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ABSTRACT Many researchers are inspired by studying Speech Emotion Recognition (SER) because it is
considered as a key effort in Human-Computer Interaction (HCI). The main focus of this work is to design a
model for emotion recognition from speech, which has plenty of challenges within it. Due to the time series
and sparse nature of emotion in speech, we have adopted a multivariate time series feature representation of
the input data. The work has also adopted the Echo State Network (ESN) which includes reservoir computing
as a special case of the Recurrent Neural Network (RNN) to avoid model complexity because of its untrained
and sparse nature when mapping the features into a higher dimensional space. Additionally, we applied
dimensionality reduction since it offers significant computational advantages by using Sparse Random
Projection (SRP). Late fusion of bidirectionality input has been applied to capture additional information
independently of the input data. The experiments for speaker-independent and/or speaker-dependent were
performed on four common speech emotion datasets which are Emo-DB, SAVEE, RAVDESS, and FAU Aibo
Emotion Corpus. The results show that the designed model outperforms the state-of-the-art with a cheaper
computation cost.

INDEX TERMS Speech emotion recognition, reservoir computing, time series classification, random

projection, recurrent neural network.

I. INTRODUCTION

Emotion can play an important role in many parts of a
human’s life such as communicating, understanding, helping
each other, rational thinking, creativity and sometimes it has
a vital part in decision making. However, there has been
no general agreement on how to categorize, recognize and
analyze it because of the differences among cultures and indi-
viduals. Emotion can be detected from various channels such
as electroencephalography (EEG) signals, acoustic, visual,
text, and gestures. Detecting emotion is a challenging task
and it has become a hot field of research topics and covered
a wide research area due to the high demand for using it in
many practical applications such as healthcare, social robot,
and Human-Computer Interaction (HCI) [1], [2]. However,
emotions do not have a static categorization, and it is not
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easy to adapt, which is why some works are done by using
unsupervised models for unknown emotions and growing
models to deal with the adaptation [3].

Speech is an effective, quick, and important way for indi-
viduals to communicate with each other [4] and the speech
signal is considered as a fast and useful mechanism for
HCI. Emotions have always been a part of normal human
conversation which makes the speech more attractive and
more effective. Detecting emotions from speech signals is
an old yet big challenge in the field of artificial intelli-
gence [5] which makes many researchers inspired to work on
it.

For this reason, Speech Emotion Recognition (SER) is
playing a significant role in the HCI with great progress
in recent years. However, certain aspects of inner feelings
remain concealed and are not easily measurable from the
speech, particularly when humans want to suppress their
emotions. Thus, it cannot be expected for the computer-based
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system to do beyond what is perceived from the input of the
speech sample.

One of the challenges in SER is to determine the most
relevant acoustic emotion features which are extracted from
the raw speech signal. Researchers endeavor to find more
effective features for detecting emotion in speech [6]. Recent
studies have shown that emotional information in speech is
distributed over multiple types of features [2] and finding
the right features which have the most information about
human emotion is critical. Two main ways have been used to
extract features which are handcrafted features in addition to
deep learned emotion features. Therefore, many applications
such as speech recognition with time series or sequential
data have been shown to achieve state-of-the-art results with
some deep learning approaches such as Recurrent Neural
Networks (RNNs), Gated Recurrent Unit (GRU), and Long
Short-Term Memory (LSTM) [7]. However, Zhong et al. [8]
reviewed data representation research, including traditional
feature extraction and deep learning, with the conclusion that
the gap between the theory and practical applications of deep
learning is still quite big, and deep learning models are not
always the best approach, especially in real-world problems.

Multivariate time series emotion feature representation can
be able to adapt due to the sparse nature of emotion in
speech. To tackle this characteristic, some studies used Echo
State Network (ESN) as a special type of RNN, and as a part
of the reservoir computing framework. The main reported
advantage of ESN is that it has a simple architecture as it
contains the input layer, a reservoir layer with sparsely con-
nected neurons that are randomly assigned without training,
and the output layer [9]. The temporal dependency of time
series data can be handled effectively by ESN since it is
successfully applied for chaotic time series prediction models
[10], [11]. The simplicity of ESN is represented by assign-
ing a non-trainable randomly weights and avoiding the time
complexity of deep recurrent networks [12] which makes
ESN an ultimate nominee for tasks involving the real-time
processing [13], [14] such as time series forecasting [15].

Some researchers addressed the instability in ESN because
of the randomness in weights assigning, which is allocated
in the reservoir part and is assigned only once and fixed [9].
However, authors in [16] adopted the use of bidirectional
input. Both of the directions of the data feed as an input
sequence to the same reservoir in both forward and backward
ways to capture different independent versions of information
from the input data. Authors in [17] showed that having two
different inputs in a straight and reverse order will improve
the memorization.

Dimension reduction techniques are transforming the high
dimensional data within the feature space into another sub-
space of lower-dimensional representation to avoid com-
putation and assist in de-correlating the transformed data.
Therefore, dimensionality reduction techniques are applied
to solve these problems by using a particular transforma-
tion map such as Principal Component Analysis (PCA)
or Random Projection (RP) [18]. High dimensional sparse
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output from the reservoir layer makes feature representation
intractable and leads to overfitting and high computational
resources [17]. In machine learning, dimension reduction is
useful to prepare a more informative representation for the
classifier. There are studies that used PCA as a powerful
tool for dimensional reduction of the output of the reservoir
layer [17], [19].

Tuning the hyperparameters in ESN is a common issue
since it is significantly affecting the performance of the reser-
voir. Optimizing these hyperparameters are typically slow
and consequently, researchers either assign them manually
based on experience [20] or they adopt different optimization
approaches such as grid search, random search, and Bayesian
optimization [21].

In this work, we proposed a novel reservoir computing
approach for SER using bidirectional late fusion, Sparse Ran-
dom Projection (SRP), and optimizing hyperparameters with
a Bayesian optimization method. Additionally, a multivariate
time series handcrafted features of which Mel-Frequency
Cepstral Coefficients (MFCCs) and Gamma-Tone Cepstral
Coefficients (GTCCs) have been used to feed the reservoir
layer. The main contributions of the proposed model are:
1) adopting a very sparse random projection [22] approach for
dimension reduction which can be more compatible with the
sparse data distribution produced by the reservoir; 2) using
the bidirectionality approach with the late representation
fusion which may improve the memorization capability of
ESN.

The rest of this paper is organized as follows: Section II
covers literature about the existing methods of SER, while
section III presents the proposed model, and section IV shows
experiments and results. The discussion work is presented in
section V, and finally, the conclusion and future work come
in section VI.

Il. LITERATURE REVIEW

Researchers widely use speech signals to detect emotion
in the field of HCI to gain a better interaction between
them. Therefore, the right design model for classification
and relevant emotion features from speech with distinctive
information are the two significant aspects in speech emotion
recognition models [23].

