
Received July 26, 2021, accepted August 11, 2021, date of publication August 25, 2021, date of current version September 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3107903

Malware Detection Inside App Stores Based on
Lifespan Measurements
CARLOS CILLERUELO , ENRIQUE-LARRIBA, LUIS DE-MARCOS ,
AND JOSE-JAVIER MARTINEZ-HERRÁIZ
Computer Science Department, University of Alcalá, 28801 Alcalá de Henares, Spain

Corresponding author: Carlos Cilleruelo (carlos.cilleruelo@uah.es)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 826284 (ProTego).

ABSTRACT Potentially Harmful Apps (PHAs), like any other type of malware, are a problem. Even
though Google tries to maintain a clean app ecosystem, Google Play Store is still one of the main vectors
for spreading PHAs. In this paper, we propose a solution based on machine learning algorithms to detect
PHAs inside application markets. Being the application markets one of the main entry vectors, a solution
capable of detecting PHAs submitted or in submission to those markets is needed. This solution is capable
of detecting PHAs inside an application market and can be used as a filtering method, to automatically
block the publishing of novel PHAs. The proposed solution is based on application static analysis, and even
though several static analysis solutions have been developed, the innovation of this system is based on its
training and the creation of its dataset. We have created a new dataset that uses as criteria the lifespan of
an application inside Google Play, the shorter time an application is active inside an application market the
higher the probability that this is a PHA. This criterion was added in order to avoid the usage and bias
of antivirus engines for detecting malware. Involving the lifespan as criteria we created a new method of
detection that does not replicate any existing antivirus engines. Experimental results have proved that this
solution obtains a 90% accuracy score, using a dataset of 91,203 applications published on the Google Play
Store. Despite showing a decrease in accuracy, compared with other machine learning models focused on
detecting PHAs; it is necessary to take into account that this is a complementary and different method. The
presented work can be combined with other static and dynamic machine learning models, since its training
is drastically different, as it was based on lifespan measurements.

INDEX TERMS Machine learning, app stores, google play malware, android malware, malware detection,
potentially harmful apps.

I. INTRODUCTION
Malware detection techniques are constantly evolving due to
the necessity of detecting the presence of malware. Cyber-
criminals are constantly changing their techniques and novel
methods of detection are needed to be developed. Moreover,
Android has become one of the most popular operating sys-
tems in mobile devices. According to Statcounter, Android
has a market share greater than 72% [1]. This situation has
caused an increase in the malware ecosystem because of
its popularity [2], [3]. All of this is related to the rise of
smartphone users worldwide, more than 6 billion in 2021 [4].
Due to this situation, cybercriminals are increasing attacks
against smartphones and the Android ecosystem in particular.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

On top of that, we should take into account that even in the
latest Android version 11, the system still allows installing
applications from unverified sources. Several malware SMS
campaigns, using SMiShing techniques [5], had exploited
this possibility [6], [7] but the use of markets, third-party
markets, and the official Google Play Store, is still the main
distribution vector of infection for most Android malware [8].
Being Google Play Store the main distribution vector, novel
techniques that control who published andwhich applications
are published need to be developed. This evaluation is cur-
rently a challenge since there are around nearly 3 million
applications in Google Play Store [9], making it difficult to
evaluate all of them. A proposed solution should be appli-
cable to all published applications and also have an accept-
able evaluation and detection time. In 2017 Google tried to
accomplish a solution to this problem by developing a system

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119967

https://orcid.org/0000-0001-7107-8655
https://orcid.org/0000-0003-0718-8774

C. Cilleruelo et al.: Malware Detection Inside App Stores

called Google Play Protect [10]. Google Play Protect is a
security measure that has managed to block, just in 2017,
approximately 10 million harmful app installations [11].
However several studies [12], and the current situation of
Android malware inside the Google Play Store [8], [13], has
proved this technology inefficient. The incapacity or disre-
gard from Google has been evidenced due to the number of
malware campaigns in Google Play Store [14], [15]. And it
is necessary to take into account that Android allows sev-
eral alternative markets where there are even more malware
applications [16]. Better detection rates are needed to fight
malware inside application markets.

Furthermore, we should not forget the emergence of the
Internet of Things (IoT) ecosystem and the use of Android as
its operating system in these environments [17], [18]. These
ecosystem also needs novel methods of malware detection
[19], [20]. Those Android IoT devices can also incorporate
the usage of applicationmarkets, for this a solution that grants
better control over application markets will benefit, not only
smartphones but also the full Android ecosystem.

Within this context, it is important to research and apply
new methods of PHAs detection. Moreover, these new detec-
tion methods need to be applicable in the real world and
take into account applications particularities. For example,
there are devices, like Samsung, with a proprietary soft-
ware development kit(SDK) that can use specific permissions
like, samsung.accessory.permission.ACCESSORY_FRAME
WORK. These permissions can only be found in certain
devices and have been normalized or removed to guarantee
a multi-platform market solution. It is not real to create novel
detection methods that do not take into account these pecu-
liarities or are based on unique features like C&C domains or
IP addresses.

In this paper, we present a novel method of detection based
on lifespan measurements that can be used for detecting
malware in application markets. This is a lightweight method
that makes it possible to easily scanmillions of applications in
a feasible time. For example, newer applications submissions
can be processed through this detection method, without sig-
nificantly affecting the publication process. We developed an
automatic solution based on static analysis techniques but tak-
ing into account the previous mentioned particularities of the
Android application ecosystem. The features used by this sys-
tem have been carefully normalized and can be present in any
Android application. These features are divided into groups
like Permissions, Hardware, or Google Play Store categories.
This approach also generates a lightweight design, that con-
tributes to its easier implementation. Only 601 application
features are used in the training and evaluation methods.
But the main difference with other detection methods is the
PHAs dataset composition and its use in the creation of this
detection system.

