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ABSTRACT In the last decade, data generated from different digital devices has posed a remarkable
challenge for data representation and analysis. Because of the high-dimensional datasets and the rapid
growth of data volume, a lot of challenges have been encountered in various fields such as data mining
and data science. Conventional machine learning classifiers are of limited ability to handle the problems of
high dimensionality that includes memory limitation, computational cost, and low accuracy performance.
Consequently, there is a need to reduce the dimension of datasets by choosing the most significant features
that would represent the data efficiently with minimum volume. This study proposes an improved binary
version of the equilibrium optimizer algorithm (IBEO) to mitigate features selection problem. Two main
enhancements are added to the original equilibrium optimizer (EO) to strengthen its performance. Opposition
based learning is the first advancement added to the initialization stage of EO to enhance the diversity of
the population in the search space. Local search algorithm is the second advancement added to enhance the
exploitation of EO. Wrapper approaches can offer premium solutions. Thus, we used k-nearest neighbour
classifier and support vector machine classifiers as the most popular wrapper methods. Moreover, dealing
with the problem of over-fitting is an essential task that urges on applying k-fold cross-validation to split
each dataset into training and testing data. Comparative tests with different well-known algorithms such
as grey wolf optimization, grasshopper optimization, particle swarm optimization, whale optimization,
dragonfly, and improved salp swarm algorithms are considered. The proposed algorithm is applied to the
most commonly datasets used in the field to validate the performance. Statistical analysis studies demonstrate
the effectiveness of the IBEO.

INDEX TERMS Equilibrium optimizer (EO), feature selection, optimization, machine learning (ML),
opposition based learning (OBL), classification.

I. INTRODUCTION
The technological evolution in many fields such as finance,
biomedical, bioinformatics, and telecommunication has pro-
duced an exponential volume of pervasive data. The rapid
growth in the data volume has fabricated datasets with
thousands of features (also known as attributes) comprising
diverse data, resulting in a lot of challenges and fundamental
tasks in data science applications. Typically, high dimen-
sional datasets are accompanied by redundant, irrelevant,
and noisy records, which hurts the accuracy of machine
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learning (ML) classification and raises computational
costs [1]. Conventional ML classifiers are incapable of deal-
ing with such a large number of features, and are frequently
trapped in local optima [2]. Accordingly, a preprocessing
procedure like features selection becomes a necessity to
address the high dimensional data problem and filter out
the unnecessary/redundant features. Features selection inML
and statistics is also referred to as attribute selection, variable
selection, or variable subset selection. It is a part of data pre-
processing which is supposed to be the most time-consuming
process of any ML pipeline. Features selection process can
help build robust models by removing redundant and irrele-
vant features and choosing the most informative ones.
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Features selection methods are mainly categorized into
wrapper methods, and filter methods. The feature subset
evaluation step in wrapper approaches is based on the per-
formance of the classification algorithm. A wrapper employs
the classification algorithm as a ‘‘black box’’ to evaluate the
quality of the chosen subset via the classification perfor-
mance [3]. A filter approach is not based on any learning
model and the features are picked and ranked in principal
based on statistical approaches [4]. Filter algorithms are
frequently more general and less computationally expensive
than wrapper methods [5]. Filters, on the other hand, ignore
the classification algorithm’s performance of the selected
features, whereas wrappers are highly dependent on the used
learning algorithm to evaluate the feature subsets. In terms
of classification accuracy, wrappers beat filter methods [6].
Wrapper methods in many classification problems do not
significantly rely on a large number of selected attributes
to attain high classification accuracy. Wrappers are more
accurate because they take into account the relationships
between their features [7]. Moreover, this approach can
use various ML methods and knowledge extraction such
as k nearest neighbor (kNN) [8], discriminant analysis [9],
artificial neural networks (ANN) [10], and support vector
machines (SVMs) [11]. Some researchers divide features
selection approaches into three categories: wrapper, filter, and
embedded approaches [5]. Embedded techniques aremethods
that combine feature selection and classifier learning into a
single process [12].

The interactions and relationships among the features,
as well as the extensive search space, have made features
selection one of the most difficult data mining and classifi-
cation processes. Features interaction can be two-way, three-
way, or even include several features. A feature may not have
a confident impact on the target when it is used individually,
however its effect can be amplifiedwhen combinedwith other
features. In addition, a feature that is useful on its own can
become redundant when combinedwith others. The extensive
search space 2n, n is the total number of features, is another
challenging process. In other words, exhaustively searching
for all possible solutions is not possible in most situations.
As a result, a variety of search algorithms have been proposed
in order to locate a sufficiently good subset.

According to A. Jovic [13], there are three types of search
techniques: exponential, sequential, and random selection
strategy. The number of evaluated features in the exponential
methods increases exponentially with the size of features.
Although this approach produces reliable results, it is imprac-
tical to use due to its high computational cost. Some expo-
nential algorithms are exhaustive search, bound and branch
methods [14]. Sequential methods add or delete features
sequentially. The main problem that leads to local optima is
that it is not possible to makemodifications once a feature has
been added or deleted from the selected subset. Sequential
forward selection (SFS) is a sequential search strategy that
works best when the optimal subset has a limited number
of features. The key drawback of SFS is that it cannot be

used to remove features that become outdated when new ones
are added [15]. Sequential backward elimination (SBE) is
another example of sequential algorithms but it works in the
opposite direction of SFS.When the feature subset has a large
number of features, SBE performs best. SBE’s key flaw is its
inability to reevaluate the utility of a feature after it has been
removed [16]. With some backtracking capabilities, plus-L
minus-R selection (LRS) tries to compensate for SFS and
SBE’s flaws. The lack of theory to estimate the optimum
values of L and R is its primary weakness [17]. To overcome
this limitation, sequential forward floating selection (SFFS)
and sequential backward floating selection (SBFS) have been
proposed [18]. These approaches have been shown to be supe-
rior to static sequential approaches. The common issues with
most approaches are premature convergence, high computing
cost, and enormous complexity. Random algorithms, also
known as population-based techniques, use randomization
in the search process to avoid trapping the algorithms in
local optima. Metaheuristics are examples of random search
strategy that draw researchers’ attention to deal with these
kinds of problems.