To extract valuable features, some researchers preferred a
handcrafted feature while others used deep learned features.
Handcrafted feature representation can be a global feature
that represents each sample as one vector or it can be local
features extracted from the sequence of the frames. There
are a variety of open-source toolkits for extracting features
from speech such as openSMILE [24] and COVAREP [25].
A lot of studies [26]-[28], [29] have used openSMILE toolkit
as it is one of the most famous tools to extract emotion
features from speech. The openSMILE toolkit is extracting
non-temporal global features. However, some researchers are
using time series features from speech signals to detect the
real-time emotion recognition. Scherer et al. [14] used spec-
tral features from frames, however, they were not successful
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FIGURE 1. Reservoir computing with random projection and late bidirectional fusion (The proposed model).

to recognize emotion in real-time. On the other hand, recent
works are focusing on learned features directly from the
raw speech signal by using deep learning models [8], [30].
Authors in [31], used 1D CNN network for SER systems that
can learn features from the speech signal. The time series
features representation requires a proper classifier such as
RNN which is computationally intensive.

Besides choosing the right features from speech, develop-
ing a robust mathematical model is another vital step to the
high performance of emotion recognition from speech sig-
nals [32]. As mentioned before, frame-based features require
a model to support multivariate time series data such as
RNN. In [31] and [33] a high-level representation features
are used with adopting bidirectional long short-term mem-
ory (BLSTM) model. A speech emotion model using both
CNN and LSTM proposed in [34] and [35]. The data aug-
mentation techniques are applied in [36] on Acted Emotional
Speech Dynamic Database (AESDD) with the use of CNN
for continuous speech emotion recognition.

However, few researchers reported the use of ESN for SER,
for example, in [14], authors proposed a not fully successful
real-time speech emotion recognition model. To participate
in Evalita 2014 competition, Gallicchio et al. [37] proposed
ESN to detect emotion from speech. Additionally, Saleh and
Micheli in [38] used ESN for SER, where only neutral and
anger emotion classes are used in their model.

The time complexity of RNN-based models (such as
LSTM) versus ESN has been investigated and reported fre-
quently. The untrained nature of ESN shows the capability to
significantly reduce the time complexity as shown in Table 1.
The ESN performance is always comparable to the LSTM.
However, we shall see in the discussion section that the pro-
posed ESN in this work can outperform the LSTM for SER.
With a competitive performance in time series prediction,
ESN with the simplicity of its architecture deterministically
raised to propose in many applications [42]. Bidirectionality
is applied in ESN by feeding an input sequence into the same
reservoir in both forward and backward to capture additional
information independently of the input data. For example,
authors in [16] and [17] proposed bidirectional reservoir to
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TABLE 1. The comparison of the training time between LSTM and ESN.

Method LSTM (sec.) ESN (sec.)
Jirak et al. [39] 88.9 2.6
Gallicchio et al. [40] 26175 677
Variengien & Hinaut. [41] 410 47.1
The proposed model 1748 (3 epochs) 50.73

improve the memorization capability. For the same purpose,
Bianchi er al. in [43] proposed Bidirectional Deep-readout
ESN (BDESN) and multilayer perceptron (MLP) as a classi-
fier. The deep bidirectional LSTM [31], [33] has been used in
the SER field to learn the temporal information for detecting
the final state of emotion.

High dimensional sparse output from a reservoir layer
makes feature representation suffer from the curse of dimen-
sionality which is why dimension reduction step is necessary
to prepare a non-sparse representation to feed the classifier.
The Principal Component Analysis (PCA) was used with
ESN in [17] and [43] to improve the model performance.
But [19] used ELM-based Auto-encoder (ELM-AE) beside
PCA to reduce dimensionality between reservoirs in their
deep ESN approach.

Regarding the hyperparameters in ESN, which have a sig-
nificant effect on the model performance, some researchers
adopted fixing these hyperparameters [17], [20]. However,
to improve ESN performance, [44] optimized the hyperpa-
rameters by Grasshopper Optimization Algorithm (GOA)
approach. ESN is also found to exploit Bayesian opti-
mization [45] approach to tune its hyperparameters [21],
[48]. In order to achieve more satisfactory performance
for SER, the Bayesian optimization approach has been
adopted by [46] to optimize the hyperparameters of k-nearest
neighbors, support vector machine and decision tree, and
also adopted by [47] to optimize the kernel size for the
CNN.

lll. METHODOLOGY

In this section, the model design is presented, and the pro-
posed model is briefly explained. It represents the main
components of the solution and explains how the proposed
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method helps to improve the performance of ESN to recog-
nize emotions from speech. Most of the works on SER have
used global features and very few works were working on
time series local features. Several works have been found
in the literature that used LSTM as a model to feed time
series features. In addition, there are few works that used
ESN for the SER systems [14], [37], [38], however, none of
them reached an outstanding performance. This unconvincing
performance may be due to three factors which are: 1) adopt-
ing a unidirectional signal processing which results in los-
ing important information between the speech frames in the
opposite direction, 2) ESN for temporal data produces a very
high dimensional representation that negatively influences
the performance of the classifier, and 3) the manual tuning
of the ESN hyperparameters instead of optimizing them may
not lead to optimum performance of the ESN model. To over-
come these drawbacks, we have been inspired by the work
of [17], and have used ESN with bidirectional time series
features and dimension reduction representation to recognize
emotions from speech. Our contribution in this work is to
modify the adapted model to improve the performance of
SER. The next subsections show the details of the proposed
model, which is shown in Figure 1.

A. FEATURE EXTRACTION

Speech features with discriminative information have a
vital role in emotion recognition in speech. Extracting the
proper speech emotion features reflects obtainable infor-
mation about emotion characteristics and the effect of the
human’s emotional condition on the speech signal.

In this work, frame-based handcrafted features have been
adopted to feed the proposed model. The first set of features
that have been extracted in this work is 13 MFCC features.
MFCC is the most widely used feature for speech emotion
recognition because of its simplicity of computation and the
good capability of extracting informative features. However,
MEFCC based models are suffered by decreasing the perfor-
mance under noisy conditions because MFCCs are biased by
noise which triggers mismatched likelihood calculation [49].
Therefore, we extracted 13 GTCC features which have better
performance than MFCCs under noisy conditions. Overall,
26 features are used as an input to our model.

The audioFeatureExtractor object method in MATLAB has
been used to extract the features with windows of length 30ms
overlapped by 20ms. Since the length of the samples vary
(See Figure 2), we have equated the length of the samples
by padding with zeros or pruning at the start and the end of
each row data. Consequently, we have used 500, 600, 400,
and 300 frames for Emo-DB, SAVEE, RAVDESS, and FAU
Aibo respectively based on the near maximum length for each
dataset.

B. BIDIRECTIONAL RESERVOIR COMPUTING—ESN

Echo State Networks (ESNs) were first proposed by [50]
as a special case of RNN for learning nonlinear systems
which is also a part of the reservoir computing framework.
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The Reservoir computing (RC) framework is a kind of RNN
model whose recurrent part weights are initiated randomly
and then fixed without training, followed by a trainable layer
that can be updated with the output [51].