A dataset of 91,203 applications, published inside the
Google Play Store has been utilized for this research. To split
the applications into legitimate or PHAs a new classifica-
tion criterion has been applied. Instead of just using know

antivirus engines to classify the samples, the lifespan of
mobile applications inside the Google Play Store has also
been used as a selection criterion.

In summary, a list of contributions of this paper are the
following:

• Unique dataset. We systematically created and labelled
a dataset based on applications lifespan inside the
Google Play Store. This dataset is publicly accessi-
ble in GitLab, https://gitlab.com/ciberseg-uah/public/
pha-android-dataset

• New method of detection of PHAs. Using the previously
mentioned dataset, we created a new method of PHAs
detection. This method is based on machine learning
techniques and involves this lifespan measure as a selec-
tion criteria.

• Antivirus Engines Bias Avoidance. The use of our clas-
sified dataset avoids the bias produced by antivirus
engines. We are not replicating the behaviour of an
antivirus engine, but creating a new detection method.

• Explainable Results. The proposed method has been
tested and trained using different machine learning mod-
els and techniques. These techniques are explained and
analyzed in this research paper. All machine leanings
algorithms in this research allow obtaining explainable
results.

• Lightweight training and Feature Selection. In order to
create a heterogeneous solution for the Android ecosys-
tem, we reduce and normalized the application features
to common ones. The system only uses 601 features
for the training and evaluation of applications instead
of thousands of features. Also, being a static analysis
detection method, the model presents a Mean time to
detect (MTTD) smaller than one second per application.

All these contributions follow practical use. This system,
created using machine learning techniques, could be used for
the early detection of malicious campaigns inside application
markets. And for early detection of PHA before its publi-
cation inside the market. Multiple PHAs could be detected
during the submission and validation process made by appli-
cation markets.

II. BACKGROUND AND RELATED WORK
Day to day, malware evolves to pretend it is a legitimate
program, increasing the complexity of the detection process.
Furthermore, malware detection leads to another problem.
There are cases where there is not a clear line to distinguish
malware. Different antivirus engines have different criteria
when classifying samples [21] Hurier et al. clearly state this
lack of consensus in antivirus engines [22]. Antivirus used a
threshold in order to consider a malware sample. Hurier et al.
also stated that there is no public theory or golden rule behind
the selection of this threshold. Finally, their work concludes
by explaining the necessity of novel detection methods and
the use of aggregated antivirus decisions for avoiding bias.
Harmful applications may be detected by some antivirus
and in other cases being classified as benign or detected as

119968 VOLUME 9, 2021

C. Cilleruelo et al.: Malware Detection Inside App Stores

malware but classified in different categories of malware.
Each antivirus engine has different policies dealing with
PHAs, occasionally more relaxed or restrictive, on malware
analysis [23]. For example, some of them could have heavy
policies against adware, and others tolerate this type of PHAs.

Malware analysis may involve different methodologies and
techniques. Some of them base their classification on the
recognition of known patterns on the program code [24].
If a certain code has been previously detected on security
incidents, it will be remembered and detected by the antivirus
engines, regardless of the machine in which it is executed.
This analysis is usually done through static analysis, an anal-
ysis performed without actually executing programs.

Another technique used in malware analysis is dynamic
analysis. When classifying newmalware samples which have
never been detected before, remembering patterns on the code
does not improve the identification [24]. It is necessary to exe-
cute an analysis of the applicationwhile it is being executed to
verify that its functionalities are the ones expected. Dynamic
analysis has been used in malware detection [25], [26] and
has been proven effective thanks to the information provided,
which describes a program and its behaviour.

The classification of samples is a problem that requires
the recognition of patterns on a data set. Static and dynamic
malware analysis can provide a lot of features and patterns
of PHAs. Due to its ability to recognize patterns, Machine
Learning is a good technology for the implementation of
novel detection methods. It offers several algorithms capable
of find patterns and classify data based on certain features.
Even so, it is needed to supervise the training by specifying
the class to which samples belong.

The use ofMachine Learning, for classifying mobile appli-
cations, has been involved in a multitude of studies [27], [28]
[29]. Some researchers had used Support Vector Machines
(i.e. SVM) [30]. Others have used algorithms like Random
Forest Classifier (i.e. RFC) and Linear Regression [31] to
classify applications.

There have been several studies applying machine learn-
ing to detect PHAs [30], [32] [33]. One of the most rele-
vant studies is Drebin [30]. Drebin achieves a detection rate
of 94% using 545,000 different features. But from our point
of view, several features should not be considered (e.g., Net-
work addresses, application-defined permissions, activities’
names). Malware is easily mutable and training a machine
learning model with unique characteristics will not improve
the detection rate. It is necessary to generate a dataset with
common characteristics that all the PHAs could have.

Another research related to Android malware classifica-
tion that uses a more generic approach selecting features
of a dataset [34] is APK Auditor. APK Auditor [34] uses
Android permissions, common features between applications
to create a permission-based model obtaining a detection rate
of 88%. Even though the accuracy of APK Auditor is lesser
than Drebin, APK Auditor is a better approach to malware
detection. In a real-world environment, the accuracy of APK
Auditor will be better than Drebin due to the evaluation of

common features between samples. On the other hand, other
recent studies have also proved the effectiveness of machine
learning in dealing with Android IoT malware. [35], [36]

III. METHODOLOGY
A. AVOIDING ANTIVIRUS DETECTION BIAS
First of all, we created a novel dataset using Tacyt.1 Tacyt is a
cyber-intelligence tool developed by ElevenPaths, a cyberse-
curity company subsidiary of Telefónica Digital España, S.L.
This tool performs a crawling of different mobile application
markets, including the Google Play Store. This process down-
loads and then performs a static analysis of millions of mobile
applications. Using this tool wewere able to access a database
of 273,662 applications, published inside the Google Play
Store between 22th of January 2010, and 11th of July 2018.
Those applications allowed us to create a labeled dataset
of 91,203 applications. Tacyt provides information about
each application, like the Android Package (APK) files and
dates associated with the Google Play Store publication or its
publishing category. This allows its subsequent analysis, even
after the application has been deleted from the market.

