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ABSTRACT The synchronverter algorithm is a way to control a switched mode power converter that
connects a DC energy source to the AC power grid. The main features of this algorithm are frequency and
voltage droops as well as synthetic inertia, so that the inverter resembles a synchronous generator (SG).Many
versions of this algorithm have been proposed and tested, but all share the same ‘‘basic control algorithm’’,
which is based on the equations of a SG.We analyze the sensitivity of the output currents of a synchronverter,
with respect to the measurement errors. We show that some of the sensitivity functions exhibit high gains
at the relevant frequencies, leading to distorted grid currents, which makes the use of this inverter control
algorithm problematic. We then do a similar analysis assuming that we have controlled current sources
available at the grid output of the converter, that we control using virtual currents generated in the algorithm.
The virtual currents are flowing through virtual output inductors, that we can choose to be significantly larger
than the actual output inductors. We show that using the current sources reduces the sensitivity considerably,
thus indicating a better approach to synchronverter design.

INDEX TERMS Inverter, inertia, Park transformation, synchronverter, virtual synchronous machine, fre-
quency droop, voltage droop, virtual impedance, current control.

I. INTRODUCTION
The shift of the power grid towards distributed generation
raises serious questions about the stability and robustness of
a grid where most of the power comes from inverters. Most
researchers seem to agree that the future inverters must inherit
some features of synchronous generator and their prime
movers, such as frequency and voltage droops and inertia,
see for instance [1]–[3], [5], [8], [9], [11], [19], [23], [28],
[30], [34]. One way to meet this demand are synchronverters,
introduced in [35], and further developed in [2], [6], [7], [9],
[10], [20], [22], [24], [25], [27]–[29], [31]–[33] and several
other references.

The hardware of a synchronverter is the same as for
a conventional three phase inverter, except that some DC
energy storage is required to emulate inertia. This extra
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storage is normally provided by capacitors or batteries. The
novelty lies in the control algorithm, which is based on
the (simplified) model of a synchronous generator (SG).
In some respects synchronverters are even better for the
stability of the grid than SGs, because their parameters
are adjustable and they can react faster to changes on
the grid.

This paper investigates two related topics: (1) The sensitiv-
ity of the currents of a synchronverter functioning according
to the basic synchronverter algorithm, when connected to
a powerful grid modeled as an infinite bus, with respect
to voltage and current measurement errors. (2) The same
sensitivity, when the synchronverter works with a virtual out-
put impedance, and the resulting virtual output currents are
used as reference signals for ideal current sources injecting
currents into the grid. We show that the sensitivities are much
reduced in the second case, and hence we suggest that future
developments should follow this road.
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FIGURE 1. An inverter with an LC filter receiving DC voltages V+, V− and
connected to the AC grid with voltages va, vb and vc .

To deal with these aims, we recall the fifth order grid-
connected synchronverter model, that takes into account the
measurement errors, a variation of the model in our recent
paper [16], where the measurement errors are ignored. The
equilibrium points of the resulting system are of course
the same as for the model in [16], as discussed there.
For the sensitivity analysis, we do a small signal analysis
around the stable equilibrium points of this model.

For the proper operation of an individual inverter we need
the sensitivity of the inverter currents with respect to grid volt-
age and current measurement errors to be small. Our research
is motivated by the following practical observation: in a
synchronverter running under the basic algorithm from [35]
or one of its later variations, such as the one in [20], the errors
can be very disturbing, causing strong distortions of the grid
currents, especially at relatively low power. This issue has
been pointed out also in our recent conference paper [26],
however no detailed analysis has been provided.