The untrained nature of ESN makes it avoid the com-
plexity available in trained natured networks such as LSTM.
It has a sparse nature as it maps the features into a higher
dimensional space. In addition, ESN has a simple architecture
that contains an input layer, reservoir layer and output layer.
Regarding the input layer, a bidirectionality multivariate time
series data is applied by feeding an input sequence into the
reservoir in both forward and backward. The advantage of the
bidirectional approach is to capture additional information
independently of the input data and the capability to improve
the memorization with straight and reverse inputs. The reser-
voir layer contains sparsely connected neurons which are
randomly assigned and fixed without training.

The temporal dependence of time series data can be han-
dled effectively by ESN which is successfully applied for
chaotic time series prediction models. The simplicity of ESN
is that most of the weights are randomly assigned and not
trainable. The complexity of deep recurrent networks requires
an extreme computing time which makes ESN an ultimate
nominee for tasks involving real-time processing such as time
series forecasting.

The input multivariate time series sample data contains
D-dimensional feature vector for each time step 7, where
t=1,2,...,T,and T is the number of time steps. In other
words x(t) € RP and X = [x(1), x(2), ...x(T)]”. Note that
T represents the number of time steps after padding the
samples to avoid length differences. As an RNN based model,
reservoir model is suitable for the sequential data and for
bidirectional approach which has been adopted in this work.
The state in the reservoir layer can be updated using the
following equations:

H W) = fRW. T = 1) Oene)
<« «— <«
W (6) = FCE@), T (= 1): Oene) 1)

where m and l(z(_) are the RNN states at time ¢ for both
bidirectional inputs tha_t) can be computed as a function of
their previous values ( 2 (t — 1), h (t — 1)) and the current
inputs ?(t) and <)T(t). In addition, f is a nonlinear activa-
tion hyperbolic tangent function, and 6,,. are the adaptable
parameters from the reservoir.

The equation (1) can be presented as the simplest formula-
tion as follows:

() = tanh(Wi X (6) + W, T (1 — 1)

T () = tanh(Wi, S@) + W, T (6 — 1)) )
where Wj, is the input weight and W, is the weig_)ht
from reservoir connections, and the reservoir states (RS
and RS) are generated by the reservoir layer over time,

— — — — T —
w(here I(?_S = (_[h(l), h(),., h(Th]” and RS =
[k, h2),., h(T]T. The 6,, can be represented as
Qenc = {Wins Wr}-
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The reservoir has several hyperparameters that have a sig-
nificant effect on its performance such as (i) the amount of
internal (hidden) units R, (ii) spectral radius p of reservoir
connection weights matrix W, which helps the system to
be stable [52] and normally should be less than 1, (iii) the
nonzero connections B is used as a percentage of non-zero
connection weights, (iv) scaling w of the values in W;, is
another hyperparameter, which controls the total of nonlin-
earity in handling the hidden units together with p and can
change the internal dynamics from a chaotic regime to a
contractive regime [53], (v) leak as an amount of leakage
in the reservoir state update, and (vi) it is also possible to
include a dropout regularization and we applied a dropout,
particularly for recurrent architectures [17].

C. RANDOM PROJECTION BASED DIMENSION
REDUCTION

The high dimensional sparse output from the reservoir layer
makes feature representation intractable and leads to overfit-
ting and high computational cost. Additionally, Sparse Ran-
dom Projection (SRP) has been used to transform the sparse
output into a more compact representation.

Trainable dimension reduction such as PCA is well known,
however, because the sparse data distribution produced by the
reservoir uses a binomial distribution, adopting a sparse ran-
dom projection where its values initialized by 1 and —1 can
be a suitable alternative. In addition, PCA is more time con-
suming because of the training part inside it. SRP reduces the
dimensions and preserves the distances in addition to the fact
that random projection has a low complexity since it does not
need any training and removes redundancies with minimal
loss of information.

In the work, we follow [22] by using a SRP matrix. The
SRP matrix R is initialized with 1 and -1 as in the following
equation:

1
2Vd

where d is the dimension of the reservoir output state. This
step will reduce the dimension to a specific number that
can be fixed or optimized. Reducing the dimensions has a
significant impact on implementing the reservoir model space
which will be applied nextly. The dimensionality reduction
step decreases the number of reservoir output features and

PrRij=1)=P,R;j=—-1)= 3
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> <
produces a new sequences H and H which will be the input
to the model space.

D. RESERVOIR MODEL SPACE AND LATE FUSION

The reservoir model space that has been proposed by [17],
distinguishes a generative model of the reservoir sequence
and induces a metric relationship between the samples. In this
work, we adopted a bidirectional approach with late fusion.
Processing of each direction in a separate way can provide
richer information about the relation of the time steps in both
forward and backward directions. The late fusion will com-
bine more diverse representations of the data and make the
characteristics of each individual direction to be more high-
lighted. Consequently, the formula from a proposed model
by [17] has been adapted with two separate outputs from
unsupervised dimensionality reduction process from SRP as
shown in the following equations:

h(t+1)—Uh/’l(t)+uh

h(t—l-l)—Uhh(t)+uh “)

—)
where h (.)and h ( )are the columns of a frontal slice H and
H respectively, Uh, Uh € RP*D and wj, & € RP, where D
is the number of dimension after the reduction process. The
late fusion will be applied in this stage by concatenating the
generated output from both 7x and 7x where:

7% = O = [vec(Up); W]
X = O = [vec(Up): ] ®)
ry = [7x; i'x] (6)

. — <«
Equation 7 shows that, how the 6, and 6;, can be learned
by minimizing a ridge regression loss function:

= 2 2

0, —argmm—n T OT,+i0, - K@+l + | T,
{U()su()}

<« 1 & « < <«

On = arg min | h ()Uy+itg— b ¢+ DI+l U 1> (7)
{Umuo}

where the p is the regularization parameter to adjust the
number of the coefficient shrinkage in the reservoir model
space. In the classification level ESN adopts a linear model
for decoding which is usually formed as in the following
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equation:

®)

This model has a set of parameters Gz.c = {Vy, Vo}. Odec
which can be learned by minimizing the loss function in a
ridge regression which admits a closed form solution:

y=glrx) = Vorx +vo

O = arg mins [y Vo + v, — I + AV
{Vo,vo}
where A is the regularization parameter for ridge regression
and helps to minimize overfitting of the training data. The aim
of the linear readout is to perform the final classification that
maps the ry representation into the class labels y.

€))

E. THE BAYESIAN HYPERPARAMETER OPTIMIZATION

Determining the ESN hyperparameters is one of the reported
issues due to its effects on the ESN model performance.
However, most of the works have assigned ESN parameters
manually or based on experiences. In this work, we opti-
mized major ESN hyperparameters such as the size of reser-
voir state, spectral radius, size of connectivity, input scaling,
amount of leakage in the reservoir state update, and the
number of dropouts. Furthermore, optimizing the number
of resulting dimensions after the dimensionality reduction
procedure, and both regularization parameters p in modal
space and A in ridge regression readout part. Based on the

TABLE 2. The optimized parameters which have been used in the
proposed method by Bayesian optimization approach.