There are several public PHAs datasets [37], [38] already
accessible but to present an innovative way of detection
we did not use any of them. Those datasets use antivirus
engines as a classification method. Also none of the recently
published datasets involve application store lifespan mea-
surements to their building. AndroCT [39] and TraceDroid
[40] present static and dynamic analysis data but do not
give any metric related to lifespan. Moreover, recent works
combined static and dynamic analysis, like Cai et al. [41],
Cai and Ryder [42] which studied application structure
and behaviours and then create an application classifica-
tion approach base on that information. Cai et al. [43] also
studied the evolution of benign and malign applications in
the Android ecosystem to understand its behaviours. But
again the previously mentioned approaches did not specif-
ically study applications published in application markets
and did not involve lifespan measurements. It is necessary
to understand that the novelty of this work is not based on
the application of static analysis, a technique widely tested
and studied in numerous research papers [30], [44] [45].The
novelty of the proposed machine learning model is based on
its new method of dataset creation. First of all, the dataset
creation takes into account the antivirus bias problem and
involve a new selection method based on lifespan measures.
As this method is specifically designed to be used in appli-
cation stores, lifespan measures are taking based on the lifes-
pan of applications inside those stores. Additionally to these
unique characteristics, this method can be combined with
previous methods, due to its different creation and behaviour.
This novel method can be combined with previous ones as
an ensemble learning method, improving previous detection
rates.

1https://www.elevenpaths.com/es/tecnologia/tacyt/index.html

VOLUME 9, 2021 119969

C. Cilleruelo et al.: Malware Detection Inside App Stores

FIGURE 1. Method used in order to select applications for the dataset.

In our use case, since we are using supervised learning
algorithms, we also need to define which applications can
be considered PHAs and which ones are not. As previously
mentioned, distinguish between PHAs and legitimate appli-
cations is a problem. In multiple cases, there is not a clear
line that differentiates between benign and malicious apps.
This also happens using antivirus decision engines, several
antivirus engines can provide different results analyzing the
same application. Moreover, if we classify our samples based
on antivirus decision engines we will be only replicating their
judgment and not creating a new one.

The proposed approach is based on considering as PHAs
android applications that have been banned from the Google
Play Store market. Those applications could be considered
harmful to the user, so they should be detected by themachine
learning model. At the moment of writing this article, Google
does not publicly share any information of banned appli-
cations from the Google Play Store. The strategy followed
by this research uses Tacyt to access the publishing and
removal dates of each application, inside Google Play. Each
application that Google removes in less than a month is
considered PHAs.

This new approach allows us to create a new way of detec-
tion that avoids imitating the criteria and bias of antivirus
engines and creates a unique machine learning model able
to identify PHAs inside application markets. This machine
learning model is able to detect applications whose character-
istics are similar to PHAs that have been previously removed
and present a lifespan of less than a month inside the Google
Play Store Market.

On the other hand, the samples of non-malicious appli-
cations need to be filtered before their inclusion on the
dataset. The reason for this is due to the fact that a large
number of malware applications are not removed from the
Google Play Store. This make necessary to verify that the
samples collected are benign. All possible non-malicious

applications have been verified through VirusTotal [46]. This
service allows scanning each sample by 67 different antivirus
engines, ensuring that all applications are harmless. Only
applications with 0 detection rate and a period of life greater
than six months have been included as non-malicious appli-
cations. The rest of the possible non-malicious applications
were not included inside our dataset. Even though some of
them present a low detection rate in VirusTotal we preferred
to avoid those cases. The usage of VirusTotal service can
seem counterproductive because we are involving antivirus
detection bias in our dataset creation process. But like other
security solutions, this new detection method need to main-
tain a False Negative (FN) ratio to the minimum. The usage
of VirusTotal is only used to successfully guaranteed a clean
dataset of legitimate applications. VirusTotal allow us the
possibility of removing PHAs from the dataset, malicious
applications with more than six months of life inside the
Google Play Store. We look up to obtain a significant sample
of legitimate applications and their lifespan, and if we only
base on the number of downloads we could end tainting
that sample. Several malicious campaigns have been known
for being able to accomplish millions of downloads inside
official markets during extended periods of time [47], [48].
We would have preferred not to depend on existing antivirus
solutions in any part of the process. But this was the only
option that allows us to obtain a legitimate dataset of appli-
cations published in the application markets. The usage of
Tacyt guaranteed that these applications were published in
the application market and the number of downloads but not
its legitimacy. This classification process, previous to the
training, is shown in Figure 1. In total, the dataset contains
91,203 applications, divided as shown in Table 1.

B. DATASET COVERAGE
Tacyt allows to query a database with more than sevenmillion
applications published inside the Google Play Store, and it

119970 VOLUME 9, 2021

C. Cilleruelo et al.: Malware Detection Inside App Stores

TABLE 1. Classification of application samples.

also offers valuable metadata like the number of downloads
of each application, publisher or market category amongst
others. Based on that information a dataset has been created.
The distribution based on downloads of Tacyt database can
be found in Table 2. A distribution based on the number of
downloads of each application ensures the representativity
and coverage of the dataset. As mentioned before, our dataset
is composed of [91,203] applications, a distribution based
on the number of downloads of our dataset that is presented
in Table 3.

If we compare Table 2 and Table 3 several differences can
be appreciated. There is a larger number of applications in
our dataset within the range of 201, 1000 downloads and
less number of apps within the range of 10001, 100000 and
100001, 500000. To not unbalance the dataset we maintained
a similar number of malicious and benign applications in our
dataset. Due to our criteria for selecting malicious applica-
tions, an application with a lifespan less than a month inside
the Google Play Store, it is not possible to find a lot of results
with more than 10001 downloads. Because of this reason,
we increased the range 201, 1000 to have more malicious
applications.