Wrapper approaches based on metaheuristic algorithms
have shown their productivity and efficiency as an attempt
to solve features selection problem. The idea behind solving
features selection problems with metaheuristics is that it can
deliver a solution that is closer to the optimal solution in
a reasonable amount of time [19]. Metaheuristic algorithms
have a stochastic behavior, as they begin their optimization
process by producing random solutions to efficiently explore
the search space. It is not necessary to compute the search
space derivative. Because of their simple principle and easy
implementation, metaheuristics are easily adaptable accord-
ing to particular problem. The key feature of these algo-
rithms is their extraordinary ability to avoid algorithms from
converging prematurely. Metaheuristic algorithms maintain a
balance between its two important aspects, exploration and
exploitation [20].

Metaheuristic methods are mainly divided into four cat-
egories based on the source of inspiration: (i) swarm intelli-
gence [21], (ii) human-basedmethods [22], (iii) physics-based
methods [23], [24], and (iv) evolutionary algorithms [25].
Swarm intelligence methods are inspired by the way in which
animals behave in swarms as individual information is shared
throughout the optimization process. Particle swarm opti-
mization (PSO), one of the most well-known contributions
in this class, it has a number of advantages, including its
simplicity and high convergence rate [26], [27]. To deal
with the problem of picking the minimal subset of features
for high-dimensional data, a modification strategy for the
PSO method was presented in [28]. One of the promising
approaches is the grey wolf optimizer (GWO), which is
an efficient nature-inspired population-based metaheuristic
algorithm [29]. Emary et al. [30] employed the sigmoid trans-
fer function to get the first binary version of GWO (BGWO).
The kNN classifier was used to calculate the classification
accuracy and was applied to eighteen distinct UCI datasets.
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Levy flight GWO was proposed by Pathak et al. [31], and
it was utilized to pick significant features from the origi-
nal datasets. The acquired findings demonstrated its excel-
lent performance in terms of achieving high convergence.
Al-Tashi et al. [32] utilized GWO algorithm to choose the
best features with SVM as a classifier to diagnose cardio-
vascular disease. In addition, the author created a binary
version (BMOGW-S) based on a sigmoidal function to solve
multi-objective features selection problems with an artificial
neural network for classification process [33]. On fifteen
benchmark datasets, BMOGW-S outperformed MOGWO,
which used the tanh transfer function, in both classification
accuracy and feature selection. The grasshopper optimization
algorithm (GOA), another new population-based optimizer,
introduced by Saremi et al. to simulate the swarm behavior
in natural populations of grasshopper insects [34]. A new
transfer function was introduced by Hichem et al. [35].
The hamming distance was used to transform continuous
variables into binary ones to suit the nature of the features
selection problem. The latest version of GOA (NBGOA) was
tested on 20 standard datasets and compared to previous GOA
versions. The reported data demonstrated NBGOA’s potential
to deliver excellent results. Mafarja et al. used mutation
operator sigmoid and V-shaped transfer functions to improve
the exploration quality of BGOA [36]. To solve the binary
optimization problems, Eid et al. [37] added transforma-
tion functions to the conventional whale optimization algo-
rithm (WOA). The exploitation capability of WOA has been
improved by Mafarja et al. [38], he integrated the simulated
annealing intoWOA in each iteration step to enhance the best
solution. Sayed et al. extended the WOA algorithm with the
chaotic search to avoid the slow convergence rate and fight
local optima stagnation in feature selection problems [39].
Mirjalili et al. investigated dragonfly’s behavior bringing out
a new metaheuristic algorithm called dragonfly algorithm
(DA) [40]. Medjahed et al. [41] suggested a comprehen-
sive cancer diagnosis method based on the binary dragon-
fly (BDA) algorithm and SVM. SVM-RFE (SVM-recursive
feature elimination) was used to select the gene from the
datasets, with BDF being utilized to improve SVM-RFE
performance. Six micro-array datasets were used to test the
proposed technique, which yielded high accuracy results.
Mafarja et al. developed a binary version of the dragonfly
method that uses time-varying transfer functions to strike a
good balance between exploration and exploitation [42].