Stages Parameters
Internal units (R), spectral radius (p),
Reservoir non-zero connections (/3), scaling (w),

leakage and dropout

Sparse Random Pro-
jection

Model Space

The size of dimension reduction

Regularization parameter of the ridge
regression (u)

Regularization parameter of the ridge
regression in readout (\)

Readout

comparison in [48] between Bayesian optimization and grid
search, Bayesian optimization shows to be more efficient than
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a grid search in their experiments. Bayesian optimization
is a gradient-free global optimization approach to optimize
random functions [54]. It is initiated to minimize loss func-
tions f(0) of the models, where their hyperparameters 0 are
normally difficult to be tuned [48]. Additionally, the Bayesian
optimization method has been used in various applications
including SER models [46], [47] to optimize the models’
hyperparameters.

In this work, Bayesian optimization [54] has been used
to tune the parameters of the reservoir layer and the ridge
regression, in addition to dimensionality reduction size in
SRP as shown in Table 2. The Figure 3 shows a sample
of the 100 iterations for the three used datasets. Optimizing
these parameters has a significant effect to improve the per-
formance of the model.

F. SPEAKER NORMALIZATION (SN)

Inspired by the work of Valsenko et al. [55] we adopted
Speaker Normalization (SN) on each particular speaker sam-
ple in speaker-independent experiments. SN is comprehended
as subtracting the mean of utterances that belong to one of the
speakers in a specific dataset, divided by the standard devi-
ation of those samples. The purpose of using SN is to coun-
teract the samples from specific speaker influences, thus the
emotion space is more improved. While SN is a totally unsu-
pervised approach and labels are not necessary. This method
has improved the performance of using speaker-independent
in our proposed model.

IV. EXPERIMENTAL SETUP AND RESULTS
In this section, we evaluated and validated the performance
of the proposed model to detect emotions from the speech on
most public and available SER datasets. So far, there is not
much research work that has reported about using ESN for
speech emotion recognition. The reason may be the wide use
of global features instead of time series features. However,
as mentioned in the previous sections, ESN can have a good
performance in time series data.

In this work, we have used handcrafted time series features
which are 13 MFCCs and 13 GTCCs extracted for each
window of length 30ms overlapped by 20ms. The features
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feed the reservoir layer, where the number of internal units
has been optimized using Bayesian optimization. The SRP
is applied to transform the high dimensional sparse nature
output from the reservoir layer into more compact represen-
tation. The reservoir model space distinguishes a generative
model of the reservoir sequence and induces a metric relation-
ship between the samples that came from the SRP part. Sub-
sequently, the late fusion of bidirectionality input has been
applied with the processing of each direction in a separate
way. Bayesian optimization has been used to tune hyperpa-
rameters of the reservoir layer, ridge regression, and the size
of dimensionality reduction in SRP as shown in Table 2.

The proposed model results are presented in terms of pre-
cision, recall, F1 score, unweighted and weighted percent-
age accuracy. Precision and recall are used to evaluate the
performance of classification and F1 score is the weighted
average of both precision and recall. The weighted accuracy
coincides to the correctly classified emotion divided by the
total number of emotion classes, while the unweighted accu-
racy (UA) means the average of per-class accuracies. The
detailed results per each emotion classes of all four datasets
are given in Tables 3 - 12.

We applied a speaker-independent approach using Leave
One Speaker Out (LOSO), in addition to a speaker-dependent
approach using the 5-fold and 10-fold cross-validation
techniques on Emo-DB, SAVEE and RAVDESS datasets.
In adopting 5-fold and 10-fold cross-validation, the dataset
is divided into 5 and 10 folds respectively with mutually
exclusive subsets. The model is trained and tested 5 times
for 5-fold and 10 times for 10-fold, each time one set is
considered as a test set and the remaining sets are considered
as a train set. To conduct fair comparison with the state-
of-the-art studies of the FAU Aibo dataset, we followed the
adopted protocol of the interspeech09 challenge [56].

Since the ESN has no trainable weights in the reservoir
layer, but rather it uses fixed weights, it doesn’t need any GPU
or high resources, therefore, we carried out the experiments
using CPU on Google Colab (12 GB RAM) and on PC with
64GB RAM.

Furthermore, our experiments on both speaker-independent
on all datasets and speaker-dependent on Emo-DB, SAVEE,
and RAVDESS datasets are conducted and have shown
better performance as compared to state-of-the-art works.
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The performance of the proposed model is validated using
four well known public speech emotion datasets, which
are Berlin Database of Emotional Speech (Emo-DB) [57],
Surrey Audio-Visual Expressed Emotion (SAVEE) [58],
Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [59] and FAU Aibo Emotion Corpus [60].

A. EMO-DB

The Emo-DB [57] is a German dataset for emotional speech,
produced by the Technical University of Berlin. It covers
seven emotion classes: anger, boredom, neutral, disgust, fear,
happiness, and sadness. Additionally, 10 actors (5 females
and 5 males, between the age of 20 and 35) are involved to
take a specific emotion over the memories of their real expe-
rience. Emo-DB is the most popular dataset that is used in
speech emotion recognition with a total number of 535 utter-
ance files which include anger (127), boredom (81), neutral
(79), disgust (46), fear (69), happiness (71) and sadness (62)
sentences, see Figure 4. We validated the proposed model
based on speaker-independent and speaker-dependent for
5-fold and 10-fold cross-validation.

1) SPEAKER-INDEPENDENT

The LOSO method is applied for speaker-independent, as in
Emo-DB we set 9 speakers as a train set and one speaker as
a test set and this process will be repeated to guarantee the
participation of all speakers in the test set.

TABLE 3. The proposed model performance (%) for speaker-independent
(LOSO approach) SER using Emo-DB dataset.

Emotion Precision Recall F1 Score
Anger 79.37 100 88.50
Boredom 90.48 93.83 92.12
Disgust 97.44 82.61 89.41
Fear 96.55 81.16 88.19
Happiness 93.75 63.38 75.63
Sadness 92.31 96.77 94.49
Neutral 87.65 89.87 88.75
Unweighted 91.08 86.80 88.16
Weighted 89.45 88.41 88.11

Table 3 shows the detailed results of precision, recall,
F1 score, unweighted, and weighted percentage accuracy
for each emotion class for Emo-DB dataset. The confusion
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matrix in Figure 5 shows the individual accuracy of each
7 emotion classes of Emo-DB dataset for the speaker-
independent approach. The anger class recorded the highest
accuracy which is 100% from all speakers while happiness
recorded the lowest with only 63%. However, disgust and
fear emotions have less accuracy compared with boredom,
sadness and neutral.

Emo-DB's Speaker Independent Confusion Matrix
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FIGURE 5. Speaker-independent confusion matrix of proposed model for
Emo-DB dataset.

2) SPEAKER-DEPENDENT

For the speaker-dependent approach, we applied the 5-fold
cross-validation method on Emo-DB dataset and its results in
terms of precision, recall, F1 score, unweighted and weighted
accuracy, are shown in Table 4.

TABLE 4. The proposed model performance (%) for speaker-dependent
(5-fold) SER using Emo-DB dataset.