TABLE 2. Distribution inside Tacyt database based on the number of
downloads.

TABLE 3. Distribution inside our dataset based on the number of
downloads.

Altogether, 601 features have been extracted from each
application. These include the permissions requested by the
application, the hardware resources that the application it is
trying to access, and the information published on the Google
Play Store. The entire dataset, that is composed of these fea-
tures, is used to train and test the effectiveness of the learning
model. Moreover, authors also considered Android run time
permissions too. Starting with Android 6.0, Marshmallow,

developers can ask for permissions on runtime. But those
permissions need to be specified in the app’s manifest file,
like any other permission [49]. Tacyt extracts permissions
using different techniques. One of them is the analysis of
the app’s manifest files, which guarantee the extraction of
runtime and non-runtime permissions. This dataset is the one
that allows us to create a new method for PHA detection
that avoids the replication of existing antivirus engines and
uses the lifespan as a feature. This novel method can detect
with a 90% accuracy when an application is going to be
removed, in a period less than a month, from the Google Play
Store. Other research methods have presented better accuracy
measurements but it is necessary to bring out again the differ-
ential characteristics of this novel method of detection. To the
best of our knowledge, this is the first malware detection
method that uses the lifespan of applications inside a market
as selection and detection criteria.

To assure a representative and coverage of our dataset,
the number of downloads is not the only metric that we
checked. On one hand, we added and reviewed the number
of android permissions used in our dataset. There are 455
permissions, which identify the data and system features that
the applications may access.

Most declared permissions, by the applications stored in
the dataset, are shown in Table 4.

TABLE 4. Most popular permissions in Android applications.

On the other hand, hardware access permissions were
included and then tested as representative attributes of the
sample. These android permissions refer to the use of some
hardware components, like the camera. All those hardware
components of the Android operating system have been
included in the dataset as characteristics of each application.

In total, 105 hardware declarations have been included
in the dataset. Those declarations are distributed, as shown
in Table 5, across the dataset.

Finally, data application size, price, minimum Android
SDK version, and developer have been included as features.

TABLE 5. Most popular hardware components in Google Play Store
applications.

VOLUME 9, 2021 119971

C. Cilleruelo et al.: Malware Detection Inside App Stores

We considered this information useful in the detection of
PHAs and also allowed us to get some insights about pop-
ular categories, like games or education applications. As an
example of this, malware designed to act like small-sized
video games may have different permissions and features
than malware designed to act like medium-sized social appli-
cations. The category and type of each application, which
determine how it is classified in the Google Play Store,
is presented in Table 6.

TABLE 6. Most common categories on the Google Play Store.

C. FEATURES SETS AND NORMALIZATION
This research has always taken into account the current sit-
uation and techniques of PHA development and distribution.
This knowledge has been applied in the creation of the dataset
and the following feature selection. The proposed solution
is intended to be a real solution that can be applied to all
possible Android applications, independently of the device
manufacturer. As previously mentioned, the features selected
for this training have been specifically studied and every fea-
ture that did not represent a common characteristic between
applications has been removed. The solution proposed in
this paper does not use network addresses, activity names
or specific permissions associated with a manufacturer. Dif-
ferent PHAs will only share those features in the case that
they are from the same family or developer. For example,
in the case of botnets different PHAs will not share the
same network addresses because they will have different
command-and-control (C&C) servers. Involving these fea-
tures will grant further detection rates in our test dataset but
will not be representative of a real case scenario.

Moreover, multiple permissions may be the same but
present differences based on the application package. Table 7
presents some Android permissions used in Drebin [37] and
then normalized in our experiments. This process is the one
that allows us to only use 601 features instead of thousands.
It is necessary tomake clear that this processwas not designed
to create a lightweight system but to create a generic solution
that can behavewell in real environments. The lightweights of
the system is a consequence of this feature selection process.
Regarding this topic, recent works have also tried to find the
best features for machine learning training. Surendran et al.,
used a system call sequence generated by malware appli-
cations to identify common patterns and create detection
features [50]. The mentioned solution is a dynamic analysis
solution, but any real applicable solution needs to involve a
feature selection process and involve common features across
multiple applications.

D. MACHINE LEARNING CLASSIFIERS
PHA automatic detection, like any other malware detection,
is a binary classification problem. And supervised machine
learning algorithms have proven to be successful detecting
PHAs in numerous studies [27], [29], [32]. The use of math-
ematical algorithms oriented to classification problems allow
the creation of trained models that sort out different appli-
cations based on their features. But it is necessary to take
into account that the accuracy of these algorithms are heavily
related to the training dataset. Using supervised training, all
the data must be chosen carefully to obtain good perfor-
mances. Our approach follows these ideas but with substantial
changes like the selection and normalization of features and
the dataset creation process.

Machine Learning algorithms search for a mathematical
function that is able to distinguish effectively between dif-
ferent types of samples. Since this is a binary classifica-
tion problem, and taking into account the current state of
the art, the following algorithms have been chosen: Support
Vector Machines(SVM), Stochastic gradient descent(SGD),
Random Forest Classification(RFC) y eXtreme Gradient
Boosting(XGB). Most research work uses SVM [30] or
One-Class SVM algorithms [27] but we extended the test
set involving RFC and a modern classifying algorithm like
XGB. Those algorithms are the ones that have been used to
train a model using our custom dataset. And later on, their
effectiveness and accuracy in classifying PHAs have been
exhaustively evaluated.

The training has been done gathering 70% of the samples
randomly, 63,842 of 91,203. The remaining 30% is used as
the test dataset, 27,361 of 91,203. Thus, the test dataset allows
establishing the effectiveness of the generated model through
the use of the metrics precision, recall, and f1-score.