Physics-based methods are derived from natural physics
laws. The big bang-big crunch theory brought out an opti-
mization method called the big bang-big crunch (BB-BC)
algorithm [43]. In addition, a novel optimization method
for developing charged system search (CSS) was inspired
by the newtonian mechanical laws and the coulomb’s law
in electrostatics [24]. Another instances of this class: simu-
lated annealing (SA) [44], multi-verse optimizer (MVO) [45],
henry gas solubility optimization (HGSO) [46], lightning
search algorithm (LSA) [47], chemical reaction optimization
(CRO) [48], gravitational search algorithm (GSA) [49], and

electromagnetic field optimization (EFO) [50]. Evolutionary
methods are based on darwinian evolutionary theory and
simulate natural evolution laws. Genetic algorithms (GA)
are an instance of evolutionary methods [51]. They have a
lot of potential for addressing complex optimization prob-
lems. Sayed et al. utilized a nested-GA algorithm for the
features selection of cancer micro-array datasets. Nested-GA
contains two GA algorithms: inner and outer GA algorithms
and they work on two different kinds of datasets [52]. The
results of nested-GA showed a small optimal subset of fea-
tures with the highest classification performance. The authors
in [53] used the GA feature selection algorithm with the
chaos optimization for text categorization. Differential evo-
lution algorithms (DE) are another instance of evolutionary
methods [54].

Human behavior and human interaction in society inspire
human-based methods. Agrawal [55] introduced the first
novel binary version of gaining sharing knowledge based
algorithm (GSK) for feature selection problem (FSNBGSK).
The authors introduced binary junior and senior gaining and
sharing stages. With the kNN classifier, the FS-NBGSK
method was tested over 23 benchmark datasets from the
UCI repository. In terms of classification accuracy and the
smallest number of selected features, the proposed method
outperformed the other compared algorithms. Representative
algorithms of human based methods include: cultural evolu-
tion algorithm (CEA) [56], imperial competition algorithms
(ICA) [57], teaching-learning-based optimization (TLBO)
[22], and the volleyball premier league (VPL) [58]. Recently,
interesting new methods have been developed, taking inspi-
ration from different fields. For instance, paints have been
used to propose a new optimizationmethod as one of the most
important fields of art [59]. Other new instances can be found
in [60]–[63]. Finally, hybridization of multiple algorithms is
a trendy method in features selection to take advantage of the
strength of different algorithms [64]–[69].

Opposition-Based Learning (OBL) is a field of study that
has been widely employed to enhance the search process
in several algorithms [70], [71]. Tizhoosh et al. [72] was
the first to use OBL to speed up the convergence rate and
enhance the quality of solutions suggested by metaheuristics.
Its primary principle is to think about a solution and its
opposite at the same time. The logic behind this concept is
that an opposing solution has a larger chance of being closer
to the optimal solution than another random guess, given
that the current original solution is not closer to the optimal
solution [73]. Type-I opposition and type-II opposition are
two types of search that use the OBL idea [74]. Type-I
opposition is a function that maps each solution in the search
space to its opposite, allowing the search to proceed with the
better solution. Type-II opposition establishes a relationship
between the original solution and its opposing based on eval-
uating their qualities. The most common OBL type in the
literature is type-I opposition [74], which was employed in
this study. Several opposition-based metaheuristics based on
various OBL techniques have been proposed in the literature.
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This is because the distance between the initial solutions
and the unknown optimal solution is crucially related to the
convergence speed of metaheuristics to the global optimum.
If the optimal solution is far away from the initial solutions,
the convergence speed to the global optimum could be slow.
As a result, well-diversified initial solutions can speed up
metaheuristic convergence [75]. Some metaheuristics based
on various OBL techniques are: an advanced charged system
search (ACSS) [76], opposition-based differential evolution
(ODE) [77], [78], opposition-based harmony search (OHS)
[79], opposition-based sine cosine algorithm (OBSCA) [80],
and improved salp swarm algorithm (ISSA) [81].

A recent algorithm called equilibrium optimizer algo-
rithm (EO) was developed by Faramarzi et al. to predict
equilibrium states, where physical dynamics and sink models
are the main inspiration for the algorithm [82]. EO belongs to
the physics-based group of optimization algorithms where it
is based on the laws of physical theory in nature. As addressed
above, metaheuristic algorithms have shown supporting pos-
itive effects on features selection problems over recent
decades. Despite all the research in this direction, most of
the metaheuristic algorithms still face several challenges
that need to be addressed. For instance, entrapment in local
optima, lack of diversity, and imbalance between the explo-
rative and exploitative abilities of the algorithm. It is still nec-
essary to have more optimization techniques to get additional
enhanced results. To the best of the author’s information,
there are a few studies in the literature for the binary version
of EO [83], [84]. This has motivated us in this study to pro-
pose a new binary version of EO and test its benefit in features
selection problems as a binary optimization algorithm. The
main contributions of this paper are summarized as follows:

1) IBEO: a new modified version of EO is introduced.
Two different transfer functions are used to deal with
the binary problem.

2) OBL is applied to enhance the population diversity of
EO at the initialization stage.

3) Local search algorithm (LSA) is applied to enhance the
exploitation capability of the EO. At the end of each EO
iteration, LSA is integrated to prevent it from getting
stuck in local optima.

4) Test the proposed algorithm by comparing its result
with six state-of-the-art features selection methods.

The remainder of this paper is organized as follows:
Section 2 describes the original EO. The proposed algorithm
is discussed in detail in section 3, while the experimental
results are given in section 4. Finally, section 5 concludes the
paper.