To understand intuitively where the problem lies with the
synchronverter designs from [20], [34], [35], we look at
the simplified circuit diagram of a grid-connected inverter
in Figure 1, taken from [16]. The outputs of the algorithm
are the desired averages (over one switching cycle) of the
voltages ga, gb and gc at the output of the inverter legs. In the
original algorithm from [35], ga, gb and gc are the internal
synchronous voltages of the virtual SG, while in the version
of [20] they are the voltages after the virtual inductor, which
is (n−1) times the output filter inductor, as shown in Figure 2
(taken from [20]). (In this paper we do not consider the virtual
series capacitor introduced in [20], which is very large so
that it has an influence only near the frequency zero.) Thus,
the original algorithm is a particular case of the one in [20],
corresponding to n = 1, and here we consider the version
with arbitrary n ≥ 1 for greater generality. The reasons
for increasing the output impedance of the inverter using
virtual inductors and virtual resistors have been explained
in [20], [21]. In short, the inverter with the classical synchron-
verter algorithm would be unstable with the very small values
of Ls and Rs that are usually found in commercial inverters,
and increasing the real filter inductor by a factor of about
30 would make it very bulky and expensive.

A voltage measurement error 1va in phase a may be due
to a combination of sensor imprecision, calibration errors,
quantization errors, and processing delay. This error will
cause a similar sized error1ga in the signal ga, because ga is

FIGURE 2. The output circuit of a synchronverter with filter inductor Ls
and its resistance Rs. ea is the synchronous internal voltage. The output
filter elements multiplied with (n− 1) are virtual. Only phase a is shown.

approximately following va. This will cause an error current
1ia that, expressed via its Laplace transform 1̂ia, is given by:

1̂ia(s) =
1

Lss+ Rs
1̂ga(s).

For a typical inverter of 10 kW nominal output, Ls would
be around 2 mH, resulting in an impedance of around 0.63�
at the nominal grid frequency of 50 Hz. Hence, having 1ga
of the order of 4 V (which is a normal value according to
our experience, and is a small error when expressed as a
percentage of the AC voltage range) will result in 1ia of
the order of 6 A, which is intolerably high. One can try to
fight this phenomenon by striving for very high precision in
measurements and calibrations, and devising all sorts of inge-
nious ways to compensate for the processing delay. However,
overall this is a losing battle, and this has led us to seek a
fundamentally different approach.

Very briefly, the new approach is to add current loops to
the inverter, let the synchronverter work with virtual cur-
rents, which results in a very robust system, and then use
the virtual currents as reference values for the current loops.
If the current loops are good, they can be regarded, at least
for low frequencies (hundreds of Hz), as controlled current
sources. As already mentioned, we do the sensitivity analysis
both for the algorithm from [20], [35] and also for this new
approach when we have current sources at the output of the
inverter, to understand whether this reduces the sensitivity
of the currents with respect to measurement errors. It will
turn out that indeed, the sensitivity will be reduced by a large
factor, approximately n− 1.
The fifth order mathematical model of the grid connected

synchronverter containing the measurement errors is derived
in Section II. In Section III we briefly recall the main results
on the equilibrium points and the stability of this model,
derived in our recent paper [16]. In Section IV we perform
a small signal analysis around the stable equilibrium points,
and we provide Bode plots of the resulting sensitivities,
for a typical 10kW inverter. These plots confirm what we
have said about sensitivities in this section. In Section V
we derive the model and the sensitivities of synchronvert-
ers with ideal current sources at their outputs, and we plot
these sensitivities for synchronverters with the same param-
eters as in the example in Section IV. The comparison will
show that indeed the current sources lead to a significant
improvement.
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FIGURE 3. The simplified block diagram of a synchronverter with
measurement errors, adapted from Figure 2 in [20].

II. MODELLING THE GRID-CONNECTED
SYNCHRONVERTER WITH MEASUREMENT ERRORS
In this section we review the basic fifth order model of a
synchronverter connected to a sinusoidal, balanced grid with
very low impedance, known as an ‘‘infinite bus’’. This model
is based on those in [16], [20], [35], which in turn are based
on the equations of a SG, as found for instance in [12], [13].
The novelty here is that we also include the influence of
the grid voltage and output current measurement errors.
We follow the terminology and notation of [16]. The sim-
plified model of a synchronverter, given in Figure 3, shows
how the voltage measurement errors η and the current mea-
surement errors ξ influence the signals in a synchronverter.
The model ignores low-pass filters included in the algo-
rithm to reduce high frequency noise, as well as saturation
blocks included in the algorithm for stability and protection
(see [6], [20]).