The algorithms used are implemented on the Scikit-learn2

and DMLC-XGBoost3 libraries, both written in Python.
Scikit-learn allows using a training method known as grid
search. It searches for the most optimum parameters, of each
Machine Learning algorithm, during the model training. The
grid search looks for the parameters that achieve a better
f1-score. We used f1-score as a measure of a test’s accuracy
because considers both the precision and the recall of the test
to compute the score.

A more detailed and formal description of the machine
learning process used during the training of the model are the
following:

• Stochastic gradient descent (SGD) [51] algorithm used
tries to minimize the value returned by the softmax
function. It searches for a hyperplane that divides the
dataset into two classes. The effectiveness of this model
depends on whether the classes of the problem are lin-
early separable.

• Support vector machine (SVM) [52] algorithm
has been widely used in classification problems.

2https://scikit-learn.org/stable/
3https://github.com/dmlc/xgboost

119972 VOLUME 9, 2021

C. Cilleruelo et al.: Malware Detection Inside App Stores

TABLE 7. Example of specific application permissions.

The implementation used in this research base its clas-
sification function on a Gaussian kernel. Thus, it is able
to effectively distinguish radially separable problems.

• Random Forest Classification (RFC) [53] algorithm cre-
ates different sets of random decision trees. Through the
training, it chooses the set whose decision trees make
better decisions on average.

• eXtreme Gradient Boosting [54], [55] algorithms are
used in classification [56] to create prediction models
based on an ensemble of weak prediction models. Those
weakmodels are decision trees that, through the training,
discard the less valuable features of a certain data class.
The most valuable features create decision trees with an
associated weight. The total sum of these weights is the
output value that identifies each class. This behaviour
allows an application, depending onwhether its category
is Tools or Education, to be classified in a different way
even when their features are similar.

IV. RESULTS
A. MACHINE LEARNING MODELS TRAINING
AND COMPARISON
Due to the balanced dataset, distribution and the normalized
features, we expected that novel optimized gradient boosting
classifiers like XGBoost outperform other traditional classi-
fiers like SVM. Results for the SGD are presented on Table 8.
SGD returned 13,809 as true negatives samples, 8,929 as true
positive, 2,183 as false negatives and 2,440 false positive
samples, resulting in an overall f1-score score of 83%.

TABLE 8. SGD Classification Report.

Results for the SVM are presented on Table 9. SVM
returned 13,748 as true negatives samples, 8,816 as true posi-
tive, 2,101 as false negative and 2,696 false positive samples,
resulting in an overall f1-score score of 83%.

Results for the RFC are presented on Table 10. RFC
returned 15,311 as true negatives samples, 9,222 as true posi-
tive, 1,487 as false negative and 1,341 false positive samples,
resulting in an overall f1-score score of 90%.

Results for the XGB are presented on Table 11. XGB
returned 15,150 as true negatives samples, 9,316 as true

TABLE 9. SVM Classification Report.

TABLE 10. RFC Classification Report.

TABLE 11. XGB Classification Report.

positive, 1,648 as false negative and 1,247 false positive
samples, resulting in an overall f1-score score of 89%.

Table 12 presents the results of different machine learning
algorithms applied to our dataset. Even though the model
trained with the XGB algorithm reaches 89% accuracy,
the RFC model achieves 90% accuracy with a false positive
rate of 5.43%. It is a small difference, but it made RFC the
suited algorithm for this problem. A greater difference was
found in the models trained with SVM and SGD, achieving
an 82% and an 83% of f1-score respectively. This denotes the
fact that algorithms based on ensemble learning are the best
ones facing this type of problems.

TABLE 12. Comparison of different classification algorithms.

V. DISCUSSION
After the training, the results obtained seem to be promising.
On one hand, we have XGB with an accuracy of 89% and on
the other hand, we have RFC with a 90% accuracy.

SVM and SGD did not behave that well with our dataset in
comparison with RFC. This has some explanation, since the
classification of malware and PHAs are not always a simple
task. It is difficult to draw a line between the different sets
of applications. Like we mentioned before in this paper this

VOLUME 9, 2021 119973

C. Cilleruelo et al.: Malware Detection Inside App Stores

is also shown in the antivirus market [21]. Some applications
could be PHAs to some antivirus engines and others could
be considered non-malicious applications by other antivirus
engines. In a malware classification problem, we will always
encounter a lot of grey areas.

Because of that difficult classification, a random forest
approach behaves better selecting malware and PHAs appli-
cations. Also, the RFC algorithm allows us to identify which
features are more important when classifying samples. Using
the 601 features, which constitute the dataset, thosewithmore
weight are shown in Table 13.

TABLE 13. Most important features.

Previous research like Drebin had achieved an accuracy
of 93.90% [30], but they do not present other values like
recall, precision, or f1-score. Furthermore from our point of
view, Drebin did not apply a generic approach to features
selection. They present a solution with 545,000 different fea-
tures. Like mentioned before Drebin uses network addresses,
activities’ names, and other unique features. Because of the
large quantity and type of features selected it will not behave
well in a real world environment. These unique features has
been taken into account, features that will only exist in an
application of a group of applications developed by the same
developer or group of developers.

If you use network addresses as a feature you will detect
some PHAs but you will discard others inside the model
because that feature will not be present in all cases. To detect
the error inserted by these features, it will be necessary to
evaluate the weight of each feature inside the model.

The proposed model uses 601 features. This is a great
difference and it generates a lightweight machine learning
system, in comparison with other works like Drebin that
instead has used 545,000 [37] features. Sometimes the reduc-
tion of features could have an impact on the accuracy. But
research works like Cai et al. has shown that a specific set of
selected features, in their work they only used 70 features, can
obtain promising results in PHAs detection [41]. Moreover,
it is necessary to take into account that all of the 601 features
selected could exist in any Android application. Because of
this selection of features, we consider that our approach will
present better results in a real world environment. Addition-
ally the lightweight of the system directly affect theMTTD of
the system. A PHA can be identified in less than a second by
the system. Like any other machine learning system, the sys-
tem will need to periodically be retrained but this factor also

affects this timing. The lightweight of the system reduces the
amount of time and hardware needed to train this solution.