Emotion Precision Recall F1 Score
Anger 92.03 100 95.85
Boredom 85.71 88.89 87.27
Disgust 100 91.30 95.45
Fear 92.75 92.75 92.75
Happiness 96.61 80.28 87.69
Sadness 100 98.39 99.19
Neutral 86.59 89.87 88.20
Unweighted 93.38 91.64 92.34
Weighted 92.58 92.34 92.29

The confusion matrix for speaker-dependent (5-fold)
in Figure 6 shows that the highest accuracy is obtained by
the anger emotion, while the lowest accuracy is recorded
by the happiness emotion similar to the speaker-independent
approach.

The same procedure is applied for the 10-fold cross-
validation approach, and the detailed results in terms of pre-
cision, recall, F1 score, unweighted and weighted accuracy
are shown in Table 5.

The confusion matrix for speaker-dependent (10-fold)
in Figure 7 shows that the highest accuracy is achieved by the
anger emotion (99%) and similar to the speaker-independent
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Emo-DB's Speaker Dependent (5 fold) Confusion Matrix
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FIGURE 6. Speaker-dependent confusion matrix with 5-fold
cross-validation of proposed model for Emo-DB dataset.

TABLE 5. The proposed model performance (%) for speaker-dependent
(10-fold) SER using Emo-DB dataset.

Emotion Precision Recall F1 Score
Anger 91.97 99.21 95.45
Boredom 92.68 93.83 93.25
Disgust 97.83 97.83 97.83
Fear 94.20 94.20 94.20
Happiness 98.31 81.69 89.23
Sadness 98.39 98.39 98.39
Neutral 93.75 94.94 94.34
Unweighted 95.30 94.30 94.67
Weighted 94.72 94.58 94.51

and 5-fold approaches, the lowest accuracy is achieved by
happiness emotion.

B. SAVEE

SAVEE [58] is a multimodal (Audio and Visual expression)
British English voice database that can be used for facial
expression and speech emotion recognition. In our study, only
the audio speech part has been used. It was recorded from four
male native English speakers at the University of Surrey with
seven basic emotion categories, which are anger, disgust, fear,
happiness, sadness, surprise, and neutral. Each actor recorded
120 utterances which overall speech samples are 480 files,
and the total number of utterances of the neutral emotion
class is 120 while the other remaining emotion classes com-
prised of 60 utterances, which is shown in Figure 4. SAVEE
dataset also used to validate the proposed model based on
speaker-independent and speaker-dependent for 5-fold and
10-fold cross-validation.

1) SPEAKER-INDEPENDENT

The LOSO method has been applied for speaker-independent,
as in SAVEE we set one speaker as a test set and the remaining
speakers as a train set and this process will be repeated to
guarantee the participation of all the speakers in the test
set. Table 6 shows the detailed results of precision, recall,
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Emo-DB's Speaker Dependent (10 fold) Confusion Matrix
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FIGURE 7. Speaker-dependent confusion matrix with 10-fold
cross-validation of proposed model for Emo-DB dataset.

which is 93% from all speakers while sadness recorded the
lowest with only 43% while 47% of sadness emotion is
considered as a neutral emotion. The same case has happened
in disgust emotion which 37% recognized as neutral and only
45% as a current emotion which is disgust.

2) SPEAKER-DEPENDENT

For the speaker-dependent method and for getting the most
reliable result of our model, same as Emo-DB dataset,
we applied 5-fold and 10-fold cross-validation. Table 7 shows
the results and statistics in terms of precision, recall, F1 score,
weighted, and unweighted percentage accuracy.

TABLE 7. The proposed model performance (%) for speaker-dependent
(5-fold) SER using SAVEE dataset.

TABLE 6. The proposed model performance (%) for speaker-independent

(LOSO approach) SER using SAVEE dataset.

Emotion Precision Recall F1 Score
Anger 83.02 73.33 77.88
Disgust 79.07 56.67 66.02
Fear 69.81 61.67 65.49
Happiness 69.35 71.67 70.49
Neutral 73.12 97.50 83.57
Sadness 76.74 55.00 64.08
Surprise 69.70 76.67 73.02
Unweighted 74.40 70.36 71.51
Weighted 74.24 73.75 73.01

Emotion Precision Recall F1 Score
Anger 76.81 88.33 82.17
Disgust 65.85 45.00 53.47
Fear 80.49 55.00 65.35
Happiness 73.24 86.67 79.39
Neutral 65.68 92.50 76.82
Sadness 76.47 43.33 55.32
Surprise 74.55 68.33 71.30
Unweighted 73.30 68.45 69.12
Weighted 72.35 71.46 70.08
SAVEE's Speaker Independent Confusion Matrix
Anger 003 003 003 002 000
0.8
Disgust 0.03 003
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FIGURE 8. Speaker-independent confusion matrix of proposed model for
SAVEE dataset.

F1 score, unweighted, and weighted percentage accuracy for
each emotion class for SAVEE dataset. The confusion matrix
in Figure 8 shows the individual accuracy of each 7 emo-
tion classes of SAVEE dataset for the speaker-independent
approach. The neutral class recorded the highest accuracy
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The confusion matrix for speaker-dependent (5-fold)
in Figure 9 points out the true emotion label and predicted
emotion label. Similar to the speaker-independent approach,
the highest accuracy is achieved by the neutral emotion with
97% and while sadness emotion is still the lowest with 55%
which 37% are considered as a neutral emotion. However,
the disgust emotion obtained 57% which is much higher if we
compared it with the speaker-independent accuracy (45%).

SAVEE's Speaker Dependent (5 fold) Confusion Matrix
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FIGURE 9. Speaker-dependent confusion matrix with 5-fold
cross-validation of proposed model for SAVEE dataset.

Cross-
recall,

The same procedure is applied for the 10-fold
validation approach, and the results of precision,
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F1 score, unweighted and weighted accuracy are shown
in Table 8.

TABLE 8. The proposed model performance (%) for speaker-dependent
(10-fold) SER using SAVEE dataset.

Emotion Precision Recall F1 Score
Anger 88.89 80.00 84.21
Disgust 81.25 65.00 72.22
Fear 86.27 73.33 79.28
Happiness 80.33 81.67 80.99
Neutral 74.52 97.50 84.48
Sadness 79.55 58.33 67.31
Surprise 76.92 83.33 80.00
Unweighted 81.10 77.02 78.36
Weighted 80.28 79.58 79.12

The proposed model for speaker-dependent (10-fold)
evaluation is presented in the given Figure 10. The
confusion matrix in Figure 10 shows that the highest
accuracy is achieved by neutral emotion (97%) and is
the same as speaker-independent and speaker-dependent
(5-fold), the sadness emotion has the lowest accuracy (58%)
compared with other classes. Additionally, 35% of sadness
emotion was recognized as a neutral emotion which is the
same situation we have in both previous approaches.

SAVEE's Speaker Dependent (10 fold) Confusion Matrix
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FIGURE 10. Speaker-dependent confusion matrix with 10-fold
cross-validation of proposed model for SAVEE dataset.