II. EQUILIBRIUM OPTIMIZER ALGORITHM:
AN OVERVIEW
The equilibrium optimizer algorithm (EO) is a recent algo-
rithm applied in continuous optimization problems [82].
EO belongs to physics-based methods. Particles and con-
centrations in EO can be portrayed as particles with their

positions in particle swarm optimization algorithm (PSO).
According to the best solutions or the equilibrium candi-
dates, the concentrations of the particles (search agents)
are randomly updated until the optimal result equilibrium
state is obtained. One of the advantages of EO is its abil-
ity to randomly update the solution within a high balance
between exploration and exploitation. Eq.(1) represents the
update pattern for the concentration of a solution in the
EO Algorithm:

C = Ceq + (C0 − Ceq).F +
G
λ.V

(1− F) (1)

The concentration of each particle is updated through three
terms. The equilibrium concentration is the first term, and
it is picked randomly from a pool, a vector that contains
five equilibrium candidates or five best solutions, named
the equilibrium pool. The second component serves as a
direct exploration mechanism, and it indicates the difference
between the concentration of a solution and the concentration
of an equilibrium state. This term acts as explorers, which
supports particles to explore the domain globally. Moreover,
F’s presence in the second term will help EO achieve a
sensible balance between exploration and exploitation. The
generation rate is the third term. A mathematical explanation
of these terms is given in the next subsections.

1) CANDIDATES AND EQUILIBRIUM POOL
The convergence state is called the equilibrium state of the
algorithm that is supposed to be the global optimum. There
is no information about the concentration equilibrium state at
the beginning of the optimization process. Thus, equilibrium
candidates are useful in providing a search pattern for the
particles. As mentioned before, the EO algorithm creates an
equilibrium pool, a vector that contains five equilibrium can-
didates. Four candidates are the finest concentrations named
in the entire process optimization plus their average. These
four candidates support EO in exploration, while the average
particle supports having better exploitation capability. It is
worth considering that the number of candidates is optional
and connected with the nature of the optimization problem.
The equilibrium pool vector can be expressed as:

ECeq,pool =
{
ECeq(1), ECeq(2), ECeq(3), ECeq(4), ECeq(ave)

}
(2)

The particle’s concentration update is executed after each
iteration by a random selection among candidates that have
the same probability of being selected.

2) EXPONENTIAL TERM: F
Asmentioned previously, the exponential term F in Eq.(3) can
enormously assist balancing in EO exploitation and explo-
ration. An explanation of the exponential term F can be
expressed as:

EF = e−Eλ(t−t0) (3)

Here, Eλ ∈ [0], [1] is a random vector, t denotes a function
of iteration that is decreasing with the number of iterations,
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and t0 slows down the search speed to assure the convergence:

t =
(
1−

Iter
Max_iter

)a2 Iter
Max_iter

(4)

t0 =
1
Eλ
ln(−a1sign(Er − 0.5)[1− e−Eλt ])+ t (5)

Here, Iter and Max_iter represent the current and the
maximum number of iterations, respectively. Er ∈ [0], [1]
is a random vector, sign(r − 0.5) affects exploration and
exploitation directions, a1 and a2 are constants. In the related
work, a1 = 2 and a2 = 1. The higher a1 value proposes better
exploration performance and worse exploitation ability. The
higher of a2 value means better exploitation performance and
worse exploration ability. By substituting Eq.(5) in Eq.(3),
the last explanation of the exponential term is as following:

EF = a1sign(Er − 0.5)
[
e−Eλt − 1

]
(6)

3) GENERATION RATE (G)
The third term in Eq.(1) comes with the generation rate (G),
it performs a vital role in EO to improve the exploitation
process:

EG = EG0 EF (7)
EG0 = EGCP( ECeq − Eλ EC) (8)

EGCP =

{
0.5r1 r2 ≥ GP
0 r2 ≺ GP

(9)

where r1 and r2 are random numbers in the interval of [0], [1],
GCP is an abbreviation for generation rate control parameter;
it implies the probability of generating term addition towards
the updating rule. GP is an abbreviation for Generation Prob-
ability, GP = 0.5 and it guarantees a fair balance between
exploitation and exploration. GP denotes the probability that
tells how many particles update their concentration using the
generation term.

III. THE PROPOSED ALGORITHM (IBEO)
In this section, a wrapper-based method is proposed for
tackling the problem of features selection. Initialization,
transformation function, local search algorithm (LSA), and
evaluation are the essential steps of IBEO. A detailed descrip-
tion of each step will be presented in the next subsections.

A. INITIALIZATION
Several studies have raised the quality of their initiated pop-
ulation solutions by using an optimization technique called
opposition based learning (OBL). The OBL strategy works
by diversifying the solutions to give a better probability of
discovering promising regions. It searches the two directions
in search space. The first direction is the primary solution, and
the other direction is the opposite solution. It is reasonable
to assume that if current solutions are far from the unknown
optimal solution, computing the opposite solutions will lead
to the opposite direction toward the unknown optimal solu-
tion. The purpose of the OBL approach is to take the fittest

solutions from all solutions. Let c be a real number that
belongs to the interval [lb, ub]. The opposite number of c is
indicated by:

c̃ = lb+ ub−c (10)

Eq.(10) can be generalized to use it in features selection
problems. The following equations can express the concentra-
tion of each particle and its other direction (opposite solution)
in EO:

c = [c1, c2, c3, . . . , cd ] (11)

c̃ =
[
c̃1, c̃2, c̃3, . . . , c̃d

]
(12)

All elements values in c̃ can be defined by:

c̃j = lb+ ub− cj where j = 1, 2, 3, . . . , d (13)

where lb and ub are lower and upper bounds of each value in
the current solution, respectively. In this strategy, lb and ub
are utilized to calculate the opposite of the current solution.
Then, two populations, the set of the opposite solutions OC
and its initial form C , are combined and the fittest solutions
are selected from C ∪ OC as the new initial population.
In the IBEO initialization stage, a number of particles are

randomly generated depending on the size of the population.
Each particle serves as an available solution with a dimension
d , where d is the number of the all features that exist in the
original dataset. OBL applied only in the initialization step
to get the opposite solution of every generated solution. The
new initial population of IBEO is created by choosing the best
solutions from the set of the opposite solutions and its initial
form. IBEO determines the fitness values based on kNN or
SVM classifiers.