All these results can be summarized in two main contri-
butions. First, that it is possible to use methods based on
the lifespan of applications inside Google Play Store, for
creating PHAs datasets. And second, the number of features
required for training these machine leanings models have
been drastically reduced, 601 versus other machine learning
systems that used thousands of features [37], [44].

Moreover, it could be interesting to compare these results
with other industries and research solutions, not only previ-
ous research papers. The industry average is around 98%,
according to the studies of AV-TEST - The Independent
IT-Security Institute [57]. But it is necessary to take into
account that these solutions also perform dynamic analysis of
the applications, the presented solution is only based on static
analysis features. Another comparison can be made against
Google Play Protect, the mobile malware detection solution
offered by Google. This solution has an accuracy of around
70% [10] analyzing applications published in theGoogle Play
Store.

A. REAL-TIME USE CASE SCENARIO
Through the different sections of this paper, we have men-
tioned how this system has been designed to be applied in
a real use case scenario. The design and test have always
taken this into account. The proposed way to use this machine
learning detection system in the real world could be to use it
as an application validation process.

Before the publishing of an Android application into any
store, this application can be scanned by the machine learning
system presented in this paper. Being an automatic process it
will not severely impact the application validation process.
Thus, this validation can be used as an indicator of PHA.
The current machine learning model present a MTTD (Mean
Time To Detect) smaller than one second per application.
Being a static analysis method, it does not need to study
the application behaviour for a specified amount of time
inside a sandbox. This MTTD could be increased if the
feature extraction time is taken into account. In order to
evaluate the application through this system, the application’s
permissions, accessed hardware components and categories
to publish need to be known. Most of this information is
available in the Android application manifest, so collection
time must be considered. And even though that the process of
obtaining and parse an Android application manifest can be
done in a matter of seconds, any official application store can
ask for this information. During the upload and submission
process of an application, the application market can ask for a
separate manifest file, corresponding to the application, in the
submission form. In conclusion, the small MTTD would not
affect the submission performance of applications and will
end blocking several PHA along the process.

On the other hand, one of the problems of this system will
be with the False Negative rate, 5,43%, but further work and
data could improve this detection rate.

119974 VOLUME 9, 2021

C. Cilleruelo et al.: Malware Detection Inside App Stores

VI. CONCLUSION AND FUTURE WORK
This paper presents a new way for training and detecting
PHAs inside the Android ecosystem. The objective is to
detect mobile applications that will be removed by Google in
a period shorter than one month, where applications removed
by Google in short periods from the store are, in most
cases, PHAs or malware. To achieve this goal, a new dataset
has been created and several classification algorithms have
been used, SGD, SVM, RFC, and XGB. The dataset cre-
ation uses as criteria the lifespan of an application inside
Google Play instead of antivirus decision engines, for iden-
tifying PHAs. Training with this dataset a Random Forest
Classifier machine learning, a 90% of effectiveness can be
reached.

One of the main limitations of this approach is its accu-
racy. Future work can be done in this aspect and for exam-
ple, the combination of several algorithms through ensemble
learning techniques could obtain better results. Also, like any
other machine learning model, it is necessary to periodically
retrain this detection model with new data to detect new
threats.

Another possible limitation is the way that PHAs are
selected in our dataset. The proposed approach considered
PHAs based on the lifespan of applications inside the Google
Play Store. Our selected PHAs are applications that Google
banned or removed from the Google Play Store. But it is
not possible to know how many of them were PHAs or
applications infringing Google Play Store policies. Applica-
tions could not be a PHA but Google could consider that it
is infringing publishing policies. Moreover, a lot of PHAs
are not banned or retired by Google in a short period. Our
machine learning model is detecting the most common and
aggressive campaigns but most elaborated ones could evade
our system.

Finally, this approach has proved that is possible to create
an automated analysis solution for detecting PHAs based on
the lifespan of the application inside markets. On one hand,
Google could use this system to detect if a new application
is going to be removed from the Google Play Store and use
it as a filter for newly published applications. On the other
hand, any security research could use this model for detect-
ing aggressive mobile malware campaigns. Finally, we also
prove that a limited set of generic features can be used for
detecting PHAs.

These results also evidence the necessity of identifying and
conceiving new detection methods that avoid the usage of
antivirus commercial models. To increase detection rates new
methods that do not try to emulate actual commercial tools
need to be developed.

REFERENCES
[1] Mobile Operating System Market Share Worldwide. Accessed:

Jun. 11, 2021. [Online]. Available: https://gs.statcounter.com/os-market-
share/mobile/worldwide

[2] G. Kelly. (2014). Report: 97% of Mobile Malware is on Android. This
is the Easy Way You Stay Safe. [Online]. Available: https://www.forbes.
com/sites/gordonkelly/2014/03/24/report-97-of-mobile%-malware-is-on-
android-this-is-the-easy-way-you-stay-safe

[3] C. Lueg. (Jun. 2017). 8, 400 New Android Malware Samples Every Day.
[Online]. Available: https://www.gdatasoftware.com/blog/2017/04/29712-
8-400-new-android-malw%are-samples-every-day

[4] (2020). Smartphone Users. [Online]. Available: https://www.statista.
com/statistics/330695/number-of-smartphone-users-w%orldwide/

[5] J. H. Says. (Jan. 2020). SMiShing: About the FedEx SMS Phishing
Scam | McAfee. [Online]. Available: /blogs/consumer/consumer-threat-
notices/fedex-sms-phishing-scam/

[6] J. H. Says. (Jan. 2020). SMiShing: About the FedEx SMS Phishing
Scam | McAfee. [Online]. Available: /blogs/consumer/consumer-threat-
notices/fedex-sms-phishing-scam/

[7] FakeSpy Android Malware Spread Via Postal-Service Apps. Accessed:
Jun. 11, 2021. [Online]. Available: https://threatpost.com/fakespy-android-
malware-spread-via-postal-servic%e-apps/157102/

