and Table 3 show the metrics of bounding boxes
and masks respectively. From the results we can see that
increasing the depth of the backbones improves the detection

performance but the datasets the backbones use on pretrain
make significant impact as well. The clear winner here is
ResNet50 pretrained on COCO which has the best perfor-
mance metrics across the board. Fig. 7 shows some visual
results of the fine-tuned Mask R-CNN with ResNet50 back-
bone pretrained on COCO. It is clear that this Mask R-CNN
can extract the target buildings (which are the buildings in
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FIGURE 8. Coverage planning results.

the center of each image) with irregular shapes and their
edges from other buildings and structurers nearby. The infer-
ence time of the Mask R-CNN with ResNet50 backbone is
about 210ms on the GeForce RTX 2070 GPU, therefore rapid
implementation can be expected.

C. COVERAGE PLANNING RESULTS
In the previous subsection the target building edge pix-
els are obtained from the Mask R-CNN detection. Using
equations (3) and (4) we then convert a subset of the
edge pixels to latitude and longitude coordinates to feed to
WISDM (or any other coverage planning tools) to generate
point-to-point path profiles. For demonstration we randomly
select 50 edge pixels for path profiling, which is normally
acceptable to generate an informative coverage map for a
private residential property.

To demonstrate coverage planning results, in WISDM we
deployed three APs (Access Points, please note italic APs
denotes Average Precisions) several kilometers northwest
to the York city center, North Yorkshire, UK (Fig. 8). The
parameters of the APs and CPEs are described earlier in
subsection II.A. In Fig. 8 WISDM labels the three APs as
TestSite 2, TestSite 3 and TestSite 4, for convenience we

rename them as AP1, AP2 and AP3. We select 6 properties
in this area to generate coverage maps for the property edges.
For each property, we generate one coverage map for each AP
and one coverage map combining the results from all APs.
Fig. 8 also shows example path profiles from selected APs
to particular property edge points on the maps. For example,
the closest AP to property 1 is AP3 which has the best
coverage across all APs. The path profile shows a potential
massive terrain obstacle (a small ‘‘hill’’) in the middle of the
path however, benefitting from the height of the AP and CPE
the LoS path of the signal stays above that hill. The closest
AP to property 2 is AP1 which however does not show good
coverage. The path profile shows the signal from AP1 to the
south corner of the property, and there are two tall obstacles
(potentially trees) near the CPE blocking the LoS path. The
closest AP to property 3 is AP3 which does not have coverage
at all. The path profile shows the signal fromAP3 to the north
side of the property and there are two obstacles blocking the
LoS path, which could be the buildings to the north of that
property (visible in the coverage map). The closest AP to
property 4 is AP2 which does not have full coverage at the
west side of the property. From the path profile we can see a
tall obstacle very close to the CPEwhich is the tree to the west
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side of the property (visible in the coverage map). AP3 has
barely any coverage to property 5 and path profile shows that
the west corner of the property is just able to achieve LoS
path. Property 6 has no coverage at all from AP2 and the
path profile shows several obstacles blocking LoS path from
AP2 to the west side of the property.

IV. DISCUSSIONS
The image dataset we prepared to fine-tune the Mask R-CNN
is a relatively small dataset including private residential prop-
erties in rural and suburban North Yorkshire, UK. To make
the Mask R-CNN detection applicable to aerial images taken
worldwide, the dataset needs to be expanded to include sam-
ples from regions according to the customer’s interest. This
does not only contribute to the variety of the target buildings
but also to the variety of the background. For example, our
dataset mainly includes ground vehicles and green vegetation
backgrounds which may affect the detection results when the
input images have boats and water backgrounds. Properties
with different roof structures such as open terrace, solar panel
installations, swimming pools and common areas can also
be included to improve the detection accuracy. To allow the
MaskR-CNN to detect buildings other than private residential
propertiesmore confidently, the dataset needs to include other
building types such as warehouses, farms, theaters, schools,
churches, and again considering the customer’s requirements.
Aerial images with different resolutions and zoom levels can
be included to cover target buildings with different sizes and
styles. We have made our code available so that the readers
can directly use the Mask R-CNN trained on our dataset for
building detection applications or train new Mask R-CNNs
with customized datasets. Table 2 and Table 3 show that
the accuracy of the detection can be affected by the depth
of the backbone and the dataset the backbone is pretrained
on. If the computational resource allows, we recommend the
pretraining of deep backbones with different large datasets
for the best accuracy.

V. CONCLUSION
In this paper we propose a DL based method to augment test
points in coverage planning tools to improve utility and aid
CPE installation. Conventionally the coverage planning tools
either require manual inputs of CPE locations to generate
path profiles or ‘‘spam’’ path profile computations from APs
to all GIS ‘‘pixels’’. Our idea improves the capability of the
coverage planning tools to accurately estimate the coverage
with great details while maintaining efficient computational
resource usage. The pixel level building detection fromMask
R-CNN is able to greatly reduce the number of path profile
computations required to generate coverage maps without
human involvement (no need to compute path profile for
the locations where mounting the CPE antenna is difficult
or impossible), thereby allowing the coverage maps to be
rapidly generated when there are changes to the APs.We have
demonstrated the performance of the building detection and
the entire task flow: the only input required to produce the

coverage maps is either the address or latitude and longitude
coordinates of the target building. We have made our work
readily available for the readers to adapt to their applications.
In the future we will expand the aerial image dataset to allow
the Mask R-CNN to capture more features of a variety of
buildings worldwide, thereby making the proposed approach
applicable to users from other countries.

APPENDIX
This appendix provides a list of acronyms (and their full
terms) used in the paper.

TABLE 4. List of acronyms.
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