B. TRANSFORMATION FUNCTION
Several optimization problems have been modeled as binary
problems such as feature selection problems. As mentioned
before, the particle concentration produced from the origi-
nal EO has continuous values. Thus, the conversion process
from the continuous space of the original EO to a binary
search space requires a transformation function. The concen-
trations of the particles in feature subset selection problems
can only be 0 or 1. In IBEO, the binary solution space is
represented by a population size n × number of features N
matrix. The 1/0 values indicate that the related feature is
selected/unselected, respectively. Fig. 1 represents the binary
search space in IBEO. This study uses two different trans-
formation functions to convert the continuous space into a
binary search space [85]. Later in the results and analysis
section, the performance of these functions will be examined.
The sigmoidal function is an instance of the S-shaped family
transfer functions as given in:

cksi (t) =
1

1+ e−c
k
i (t)

(14)

where the ith particle of the k th dimension at the t th iteration
is a continuous value cki (t) calculated by Eq.(1). Eq.(14) still
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shows the output for the S-shaped function in a continuous
manner. To get the binary value, the ith particle concentration
is updated as follows:

cki (t + 1) =

{
0 rand < cksi (t)
1 rand ≥ cksi (t)

(15)

where rand is a random number in the interval of [0, 1].
The second function is categorized as an instance of the
V-Shaped function:

ckvi (t) =

∣∣∣∣∣∣ cki (t)√
1+ (cki (t))

2

∣∣∣∣∣∣ (16)

The V-shaped function’s output in Eq.(16) still appears in
a continuous manner. To get the binary value, the ith particle
concentration is updated as follows:

cki (t + 1) =

{
0 rand < ckvi (t)
1 rand ≥ ckvi (t)

(17)

S-shaped and V-shaped functions transform a continu-
ous space to a binary search space through the following
procedure:

1) Passing the continuous value cki (t) value to the transfer
function.

2) Considering cki (t), c
k
si (t) or c

k
vi (t) are calculated.

3) Generating a random value between 0 and 1 for
every cki (t).

4) Assigning the value 0 or 1 to the cki (t+1) using Eq.(15)
or Eq.(17).

C. LOCAL SEARCH ALGORITHM (LSA)
The existing best solution B is passed to a local search algo-
rithm in each iteration with the aim of discovering a better
solution. LSA selects randomly three features in each itera-
tion from the existing best solution. The algorithm switches
the value of these features from 1 to 0 and vice-versa. After-
ward, the fitness value for the new solution is calculated. LSA
will update the value B only if the new solution gives a better
fitness value than the current solution (Algorithm 1).

D. EVALUATION
Scalability of ML algorithms becomes a serious issue when
dealing with datasets that have a large number of features.
One of the concerns with adding more features to the data

FIGURE 1. Binary search space for IBEO.

Algorithm 1 LSA Algorithm
temp_value = B where B is the current best solution
while t < max_iterations do
Randomly select three features from temp_value
if selected_feature == 1 where 1 means the feature is

selected and 0 means not selected) then
selected_feature = 0

else
selected_feature = 1

end if
Evaluate temp_value using kNN or SVM classifiers
Calculate the fitness value of temp_value
if f (temp_value) < f (B) then
B = temp_value

end if
t = t + 1

end while
return B

is that the redundant and irrelevant features have a nega-
tive influence on the performance of the classifier in many
ways [86]. Moreover, there will be a need to add more
instances, which will cause the classifier to take a longer time
to learn. In such cases, the dimensionality of the data must be
reduced. The feature selection enhances the learning time and
the accuracy performance of a given classifier by eliminating
unnecessary and irrelevant features. In this regard, we need
to choose only the most relevant features and simultaneously
raise the classification performance.

The features selection problem is known as a multi-
objective optimization problem (MOP) since it needs to
obtain the following:
• Reduce the number of selected features.
• Improve the classifier performance by maximizing the
accuracy value.

In order to balance between the two objectives, the fitness
function is used in IBEO to evaluate the solutions:

Fitness = αError(D)+ β
|M |
|N |

(18)

where error (D) is the rate of classification error that is
calculated using the kNN or SVM classifier. α and β are the
weight parameters where α ∈ [0, 1] and β = 1− α. The two
parametersα and β reflect the importance of the classification
accuracy and the length of the selected feature subset. |N |
is the number of the original features. |M | is the size of the
feature selected. kNN or SVM is employed in IBEO as a
classifier [11], [87]. We prefer to use the SVM classifier if
a dataset has two classes. Otherwise, the kNN classifier is
used. Fig. 2 represents features selection processes for IBEO.
The steps of the IBEO are shown in Algorithm 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We have tested all algorithms on Matlab Software
(ver. R2016a) that is installed on Microsoft Windows 10,
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64-bit Edition, Intel Core i7-3630QM processor, 2.40 GHz
and 8 GB RAM machine.