[8] P. Kotzias, J. Caballero, and L. Bilge, ‘‘How did that get in my phone?
Unwanted app distribution on Android devices,’’ 2020, arXiv:2010.10088.
[Online]. Available: http://arxiv.org/abs/2010.10088

[9] Statista. (2017). Number of Available Applications in the Google Play
Store From December 2009 to December 2020. [Online]. Available:
https://www.statista.com/statistics/266210/number-of-available-
applicat%ions-in-the-google-play-store/

[10] Test Google Play Protect 24.3 for Android (213208). Accessed:
Jun. 11, 2021. [Online]. Available: /en/antivirus/mobile-
devices/android/march-2021/google-play-protect-24.%3-213208/

[11] MalwareBytes. (Mar. 2018). Android Security 2017 Year in Review.
[Online]. Available: https://source.android.com/security/reports/Google_
Android_Security_2017_Report_Final.pdf

[12] S. Hutchinson, B. Zhou, and U. Karabiyik, ‘‘Are we really protected? An
investigation into the play protect service,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2019, pp. 4997–5004.

[13] D. Maier, T. Müller, and M. Protsenko, ‘‘Divide-and-conquer: Why
Android malware cannot be stopped,’’ in Proc. 9th Int. Conf. Availability,
Rel. Secur., Sep. 2014, pp. 30–39.

[14] BleepingComputer. (Nov. 2017). Google Play Store Sees Sudden Surge of
Malicious Apps. [Online]. Available: https://www.bleepingcomputer.com/
news/security/google-play-store-sees-s%udden-surge-of-malicious-apps/

[15] MalwareBytes. (Nov. 2017). New Android Trojan Malware Discov-
ered in Google Play. [Online]. Available: https://blog.malwarebytes.
com/cybercrime/2017/11/new-trojan-malware-dis%covered-google-play/

[16] Y. Zhou, Z.Wang,W. Zhou, and X. Jiang, ‘‘Hey, you, get off of mymarket:
Detecting malicious apps in official and alternative Android markets,’’ in
Proc. NDSS, vol. 25, no. 4, Feb. 2012, pp. 50–52.

[17] Techcrunch. (May 2018). Google’s Android Things IoT Platform
Comes Out of Beta. [Online]. Available: https://techcrunch.com/2018/
05/07/googles-android-things-iot-platform-c%omes-out-of-beta/

[18] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, ‘‘IoT security: Ongoing challenges and research opportunities,’’
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl., Nov. 2014,
pp. 230–234.

[19] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif,
‘‘Amultimodal malware detection technique for Android IoT devices using
various features,’’ IEEE Access, vol. 7, pp. 64411–64430, 2019.

[20] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, ‘‘End-to-end
malware detection for Android IoT devices using deep learning,’’ Ad
Hoc Netw., vol. 101, Apr. 2020, Art. no. 102098. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870519310984

[21] I. Gashi, V. Stankovic, C. Leita, and O. Thonnard, ‘‘An experimental study
of diversity with off-the-shelf AntiVirus engines,’’ in Proc. 8th IEEE Int.
Symp. Netw. Comput. Appl., Jul. 2009, pp. 4–11.

[22] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘‘On the
lack of consensus in anti-virus decisions: Metrics and insights on building
ground truths of Android malware,’’ in Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (Lecture Notes in Computer Science),
J. Caballero, U. Zurutuza, and R. J. Rodríguez, Eds. Cham, Switzerland:
Springer, 2016, pp. 142–162.

[23] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson, ‘‘Towards a
methodical evaluation of antivirus scans and labels,’’ in Proc. Int. Work-
shop Inf. Secur. Appl., USA. Cham, Switzerland: Springer, Aug. 2013,
pp. 231–241.

[24] D. J. Sanok, Jr., ‘‘An analysis of how antivirusmethodologies are utilized in
protecting computers from malicious code,’’ in Proc. 2nd Annu. Conf. Inf.
Secur. Curriculum Develop. Kennesaw, GA, USA: Kennesaw State Univ.,
Sep. 2005, pp. 142–144.

VOLUME 9, 2021 119975

C. Cilleruelo et al.: Malware Detection Inside App Stores

[25] C.Willems, T. Holz, and F. Freiling, ‘‘Toward automated dynamicmalware
analysis using CWSandbox,’’ IEEE Secur. Privacy, vol. 5, no. 2, pp. 32–39,
Mar./Apr. 2007.

[26] L. K. Yan and H. Yin, ‘‘Droidscope: Seamlessly reconstructing the
OS and Dalvik semantic views for dynamic Android malware anal-
ysis,’’ in Proc. 21st USENIX Secur. Symp. (USENIX Secur.), 2012,
pp. 569–584.

[27] J. Sahs and L. Khan, ‘‘A machine learning approach to Android mal-
ware detection,’’ in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,
pp. 141–147.

[28] Z. Yuan, Y. Lu, Z.Wang, andY.Xue, ‘‘Droid-sec: Deep learning inAndroid
malware detection,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 371–372, 2014.

[29] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[30] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[31] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán, ‘‘Android malware
characterization using metadata and machine learning techniques,’’ Secur.
Commun. Netw., vol. 2018, pp. 1–11, Jul. 2018.

[32] N. Peiravian and X. Zhu, ‘‘Machine learning for Android malware detec-
tion using permission and API calls,’’ in Proc. IEEE 25th Int. Conf. Tools
With Artif. Intell., Nov. 2013, pp. 300–305.

[33] B. Baskaran and A. Ralescu, ‘‘A study of Android malware detection tech-
niques and machine learning,’’ presented at the Mod. Artif. Intell. Cogn.
Sci. Conf. Dayton, OH, USA: Univ. Dayton, Apr. 2016, p. 9. [Online].
Available: https://ecommons.udayton.edu/maics/2016/Saturday/3/

[34] K. A. Talha, D. I. Alper, and C. Aydin, ‘‘APK Auditor: Permission-based
Android malware detection system,’’ Digit. Invest., vol. 13, pp. 1–14,
Jun. 2015.