C. RAVDESS

RAVDESS [59] is the third speech emotion dataset that has
been used to validate our model. It is a multimodal dataset
that contains facial expression and voice data for speech and
song. RAVDESS was recorded with a North American accent
by 24 professional actors (12 females and 12 males) with
eight emotions: calm, happy, sad, angry, fearful, surprise,
neutral, and disgust expressions. Additionally, RAVDESS
contains overall 7356 files and only 1440 speech files as
a voice channel for speech emotion have been used. The
total utterances of the neutral emotion class are 96 while the
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other remaining emotion classes have 192 utterances, which
is shown in Figure 4.

The proposed model has been validated on RAVDESS
dataset, based on speaker-independent and speaker-dependent
for 5-fold and 10-fold cross-validation approaches.

1) SPEAKER-INDEPENDENT
LOSO method has been applied for speaker-independent,
as in for RAVDESS, we set 23 speakers as a train set and
one speaker as a test set and this process will be repeated to
guarantee the participation of all speakers in the test set.
There are a few works that applied a speaker-independent
approach on RAVDESS dataset, and none of them applied
LOSO. However, our work is the same as Emo-DB and
SAVEE where we adopted the LOSO approach. Table 9
shows the detailed results of precision, recall, F1 score,
unweighted, and weighted percentage accuracy for each emo-
tion class for RAVDESS dataset for speaker-independent.

TABLE 9. The proposed model performance (%) for speaker-independent
(LOSO approach) SER using RAVDESS dataset.

Emotion Precision Recall F1 Score
Neutral 69.57 50.00 58.18
Calm 74.89 88.54 81.15
Happy 78.49 70.31 74.18
Sad 61.93 63.54 62.72
Angry 80.50 83.85 82.14
Fearful 74.73 72.40 73.54
Disgust 77.03 83.85 80.30
Surprised 76.67 71.88 74.19
Unweighted 74.23 73.05 73.30
Weighted 74.54 74.58 74.31
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FIGURE 11. Speaker-independent confusion matrix of proposed model
for RAVDESS dataset.

The confusion matrix in Figure 11 shows the individual
accuracy for each of the 8 emotion classes of RAVDESS
dataset for the speaker-independent approach. The calm emo-
tion class recorded the highest accuracy which is 89% from
all speakers, however, neutral emotion recorded only 50%
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accuracy with 18% and 20% recognized as calm and sad
emotion classes respectively.

2) SPEAKER-DEPENDENT

For the speaker-dependent approach, we applied the 5-fold
and 10-fold cross-validation approach. The 5-fold results are
shown in Table 10, in terms of precision, recall, F1 score,
unweighted and weighted percentage accuracy.

TABLE 10. The proposed model performance (%) for speaker-dependent
(5-fold) SER using RAVDESS dataset.

Emotion Precision Recall F1 Score
Neutral 86.52 80.21 83.24
Calm 84.11 93.75 88.67
Happy 90.00 89.06 89.53
Sad 79.10 72.92 75.88
Angry 90.58 90.10 90.34
Fearful 84.97 85.42 85.19
Disgust 85.86 88.54 87.18
Surprised 87.23 85.42 86.32
Unweighted 86.05 85.68 85.79
Weighted 86.01 86.04 85.96

The confusion matrix for speaker-dependent (5-fold)
in Figure 12 shows that the highest accuracy obtained by the
calm emotion which is 94% while sad emotion is recorded
as the lowest accuracy of 73%. Therefore, the neutral emo-
tion has a significant improvement in the speaker-dependent
(5-fold) approach with 80% accuracy, while it was only 50%
in speaker-independent.

RAVDESS's Speaker Dependent (5 fold) Confusion Matrix
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FIGURE 12. Speaker-dependent confusion matrix with 5-fold
cross-validation of proposed model for RAVDESS dataset.

The same procedure is applied for the 10-fold approach,
and the results in terms of precision, recall, F1 score,
unweighted, and weighted percentage accuracy are shown
in Table 11. The confusion matrix for speaker-dependent
(10-fold) in Figure 13 shows that the accuracy for each
RAVDESS emotion class, and compared with the 5-fold
approach, the accuracy of all emotion classes are higher
except happy emotion with 86% accuracy.
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TABLE 11. The proposed model performance (%) for speaker-dependent
(10-fold) SER using RAVDESS dataset.

Emotion Precision Recall F1 Score
Neutral 85.56 80.21 82.80
Calm 87.26 96.35 91.58
Happy 89.19 85.94 87.53
Sad 86.78 78.65 82.51
Angry 94.76 94.27 94.52
Fearful 85.64 90.10 87.82
Disgust 92.59 91.15 91.86
Surprised 89.34 91.67 90.49
Unweighted 88.89 88.54 88.64
Weighted 89.11 89.10 89.03
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FIGURE 13. Speaker-dependent confusion matrix with 10-fold
cross-validation of proposed model for RAVDESS dataset.

D. FAU AIBO EMOTION CORPUS

The fourth dataset that has been used to evaluate the proposed
model is the non-acted FAU Aibo Emotion Corpus, which
contains 9.2 hours of spontaneous and emotional German
speech samples [60]. The dataset was recorded from a total
of 51 children (21 male and 30 female) at the age 10-13 years
during their interactions with Sony’s pet robot Aibo at two
different schools, ‘Ohm’ and ‘Mont’. The corpus contains
18216 chunk speech samples where dataset designers labeled
each word in the dataset into 10 categories and later, they
mapped them into five different emotion classes which are
anger, emphatic, neutral, positive, and rest. The final numbers
for each emotion class are listed in Figure 15. Following
the adopted protocol of the interspeech09 challenge [56],
we used ‘Ohm’ with 9959 chunks from 26 children (13 males,
13 females) as a training set and ‘Mont’” with 8257 utter-
ances from 25 children (8 males, 17 females) as a testing
set.

The number of chunks per class in the FAU Aibo Emotion
corpus is extremely unbalanced as shown in Figure 15, where
in the training set the 56.1% of the data are labeled as neutral,
21% are emphatic, 8.8% are angry, 6.8 are positive, and
7.2% are rest. To overcome the unbalanced issue, we applied
random under sampler [61] where under sampling on the
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FIGURE 14. The impact of equating the length of the samples by padding with zeros or pruning at the start and end of each row data. The x-axis
represents the range of zero padding or pruning (positive values refers to padding while negative values refers to length pruning).
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FIGURE 15. The total number of emotion classes for FAU Aibo dataset.

TABLE 12. The proposed model performance (%) for FAU Aibo dataset.

Emotion Precision Recall F1 Score
Anger 19.46 64.48 29.89
Emphatic 33.81 57.43 42.57
Neutral 83.64 23.86 37.13
Positive 9.67 65.58 16.86
Rest 14.58 18.13 16.16
Unweighted 32.23 45.90 28.52
Weighted 63.30 33.70 35.67

majority classes is adopted by randomly picking a fixed
number of samples.