A. DATASETS
There are 25 datasets taken from https://www.openml.org
were used for verifying and evaluating the performance of
IBEO compared to other algorithms. Table 1 demonstrates
a brief overview of the used datasets, which contain differ-
ent numbers of classes (from 2 to 10), different numbers
of instances (from 47 to 6435), and different numbers of
attributes (from 10 to 7129).

B. PARAMETER CONFIGURATION
The IBEO performance is compared to different state-
of-the-art features selection methods. Each algorithm has
20 independent runs. For all experiments, the population size
is equal to 5 and the maximum number of iterations is set
to 30. The classification process is responsible for classifying
new incoming instances where the class label is unknown.
kNN and SVM are the preferred classifiers in the present
study. To produce the optimal subset, the 5-NN classifier

FIGURE 2. Features selection processes for IBEO.

Algorithm 2 Proposed Algorithm (IBEO)
Initialize population C as ci i = 1, . . . , n.
Initialize the parameters a1 = 2, a2 = 1, GP = 0.5.
Calculate the particle’s opposite population OC using
Eq.(13).
Select the n fittest particles from {C ∪ OC} which repre-
sent the initial IBEO population.
Define t = 0
while t < max_iterations do
Construct the equilibrium pool using using Eq.(2).
for each particle do
Update concentrations EC using Eq.(1).

end for
Convert the concentration of particles into binary
ones.
Evaluate each particle in the population using kNN
or SVM classifiers.
Calculate the fitness of all the particles in the
population using Eq.(18).
B = bestsolution
Apply LSA on B to find if there is a better solution.
t = t + 1

end while
return B

is preferred for datasets that contain more than two classes.
Several trials and runs are performed on various datasets to
figure out which K value in kNN is the best. For both kNN
and SVM, K-fold cross-validation is equal to 10 to reduce
the over-fitting problem. The idea of k-fold cross-validation
depends on splitting the dataset into k-folds (subsets) that
have almost equal size. Of the k subsets, k − 1 subsets will
be used to train the classifier and then the remaining single
subset is treated as testing data for predicting the class label
of each instance. Following that, the classification percentage
error rate is determined as a percentage of the inaccurate class
label predictions. Based on domain knowledge, parameters
such as α and β in the fitness function are defined. The rest of
the parameters are defined by trial and error. The parameters
of IBEO are shown in Table 2.

C. RESULTS AND ANALYSIS
The first experiment studies the effect of two different trans-
formation functions on the original EO. The second experi-
ment introduces a comparison of the proposed IBEO with the
original EO and another binary version of EO called BEO
that was published in 2020 [83]. In the third experiment,
a comparison between IBEO and different algorithms such as
PSO, GOA, GWO, WOA, DA, and ISSA is performed. The
last-mentioned comparison is made by using three measures:
• Fitness value
• Classification accuracy
• Number of selected features

1) COMPARISON BETWEEN PERFORMANCES OF TWO
TRANSFORMATION FUNCTIONS ON EO
A binary version of EO is executed using an instance of the
S-shaped family transfer functions (EO-S) and an instance of
the V-shaped family transfer functions (EO-V). The compari-
son based on the fitness function value is made between EO-S
and EO-V by using three performance measures:
• The minimum fitness value (i.e. best fitness value) that
is reached after running the two algorithms 20 times.

Bestfitness =
20
min
i=1

fi (19)

• The mean fitness value that is reached after running the
two algorithms 20 times.

Meanfitness =
1
20

20∑
i=1

fi (20)

• Themaximumfitness value (i.e. worst fitness value) that
is reached after running the two algorithms 20 times.

Worstfitness =
20
max
i=1

fi (21)

As seen in Table 3, EO-S works for most of the datasets
better than EO-V. The best results are indicated by bold
font. Moreover, Fig. 3 shows the performance of the two
algorithms by using the total improvement percentage (IP).
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TABLE 1. Selected datasets to be used in the experimental studies.

TABLE 2. Parameter configuration for IBEO.

IP is the ratio of positive change in the two algorithms. IP can
be calculated using the following formula:

IP =
m∑
i=1

full − falg
full

× 100 (22)

where full is supposed to be the fitness value of choosing
all dataset’s original features, falg is the fitness value of the
worst, mean, and best case in EO-S and EO-V. The value m
is the number of datasets (m = 25). The above figure shows
that the IP of the two algorithms has been increased and it is
worth noting that the performance has considerably enhanced
in comparison with choosing all features in every dataset.
Besides, EO-S has better IP than EO-V for all datasets.

2) COMPARISON OF IBEO WITH EO AND BEO
The former experiment tested the performance of EO-S and
EO-V to decide which one is better. The results showed
that EO-S performs better than EO-V. Now is the time to
investigate IBEO and determine the impact of incorporating
the OBL strategy and the LSA algorithm into the EO-S. Thus,
the proposed IBEO is compared with the original EO and
BEO. K. Ghosh proposed BEO as the first binary version of

FIGURE 3. Comparison between EO-S and EO-V according to the IP of the
fitness values.

EO, which improved EO’s exploitative abilities by using sim-
ulated annealing algorithm [83]. The average number of the
selected features, classification accuracy, and fitness values
are the most crucial comparative performance measurements
in our experiment.