Let θg denote the grid angle and ωg the grid frequency,
so that ωg = θ̇g. The nominal grid frequency is denoted by
ωn. Let θ denote the synchronverter rotor angle, and ω its
angular velocity, so that ω = θ̇ . The difference δ = θ − θg is
the power angle. Then the grid voltage vector is

v =

√
2
3
V
[
sin θ sin

(
θ −

2π
3

)
sin
(
θ +

2π
3

)]>
, (1)

where V is the rms value of the line voltage.
Denote by Mf > 0 the peak mutual inductance between

the virtual rotor winding and any one stator winding, by if
the variable field current (or rotor current) and by e the vector
of electromotive forces, also called the internal synchronous
voltage. We rewrite [35, eq.(4)]:

e = Mf if ω
[
sin θ sin

(
θ −

2π
3

)
sin
(
θ +

2π
3

)]>
. (2)

We apply the unitary Park transformation U (θ ) to (1) and
(2). For any three dimensional signal v, the first two com-
ponents of U (θ )v are called the dq coordinates of v, denoted

by vd , vq. By using the notation m =
√
3/2Mf , we obtain

vd = −V sin δ, vq = −V cos δ, (3)

ed = 0, eq = −mif ω. (4)

The voltage sensors measure va, vb and vc, while the cur-
rent sensors are placed to measure iga, igb and igc, in order to
avoid most of the switching noise. From the measurements,
ia, ib and ic must be estimated, by adding to iga, igb, igc the
currents flowing to the filter capacitors (see Figure 1).

Denote by η = [ηd ηq]> the voltage measurement errors,
and by ξ = [ξd ξq]> the current measurement errors,
expressed in dq coordinates. Thus, the synchronverter control
algorithm gets [(vd+ηd ) (vq+ηq)]> as grid voltage measure-
ments in dq coordinates. Similarly, [(id + ξd ) (iq + ξq)]> are
the estimated synchronverter output currents, expressed in dq
coordinates.

We have already introduced the voltages g = [ga gb gc]>

that the synchronverter algorithm sends to the PWM block.
Note that the basic algorithm is a special case of the one
presented below, corresponding to n = 1. In the basic
synchronverter algorithm, we have g = e. According to the
modified synchronverter equations [20, eq.(22)] and taking
into account the measurement errors, we have

gd =
(n− 1)(vd + ηd )+ ed

n
, gq =

(n− 1)(vq + ηq)+ eq
n

.

By applying the Park transformation on the circuit equa-
tions corresponding to Figure 2, we have

Ls
d id
d t
= −Rsid + ωLsiq + gd − vd , (5)

Ls
d iq
d t
= −ωLsid − Rsiq + gq − vq. (6)

Here, Ls and Rs are the inductance and the resistance of
the output filter inductor. Combining (4)-(6) and using the
notation

R = nRs, L = nLs,

we get the differential equations of the grid currents:

L
d id
d t
= −Rid + ωLiq + V sin δ + (n− 1)ηd , (7)

L
d iq
d t
= −ωLid − Riq − mif ω + V cos δ + (n− 1)ηq. (8)

The angular frequency satisfies the swing equation

J
dω
d t
= Tm − Te − Dpω + Dpωn, (9)

where J > 0 is the virtual inertia of the rotor, Tm > 0 is the
nominal active mechanical torque from the prime mover,

Te = −mif (iq + ξq) (10)

is the estimated electric torque computed using the measured
output currents and Dp > 0 is the frequency droop constant.
The torque Tm is computed from Pset (the desired active
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power) and Qset (the desired reactive power) using the for-
mula

Tmωn = Pset + R
P2set + Q

2
set

V 2 . (11)