Table 12 lists the detailed results of the precision, the recall,
F1 score, unweighted, and weighted percentage accuracy for
each emotion class for FAU Aibo dataset. It can be observed
that there is a big gap between the weighted and unweighted
accuracy due to the high imbalance of data. The low accuracy
of this dataset compared to the others reflects the challenge of
emotion recognition in a spontaneous dataset. The confusion
matrix in Figure 16 shows the accuracy of each 5 involved
emotion classes of FAU Aibo. The positive class recorded
66% as the highest accuracy and the rest emotion class
with 18% is the lowest accuracy that we have got from the
proposed model. The low accuracy of rest may be due to
its samples nature where they have different labels but are
gathered under the same class.

E. THE IMPACT OF ZERO PADDINGS

As mentioned in the methodology section, since the length
of the samples vary, as shown in Figure 2, we have equated
the length of the samples by padding with zeros or pruning at
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FIGURE 16. The confusion matrix of proposed model for FAU Aibo
dataset.

the start and end of each row data. During the experiments as
shown in Figure 14, we have found that there is no clear rela-
tion between the error and sample length scaling. For exam-
ple, in Emo-DB dataset, the error of samples when 100-200
zeros are added were 16.91%, however, samples with more
added zeros (such as 200-300) recorded lower error (9.17%),
while samples with 300-400 added zeros recorded an error
of 12.59%. In SAVEE dataset, the low misclassification ratio
(50%) where 400-500 zeros are added, may not relate to the
zero padding ratio, since 78.5% of the samples in this length
range come from one of the speakers of whom its result
is 53%. Similar observations can be noticed in RAVDESS
and FAU Aibo datasets where noticeable zero padding ratio
has been applied. These observations do not highlight any
pattern regarding the relation between error increasing and
zero paddings.

F. MODEL EVALUATION

To evaluate the impact of the adopted late fusion instead
of early fusion in addition to the use of SRP instead of
PCA, we have conducted four speaker independent-based
experiments for each dataset, including the use of Early
Fusion with PCA (EF-PCA), Early Fusion with RP (EF-RP),
Late Fusion with PCA (LF-PCA), and Late Fusion with
RP (LF-RP). In the exception of Emo-DB, all of the other
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FIGURE 17. Comparing the proposed model with speaker-independent
method to Early Fusion with PCA (EF-PCA), Early Fusion with RP (EF-RP),
and Late Fusion with PCA (LF-PCA).

datasets show that late fusion with both PCA and RP outper-
forms the early fusion (See Figure 17). However, regarding
the Emo-DB dataset, the LF-PCA is not able to outperform
EF-PCA, but the RP impact on the late fusion model is signif-
icant and records 86.80% of accuracy. Overall, the proposed
model (LF-RP) outperformed all other three methods on all
four datasets.

TABLE 13. The impact of using bidirectional, dimension reduction and
optimization method in a speaker-independent approach over basic ESN.

Dataset ESN Proposed model
Emo-DB 68.97 86.80
SAVEE 54.29 68.45
RAVDESS 58.33 73.05
FAU Aibo 4291 45.90

To show the impact of the adopted bidirectional, dimen-
sion reduction and optimization method in the proposed
model over a basic ESN (unidirectional, total dimensions, and
non-optimized hyperparameters are used). Table 13 shows the
outperformance of the proposed model using all the involved
datasets in a speaker-independent approach.

V. DISCUSSION

In this section, we are comparing the proposed model per-
formance with other baseline methods. In order to obtain
high classification accuracy, we proposed a novel ESN model
which deals with a small size of handcrafted features as an
input to the reservoir layer with bidirectional time series
representation where its hyperparameters have been opti-
mized. Additionally, we applied sparse random projection
to reduce the output feature representation from the reser-
voir layer, which helped the model to perform better in
dealing with sparse representation data. We adopt speaker-
independent for all four popular benchmark datasets and
speaker-dependent with 5-fold and 10-fold cross-validations
on Emo-DB, SAVEE, and RAVDESS datasets to recognize
the emotional state from speech signals. The late bidirec-
tional fusion helped to extract more information from the
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data before feeding it to the ridge regression classifier. This
novel proposed approach for SER helped to improve the
classification accuracy and because of the simplicity and the
trainless nature of ESN, the processing time is reduced as
compared to the other deep learning methods such as LSTM
and CNN.

In this discussion, we are going to present the overall
unweighted accuracy (UA), since the actual performance is
more representing, especially when the data is imbalanced
in terms of utterance sizes per class, as shown in Figure 4.
UA is the sum of all class accuracies divided by the number
of classes, without taking into account the number of samples
per class. Consequently, UA is a useful evaluation metric for
emotion recognition studies due to the imbalanced nature of
emotion datasets.

We have compared the performance of our proposed model
in speaker-independent and/or speaker-dependent schema
with the previously presented methods for Emo-DB, SAVEE,
RAVDESS, and FAU Aibo datasets (See Table 14 - 17).

TABLE 14. Summary of unweighted accuracies (UA%) achieved by
various researchers for Emo-DB, SAVEE and RAVDESS datasets using
speaker-independent approach.

Dataset Method UA %
[62] (Spectrogram+Deep learning ADRNN) 84.99
[30] (Spectrogram+Deep learning PCRN) 84.53
[65] (Spectrogram+Deep learning ACRNN) 82.82
[63] (SVM-RBF) 71.02
Emo-DB [64] (OpenSmile+SVM) 76.82
[66] (Handcrafted+GEBF) 76.81
[67] (OpenSmile+Deep learning RDBN) 82.32
Proposed model 86.80
[66] (Handcrafted+GEBF) 55.00
SAVEE [67] (OpenSmile+Deep learning RDBN) 53.60
Proposed model 68.45
RAVDESS Proposed model 73.05

The classification UA of speaker-independent experiments
are shown in Table 14. For the Emo-DB dataset, our result
achieved 86.80% UA, which performed better compared with
various new works that have been conducted recently. Our
model when applied on the SAVEE dataset obtained 68.45%
which is 13.45% higher than the second-best result. However,
our proposed model adopted LOSO, and few works are con-
ducted for RAVDESS speaker-independent method, none of
which applied the LOSO approach. For example, [31] used
2 speakers for testing the model while [68] used 19 speakers
for training and four other speakers for the testing scenario.
However, the proposed model achieved 73.05% by adopting
the LOSO approach.

Table 15 shows the summary of unweighted classifica-
tion accuracies (UA%) achieved by various researchers using
5-fold cross-validation for Emo-DB, SAVEE, and RAVDESS
speech datasets.

Among all state-of-the-art methods, our approach per-
formed the best. Considering that ESN is extremely less
complicated than LSTM based models, our proposed model
when applied to Emo-DB achieved 91.64%, which is slightly
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TABLE 15. Summary of unweighted accuracies (UA%) achieved by
various researchers for Emo-DB, SAVEE and RAVDESS datasets using
5-fold cross-validation approach.