As presented in Table 4, the classification accuracy of the
IBEO algorithm in 24 cases out of 25 datasets exceeded the
original EO (96%). While IBEO outperformed BEO in clas-
sification accuracy across 22 datasets. In the case of exactly,
IBEO has shown that the remaining three datasets, HeartEW,
Satellite, and Leukemia, have classification accuracy values
that are too close to BEO values. Even if we keep aside
classification accuracy and concentrate on the number of
features used to obtain these results, IBEO performed best
in 17 of the 25 datasets. Whereas, EO scored 2 datasets while
BEO scored 6 datasets. IBEO has only used about half of
the features for the classification process. For all 25 data
sets, IBEO outperforms the original algorithm in terms of
fitness values. While IBEO’s fitness values across 20 datasets
exceeded BEO. Fig. 4 shows a comparison among EO, BEO,
and IBEO based on the total average of the fitness value,
classification accuracy, and number of selected features for
all the datasets. The IBEO exceeds both algorithms with
a total average fitness value of 0.1563 and a total average

TABLE 3. Comparison between performances of EO-S and EO-V according
to the fitness value.
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TABLE 4. Comparison between the performances of EO, BEO, and IBEO according to the average fitness value, average accuracy, and average number of
selected features.

FIGURE 4. Total average fitness value, average accuracy, and average number of selected features over all datasets.

classification accuracy of 0.8569. Furthermore, the aver-
age number of the selected features over all the datasets
was calculated and it has been reduced from 142.68 to
136.03. The use of OBL strategy and LSA algorithm clearly
aids the original algorithm in exploring different parts of
the search space and achieving better results. In Fig. 5,
the average time for running overall the datasets 20 times is
shown.

3) COMPARISON BETWEEN IBEO AND OTHER
METAHEURISTIC ALGORITHMS
The previous experiment compared IBEO with the original
EO. IBEO showed a higher performance over the standard
EO algorithm because of the ability to balance between
exploration and exploitation, the ability to escape from local
optima, and the ability to improve population diversity. For
results confirmation, the third experiment was conducted to
compare our proposed algorithm with other six well-known

algorithms (PSO, GOA, GWO, WOA, DA, ISSA). The
following measures have been employed in the compara-
tive performance evaluation: number of selected features,
mean fitness, classification accuracy, and standard deviation.
Table 5 shows the results of seven algorithms in terms of
the average fitness values. IBEO shows minimum fitness
values inmost of the datasets compared to othermetaheuristic
algorithms. It can be seen from Table 5 that IBEO works best
in 23 cases out of 25 datasets (92%). IBEO has been shown
as the second-best in the case of Satellite and Leukemia.
Furthermore, Fig. 6 presents the total mean fitness values over
all the datasets. The average fitness value of IBEO is equal to
0.1564, which is the lowest value compared to the rest of the
values.

In Table 6, a comparison is performed in terms of the clas-
sification accuracy that obtained by each algorithm. In most
datasets, we found that IBEO outperformed other algorithms
in terms of classification accuracy. Considering Table 6,
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FIGURE 5. Average time in minutes for all datasets.

FIGURE 6. Total average fitness values of IBEO over all datasets
compared with other algorithms.

IBEO works best in 22 cases out of 25 datasets (88%).
IBEO has been shown as the second-best in the case of
Robot-failures-lp1. For Leukemia, it has achieved fifth-best
coming after the results of PSO, ISSA, DA, and GOA, in this
order. In Fig. 7, the average classification accuracy obtained
by each algorithm over all datasets is reported. IBEO has
reached 85.6% classification accuracy, and this is the best
result compared to other algorithms. Moreover, Fig. 8 gives
the average number of selected features for all datasets. IBEO
has a value of 136.102 features, putting the proposed algo-
rithm in second rank. Despite the fact that the PSO algorithm
achieved the smallest average number of selected features,
IBEO seems to be more helpful as the classification accuracy
should take more consideration than the number of features.
Additionally, the comparisons show that there is no huge
difference between PSO and IBEO and the fitness values
are influenced by the classification accuracy value more than
the number of selected features. The advantage of the IBEO
comes from its ability to balance the search process over
iterations between exploration and exploitation. In Fig. 9,
IBEO appears in the first rank according to the obtained
total average standard deviation for the mean fitness values,
indicating that the difference between the datasets’ fitness
values is smaller than the other algorithms. As aforemen-
tioned, IBEO has the smallest mean fitness value. Hence, it is
concluded that the best and the worst fitness values are near
the mean value.

Based on IBEO configuration, the maximum number of
iterations in all the experiments is set to 30 and the population
size is 5. LSAwill update the value of the current best solution
only if the new solution gives a better fitness value than the

FIGURE 7. Average classification accuracy of IBEO over all datasets
compared with other algorithms.

FIGURE 8. Average number of selected features of IBEO over all datasets
compared with other algorithms.

FIGURE 9. Total average standard deviation for the average fitness results
of IBEO compared with other algorithms.

current solution. In this context, the evaluation function for
the current best solution is called twice in each iteration.
Thus, to ensure the efficiency of the proposed algorithm,
algorithms that do not use iterated local search (PSO, GOA,
GWO, WOA, DA) are tested again and we maximize the
number of iterations to 60. Tables 7 and 8 give comparisons in
terms of the average fitness value and the classification accu-
racy, respectively. The results show that the proposed algo-
rithm continues to outperform the other algorithms across
most of the datasets in both tables.