The justification for this formula will be in Proposition 3.
From the definition of the power angle δ:

d δ
d t
= ω − ωg. (12)

The instantaneous inverter output reactive power is

Q = vqid − vd iq = V [iq sin δ − id cos δ], (13)

see for instance [20, eq.(16)]. Due to the measurement errors,
the following estimate Qest of Q is computed in the basic
synchronverter control algorithm: at equilibrium

Qest = (vq + ηq)(id + ξd )− (vd + ηd )(iq + ξq)

≈ V [(iq + ξq) sin δ − (id + ξd ) cos δ]+ ηqid − ηd iq,

(14)

where we have neglected products of error terms.
The field current if evolves according to [20, eq.(15)],

which represents the integral controller that adjusts the field
current:

Mf
d if
d t
=

1
K

[
Q̃− Qest

]
, (15)

Q̃ = Qset + Dq

(
vset −

√
2
3
V

)
. (16)

In (15), K > 0 is a large constant. The value Q̃ represents
a compromise between tracking the reference reactive power
Qset and tracking the reference value vset for the amplitude of
v. Tracking vset makes sense only if the inverter is connected
to the infinite bus through a line impedance, and not directly,
as in our model. Still, our model reflects the full field current
controller. In (16), Dq > 0 is the voltage droop coefficient
and V is as in (1). Denote

k =

√
3
2
V
K
.

The fifth order grid-connected synchronverter model that
includes voltage and current measurement errors can be con-
structed by combining the equations (7)-(15), with state vec-
tor z ∈ R5. The input of this model is the measurement error
vector u ∈ R4. The components of z and u are

z =


id
iq
ω

δ

if

 , u =


ηd
ηq
ξd
ξq

 . (17)

We write this model as a nonlinear dynamical system:

Hż = A(z)z+ B(z)u+ f (z), (18)

where

H =


L 0 0 0 0
0 L 0 0 0
0 0 J 0 0
0 0 0 1 0
0 0 0 0 m

 , f (z) =


V sin δ
V cos δ

Tm + Dpωn
−ωg
k
V Q̃

 ,

A(z) =


−R ωL 0 0 0
−ωL −R −mif 0 0
0 mif −Dp 0 0
0 0 1 0 0

k cos δ −k sin δ 0 0 0

 ,
and

B(z) =


n− 1 0 0 0
0 n− 1 0 0
0 0 0 mif
0 0 0 0
k
V iq −

k
V id k cos δ −k sin δ

 .
Remark 1: The model in [16], [20] uses a ‘‘saturating inte-

grator’’ for integrating the right-hand side of (15), in order to
ensure that if stays in a reasonable operating range. This helps
in proving stability with a relatively large region of attrac-
tion in [16], and it helps the system overcome faults. In the
analysis of this paper, we ignore the saturating integrator,
our model uses just a simple integrator, which is reasonable
since in practice, the saturation limits are very rarely reached,
it happens only during faults.
Remark 2: The instantaneous active power P from the

synchronverter to the grid (see also [20, eq.(17)]) is

P = vd id + vqiq = −V [id sin δ + iq cos δ]. (19)

Solving the equations (13) and (19) for the dq currents, we
get the following nice formula:[

iq
id

]
= −

1
V

[
cos δ − sin δ
sin δ cos δ

] [
P
Q

]
. (20)

III. EQUILIBRIUM POINTS OF THE FIFTH ORDER
GRID-CONNECTED SYNCHRONVERTER
In this section we briefly recall some results on the equilib-
rium points of the fifth order model (18) (of a grid-connected
synchronverter), based on [16]. In the sequel, angles are
always regarded modulo 2π , i.e., δ and δ+2π are considered
to be the same angle.

To find the equilibrium points of the model (18), we set
u = 0 and ż = 0 in (18). The following result, taken from
[16, Sect. 4], concerns mainly the equation that must be
satisfied by the active power P at an equilibrium point.
Proposition 3: Consider the model (18), with u = 0.