[35] R. Kumar, X. Zhang, R. U. Khan, and A. Sharif, ‘‘Research on data mining
of permission-induced risk for Android IoT devices,’’ Appl. Sci., vol. 9,
no. 2, p. 277, Jan. 2019. [Online]. Available:https://www.mdpi.com/2076-
3417/9/2/277

[36] R. Kumar, W. Wang, J. Kumar, T. Yang, and W. Ali, ‘‘Collective
intelligence: Decentralized learning for Android malware detection in
IoT with blockchain,’’ 2021, arXiv:2102.13376. [Online]. Available:
http://arxiv.org/abs/2102.13376

[37] Drebin. Drebin Dataset. Accessed: Nov. 9, 2017. [Online]. Available:
https://www.sec.cs.tu-bs.de/~danarp/drebin/

[38] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis
of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment (DIMVA). Bonn, Germany: Springer,
2017, pp. 252–276.

[39] W. Li, X. Fu, and H. Cai. (Jan. 2021). AndroCT: Ten Years of
App Call Traces in Android. Type: Dataset. [Online]. Available:
https://zenodo.org/record/5010831

[40] H. Cai. (Jan. 2020). TraceDroid: Eight-Year Behavioral Profiles of
Android Apps. Type: Dataset. [Online]. Available: https://zenodo.
org/record/3665877

[41] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019

[42] H. Cai and B. G. Ryder, ‘‘A longitudinal study of application struc-
ture and behaviors in Android,’’ IEEE Trans. Softw. Eng., early access,
Feb. 19, 2020, doi: 10.1109/TSE.2020.2975176.

[43] H. Cai, X. Fu, and A. Hamou-Lhadj, ‘‘A study of run-time behav-
ioral evolution of benign versus malicious apps in Android,’’ Inf. Softw.
Technol., vol. 122, Jun. 2020, Art. no. 106291. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920300410

[44] Q. Han, V. S. Subrahmanian, and Y. Xiong, ‘‘Android malware detection
via (somewhat) robust irreversible feature transformations,’’ IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 3511–3525, 2020.

[45] Q. Wu, M. Li, X. Zhu, and B. Liu, ‘‘MVIIDroid: A multiple view informa-
tion integration approach for Android malware detection and family iden-
tification,’’ IEEE MultimediaMag., vol. 27, no. 4, pp. 48–57, Oct. 2020.

[46] VirusTotal. Virustotal. Free Online Virus, Malware and URL Scan-
ner. Accessed: Oct. 5, 2019. [Online]. Available: https://www.statista.
com/statistics/274774/forecast-of-mobile-phone-use%rs-worldwide/

[47] (Oct. 2019). Google Play Store Malware Hits 42 Apps With 8
Million Downloads. [Online]. Available: https://www.digitaltrends.
com/mobile/google-play-store-malware-hits-42-%apps-with-8-million-
downloads/

[48] D. Winder. New Android App Malware Infects 250 Million
Downloads–Here’s What You Need to Know. Section: Cybersecurity.
Accessed: Oct. 5, 2019. [Online]. Available: https://www.forbes.com/
sites/daveywinder/2019/03/13/new-android-app-mal%ware-infects-250-
million-downloads-heres-what-you-need-to-know/

[49] Request App Permissions. Accessed: Jul. 19, 2021. [Online]. Available:
https://developer.android.com/training/permissions/requesting

[50] R. Surendran, T. Thomas, and S. Emmanuel, ‘‘On existence of common
malicious system call codes in Android malware families,’’ IEEE Trans.
Rel., vol. 70, no. 1, pp. 248–260, Mar. 2021.

[51] H. Robbins and S. Monro, ‘‘A stochastic approximation
method,’’ in The Annals of Mathematical Statistics. USA, 1951,
pp. 400–407.

[52] T. Fletcher, ‘‘Support vector machines explained,’’ Tutorial Paper,
2009, pp. 1–19. [Online]. Available: https://d1wqtxts1xzle7.cloudfront.
net/43282568/SVM_Explained-with-cover-page-v2.pdf?Expires=162996
8616&Signature=LRvcm2bJ4ipySw∼14j4sls6wz-kCVwLIGAq2CiUMr
yiUE30Xe8waIIAckZHGVEXVUBPcSaSJO4eHyFwIxbbv2SzFNcqdYlq
tZLHHaaYhiQjlAJXQRc7MTRC8pmFibCBNvbNaGmnHsiOLn-m9QD
FXQya3SXufPq5CJ9kqE6eC5Jtu4gaTuqSfga1RgSgtgprkpRRd6V9eTLr
9kjlcQMzzN1Y2vvajIN5i6Fov-buE8CxRWIVt59e8c6zhIst wA1mXYJFi
UHHbR2vayaP2N4mu7KmvAt7xdugozURHtLlKq9zU3WxKL28lacQEV
VFWYr20w6MnqjgFmbNh-yspFDFcg__&Key-Pair-Id=APKAJLOHF5
GGSLRBV4ZA

[53] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001, doi: 10.1023/A:1010933404324.

[54] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[55] J. H. Friedman, ‘‘Stochastic gradient boosting,’’ Comput. Statist. Data
Anal., vol. 38, no. 4, pp. 367–378, 2002.

[56] I. B. Mustapha and F. Saeed, ‘‘Bioactive molecule prediction using
extreme gradient boosting,’’ Molecules, vol. 21, no. 8, p. 983,
2016.

[57] (2021). Test Antivirus Software for Android. Accessed: Jul. 19, 2021.
[Online]. Available: https://www.av-test.org/en/antivirus/mobile-devices/

119976 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSE.2020.2975176
http://dx.doi.org/10.1023/A:1010933404324