Based on the results shown in Fig. 10, IBEO exceeded all
other algorithms in convergence over most of the datasets.
Hence, the comparison test for convergence between IBEO
and other algorithms showed the higher performance for
IBEO. Besides, we can observe from Fig. 10 the conver-
gence curves as it shows that the IBEO solved the pre-
mature convergence in most of the datasets by improving
population diversity and balancing between exploitation and
exploration. Fig. 11 presents the boxplots for all datasets
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TABLE 5. Average fitness results of the IBEO compared with other algorithms (30 iterations).

TABLE 6. Classification accuracy results of the IBEO compared with other algorithms (30 iterations).

to compare the average performance of algorithms visually.
Boxplots represent the classification accuracy values and
they are plotted after executing each algorithm 20 times.
Each boxplot can give information about five components:
maximum,median, minimum, first quartile, and third quartile
of the data. The whisker extending down represents the
minimum value, the bottom of the rectangle represents quar-
tile one, the top of the rectangle represents quartile three,
the line that separates the rectangle is the median value,
and the top whisker is the maximum value. Additionally,

outliers may be plotted as individual points. It can be noticed
that IBEO has higher boxplots characterized by higher
median values compared to other algorithms in most of the
datasets.

Furthermore, in order to determine whether there is
a statistical difference between IBEO’s results and those
of the other comparative methods, the nonparametric
Wilcoxon-based fitness function rank-sum test is conducted
for 10 randomly selected datasets (Fri_c1_1000, Australian,
Lymphography, Credit, Kc1, Parkinsons, Dermatology,

VOLUME 9, 2021 120319



D. A. Elmanakhly et al.: Improved EO Algorithm for Features Selection: Methods and Analysis

FIGURE 10. Convergence of IBEO compared with other metaheuristics.
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FIGURE 10. (Continued.) Convergence of IBEO compared with other metaheuristics.

TABLE 7. Average fitness results of the IBEO compared with other algorithms (60 iterations).

SonarEW, Robot-failures-lp2, and CNAE) [88]. The
Wilcoxon test’s significance level is set at 0.05, and the results
are presented in Table 9. The number of positive ranks in
which IBEO outranks the comparative algorithms is referred

to as No. R+. The number of negative ranks in which the
IBEO fails to outrank the comparative algorithms is repre-
sented by No. R−. The number of ties is the number of equal
ranks for the IBEO with the other comparative algorithm.
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FIGURE 11. Boxplots of IBEO compared with other metaheuristics over all datasets.
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FIGURE 11. (Continued.) Boxplots of IBEO compared with other metaheuristics over all datasets.

TABLE 8. Classification accuracy results of the IBEO compared with other algorithms (60 iterations).

The total of positive and negative ranks is represented by
Sum_ R+ and Sum_ R−, respectively.

According to Table 9, the No. R+ in which IBEO outper-
forms PSO, GOA, GWO, WOA, DA, and ISSA are 10 cases
out of the 10 randomly selected datasets. For instance, in the
Fri_c1_1000 dataset, the number of runs in which IBEO out-
performs PSO is 19 out of 20 runs. In the Robot-failureslp2
dataset, the number of runs inwhich IBEOoutperformsGWO
is 16 out of 20 runs and it fails to outrank GWO in 3 runs
and shows a similar performance in one run. Interestingly,
IBEO has obtained the top performance in all 20 runs for
the datasets: Kc1, Parkinsons, and SonarEW. For the datasets

used in this test, we can observe that Sum_ R+ is greater
than Sum_R−. The p-values in Table 9 indicate if there
is a significant difference between the proposed algorithm
and the compared algorithm. The evidence becomes stronger
as the p-value becomes smaller. Statistical significance is
defined as a p-value of less than 0.05. It means there’s
strong evidence against the null hypothesis. From Table 9,
we observe that IBEO outperformed GOA, GWO, WAO,
and DA in 10 datasets, where in 10 out of these 10 datasets
there is a significant difference (p-value less than 0.05). Com-
paring IBEO to PSO and ISSA, we can notice that IBEO
has significantly outperformed them in 9 and 7 cases out
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TABLE 9. Wilcoxon signed ranks test results (p-values ≥ 0.05 are underlined).
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of 10 datasets, respectively. Finally, the p-values confirm
that the results of the proposed approach are significantly
different from the results of the state-of-the-art algorithms on
the majority of the used datasets.

V. CONCLUSION
The comparative experiments and the aforementioned results
indicate the advantage of IBEO in comparison with other
optimization algorithms. Based on some measures, we eval-
uated the IBEO Algorithm across 25 datasets and compared
it to other well-known optimization algorithms (PSO, GOA,
GWO, WOA, DA, ISSA). These measures are fitness, clas-
sification accuracy, and number of selected features. This
advantage in IBEO performance resulted from using the sig-
moid function to deal with the binary problem. In addition,
two enhancements to the original EO algorithm were added,
including the OBL strategy and the LSA algorithm. OBL
is applied to improve the population diversity of EO at the
initialization phase, and LSA is used at the end of each EO
iteration to prevent it from getting stuck in a local optimum.
The kNN or SVM classifier gives high-quality solutions with
the IBEO algorithm, and it can effectively learn from the
training data. k-fold cross validation is an excellent deci-
sion for bypassing the over-fitting problem. In the future,
the ability of the proposed algorithm to select fewer features
could be increased through using new selection strategies.
Hybridization can also be a good move toward improving
the exploration of the algorithm. Furthermore, different clas-
sifiers such as neural networks can be used to examine the
performance of the IBEO.
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