We assume that R,L, J ,m,Dp,Dq,V , ωg, ωn, vset > 0 and
the real parameters Tm and Qset are given. We denote

T̃m = Tm + Dp(ωn − ωg),

and we use the notation Q̃ introduced in (16). A necessary
condition for this system to have equilibrium points is

4R2Q̃2
≤ V 4

+ 4RV 2T̃mωg. (21)

118988 VOLUME 9, 2021



Z. Kustanovich et al.: Sensitivity of Grid-Connected Synchronverters With Respect to Measurement Errors

At every equilibrium point of this system we have

ωe = ωg, Te = T̃m, Q = Q̃, (22)

and P satisfies the equation

T̃mωg = P+ R
P2 + Q̃2

V 2 . (23)

Remark 4: The formula (23) is used in the synchronverter
algorithm to determine the value of the parameter Tm, if the
reference values Pset and Qset are given and if some estimate
(for instance, zero) is adopted for the differences ωn − ωg
and vset −

√
2/3V . If we adopt the estimates ωg = ωn and

√
2/3V = vset , then this computation of Tm reduces to (11).
Remark 5: The equilibrium points of (18), with u = 0,

come in symmetric pairs. Indeed, if ze = [ied i
e
q ωg δ

e ief ]
> is

such an equilibrium point, then also

z̃e = [−ied − i
e
q ωg δ

e
+ π − ief ]

>

is an equilibrium point. The intuition behind this is clear: if we
rotate the rotor by a half circle and at the same time invert the
current if in the rotor, then due to the symmetry of the rotor
we get the same rotor field (in the fixed coordinate system of
the stator). Thus, if the system was at equilibrium before this
rotation by π , then it must be again at equilibrium.
Remark 6: There is an exceptional infinite set of equilib-

rium points of the system (18), which corresponds to the
parameters Tm and Qset chosen such that

T̃m = 0, Q̃ = −
V 2ωgL

R2 + ω2
gL2
=: QM . (24)

In these equilibria, ief = 0, so that the rotor is inactive,
the angle δe can be chosen freely, and the currents id and iq
can then be computed from (20). The active power in these
equilibrium points is

PM = −
V 2R

R2 + ω2
gL2

. (25)

Denote M = (PM ,QM ) ∈ R2. The set of equilibrium
points of (18) where ief > 0 can be parametrized by the
corresponding powers (P,Q), and then it is a two-dimensional
manifold diffeomorphic to R2

\ {M}.
Remark 7: The real system can never reach an equilibrium

point with the property ief ≤ 0. The reason is that the
synchronverter algorithm that controls the true system has a
saturating integrator to compute if , as explained in Remark 1,
and the minimum value of if is set to be positive.

The following theorem, also taken from [16, Sect. 4], tells
us how to compute the equilibrium points of (18) correspond-
ing to given values of the parameters T̃m and Q̃, except for the
exceptional values discussed in Remark 6.
Theorem 8: We work under the assumptions of Proposi-

tion 3, with T̃m and Q̃ given. Then the model (18), with u = 0,
has equilibrium points if and only if (21) holds.

Suppose that (21) is true, and let us denote by Pl and
Pr the two real solutions of (23), so that Pl ≤ Pr , and

Pl+Pr
2 = −

V 2

2R . At every equilibrium point ze =

[ied ieq ωg δ
e ief ]

> that corresponds to the given T̃m and Q̃,
we have P = Pl or P = Pr .

Let P be the active power at an equilibrium point ze as
above. Assume that P and Q̃ are not the exceptional pair M
described in (24) and (25). Then the equilibrium angle δe

satisfies

tan δe =
ωgLP− RQ̃

RP+ ωgLQ̃+ V 2
. (26)

If the angle δe is measured modulo 2π , and (21) holds
with strict inequality, then the model (18) has precisely four
equilibrium points. Two of them, denoted by zel and zer , have
the property that ief > 0. At zel , P = Pl , and at zer , P = Pr .
There are also the two symmetric equilibrium points z̃el and
z̃er where i

e
f < 0, as described in Remark 5.