Dataset Method UA %
[31] (Spectrogram+Deep learning BiLSTM) 91.14
[62] (Spectrogram+Deep learning ADRNN) 90.37
Emo-DB [69] (Handcrafted+Deep learning 1D CNN) 86.10
[63] (SVM-RBF) 78.66
[70] (VGG Vox+SVM,kNN) 80.00
Proposed model 91.64
[70] (VGG Vox+SVM,KNN) 68.00
SAVEE Proposed model 70.36
[31] (Spectrogram+Deep learning BiLSTM) 82.01
[72] (Spectrogram+Deep learning GResNets) 64.52
[69] (Handcrafted+Deep learning 1D CNN) 71.61
RAVDESS [71] (MFCC+Deep learning BFN, CNA) 83.00
[63] (SVM-RBF) 64.32
[70] (VGG Vox+SVM,KNN) 71.00
Proposed model 85.68

better than the work in [31] where they used the Deep
BiLSTM method and CNN for feature extraction. Addi-
tionally, our result in Emo-DB has outperformed the work
in [62] by 1.27% and the other works significantly, as shown
in Table 15.

The proposed model when validated by SAVEE achieved
70.34% of UA. However, to our best knowledge, there is only
one recent work that adopted a 5-fold approach applied to
SAVEE dataset [70] and gained 68% of UA with 2% lower
than our result.

Regarding the RAVDESS dataset, our proposed model
achieves high UA with the 5-fold schema (85.68%) and
outperforms the highest achieved results in state-of-the-art
studies by 2.68%.

TABLE 16. Summary of unweighted accuracies (UA%) achieved by
various researchers for Emo-DB, SAVEE and RAVDESS datasets using
10-fold cross-validation approach.

Dataset Method UA %
[73] MFMC,MFCC+SVM) 81.50
Emo-DB [29] (OpenSmile+SVM,KNN,MLP) 84.62
[64] (OpenSmile+SVM) 87.66
Proposed model 94.30
[73] (MFMC,MFCC+SVM) 75.63
SAVEE [29] (OpenSmile+SVM,kNN,MLP) 72.39
[74] (MFCC+Deep learning 1D CNN) 65.83
Proposed model 77.02
[73] (MFMC,MFCC+SVM) 64.31
RAVDESS [74] (MFCC+Deep learning 1D CNN) 75.83
Proposed model 88.54

Table 16 shows the performance of the 10-fold cross-
validation for the speaker-dependent experiments, and the
proposed model achieved 94.3%, 77.02%, and 88.54% of UA
for Emo-DB, SAVEE, and RAVDESS datasets respectively.

Based on Table 16 our model has obtained the highest
classification UA for all used three datasets. Regarding the
Emo-DB dataset, our model has outperformed the closest
work in the state-of-the-art [64] by 6.64%.

Regarding the SAVEE dataset, our proposed model
achieved 1.39% higher UA than the second highest
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result. While for RAVDESS dataset, we can clearly see
that our novel model has achieved an outstanding UA
(88.54%).

To compare the performance of our proposed model with
the state-of-the-art studies, a number of recent works that
used FAU Aibo dataset and followed the 2009 challenge
protocol are presented in Table 17. It is obvious that the
proposed model in this work has outperformed these studies
by 45.9% of UA accuracy, as an indication of the usefulness
of it for non-acted emotional datasets as well besides the acted
ones.

TABLE 17. Summary of unweighted accuracies (UA%) achieved by various
researchers for FAU Aibo dataset followed the 2009 challenge protocol.

Dataset Method UA %
[75] (Spectrogram+Deep learning eResNet) 41.3

FAU Aibo [78] (Spectrogram+Deep learning BLSTM) 45.4
[79] (Spectrogram+Deep learning 2D CNN) 41.1
[76] (Handcrafted+SVM,NN,DNN) 453
[77] (MRA+SVM) 452
Proposed model 459

Among the studies mentioned in Table 14, 15 and 17,
some of them have adopted spectrogram-based features
with deep learning and have achieved distinguished results.
In the Emo-DB dataset and speaker-independent approach,
authors in [62] and [65] have achieved a classification
accuracy of 84.99% and 82.82% respectively using 3-D
Log-Mel spectrums from raw speech signals and feed them to
3-D attention-based convolutional recurrent neural networks
(ACRNN). Additionally, Jiang et al. [30] extracted 3-D log
Mel-spectrograms from the speech signal and fed it to a
parallelized convolutional recurrent neural network (PCRN)
model and recorded 84.53% UA. However, our proposed
model is able to outperform these spectrogram-based features
with deep learning and achieved UA of 86.80%. On the
other hand, when adopting a 5-fold cross-validation method,
researches [31], [62] applied their spectrogram-based deep
learning model on Emo-DB and have achieved better results
than other models. Mustageem et al. [31] achieved 91.14%
UA by using salient features from the speech spectrogram
with deep bidirectional LSTM to learn the Spatio-temporal
information for detecting the last state of the emotion model.
Again, our proposed model achieved 91.64% UA exceeding
the model of [31] by 0.5%. Spectrogram-based features with
deep learning models are also applied to the RAVDESS
dataset [31], [72], however, in spite of its good achieve-
ment unlike the EMO-DB, the work of [71] outperformed
them.

Regarding the Aibo dataset, one can notice that
the highest achieved result in the previous works is
using spectrogram-based features with deep learning
models [75], [78], [79]. Shih et al. [78] achieved 45.4% UA
by extracting deep spectrum representations and developing
a deep learning model with the attention enhanced FCN and
BLSTM networks. Our proposed model is once again able to
outperform the mentioned study by achieving UA of 45.9%.
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VI. CONCLUSION AND FUTURE WORK

We proposed a novel recurrent based architecture for time
series speech emotion recognition classification by using
bidirectional late fusion ESN based on the reservoir model
space representation with sparse random projection. Early
fusion of the temporal features generated by bidirectional
reservoir leads to the loss of independency from both repre-
sentations. Thus, to avoid the drawback of the linear combi-
nation representation of both directional representations pro-
duced by dimension reduction, we proposed the late fusion
of the representations, which is applied later to the dimension
reduction step to overcome this problem.

On the other side, dimensionality reduction of sparse data
by using SRP is reported to be useful to prepare a more
compact and informative representation for the classifier.
SRP reduces the dimensions and preserves the distances in
addition to the fact that random projection has a low com-
plexity since it does not need training. Because of the small
size of features and a nontrainable ESN method, our model is
fast and more robust to achieve better performance. Another
factor that has a notable impact on increasing the performance
of our model is the use of Bayesian optimization to opti-
mize ESN hyperparameters. The Bayesian optimization in
our work has been adopted to fix a large number of parameters
in the proposed model and has shown an ability to record a
good performance.

This proposed model has come out with the highest clas-
sification UA compared to the previous works on SER
when using 5-fold and 10-fold speaker-dependent, LOSO
speaker-independent on Emo-DB, SAVEE, and RAVDESS
datasets, and speaker-independent on FAU Aibo.

A single reservoir suffers from generating a comprehensive
representation and from the randomness assigned to it. For
this reason, in future work, we intend to use more than one
reservoir to create a more typical representation of the input
data that captures more information independently of the
input data.
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