If (21) holds with equality, then Pl = Pr = −V 2/2R and
the model has precisely two equilibrium points, which are a
symmetric pair, as described in Remark 5.

Once δe has been found, the values ied and ieq can be
computed from (20), and if can be computed from (10) (with
ξq = 0 and Te = T̃m).

IV. SMALL SIGNAL ANALYSIS
We consider the output of the system (18) to be the grid
currents (in dq coordinates), y = [id iq]>. We linearize
this system near the stable equilibrium point, to explore the
small signal behavior of the dq currents as a result of the
measurement errors. Define the small signal state variables

îd = id − ied , îq = iq − ieq, ω̂ = ω − ωg,

δ̂ = δ − δe, îf = if − ief .

Denote ẑ = [îd îq ω̂ δ̂ îf ]> (the state deviation from
equilibrium) and ŷ = [îd îq]> (the output deviation).
We define a function F : R5

× R4
→R5 as follows:

F(z,u) = A(z)z+ B(z)u+ f (z). (27)

The linearized system will be of the form

H ˙̂z = Alinẑ+ Blinu, ŷ = Clinẑ, (28)

where Alin is the Jacobian Alin = ∂F/∂z computed at the
equilibrium point ze with u = 0, while Blin = ∂F/∂u (evalu-
ated at the same point). ThematrixClin is simply the projector
from R5 to R2 by selecting the first two components. Denote

again k =
√

3
2
V
K , then the matrices of the linearized model

(28) are

Alin

=


−R ωgL Lieq V cos δe 0
−ωgL − R − mief − Li

e
d − V sin δe − mωg

0 mief − Dp 0 mieq
0 0 1 0 0

k cos δe −k sin δe 0 − v0 0

,
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where

v0 = k
(
ied sin δ

e
+ ieq cos δ

e
)
,

Blin =


n− 1 0 0 0
0 n− 1 0 0
0 0 0 mief
0 0 0 0
k
V
ieq −

k
V
ied k cos δe −k sin δe

 ,
and

Clin =

[
1 0 0 0 0
0 1 0 0 0

]
.

The transfer functionG(s) = Clin[sI−H−1Alin]−1H−1Blin
can be computed from the above matrices, but its analytic
expression is very complicated.

Naturally, we are only interested in asymptotically stable
equilibrium points, i.e., those where H−1Alin is a stable
matrix. There is a detailed discussion on stable equilibrium
points of (18) in our paper [16], and we sketch a result from
there.We assume that R,L, J ,m,Dp,Dq,V , ωg, ωn, vset > 0
are fixed (as in Proposition 3). The real parameters Tm and
Qset can be changed by the user, giving rise to a manifold of
equilibrium points. We consider only the submanifold where
if > 0 (there is also a symmetric submanifold with if < 0,
as explained in Remark 5). This submanifold (with if > 0)
can be parametrized by the powers P and Q: for every pair
(P,Q) ∈ R2 except for the singular point M defined in (24)
and (25), there is a single equilibrium point with if > 0.

We define a point C ∈ R2 by C = (−V 2/2R, 0).
We denote byS the angular sector inR2 that is bounded by the
line CM and the vertical line passing throughC , see Figure 4,
which has been adapted from [16]. Normally, the state of a
synchronverter is kept in a region contained in S, because
for well chosen parameters, equilibrium points for which
(P,Q) ∈ S and P2 + Q2 is not too large, are stable. Below
we try to explain this stability issue a bit more, but for the full
details we refer to [16].

It has been shown in [16, Sect. 5] that if (P,Q) is in S
and a certain 4th order model is stable (which is often the
case), and if (P,Q) is not too large (which is true within the
normal operating range of the inverter), then for k > 0 suffi-
ciently small, the model (18) is asymptotically stable around
the corresponding equilibrium point. This fact is illustrated
in Figure 4, which refers to Example 1 later in this section.
The figure shows the points C and M for this example,
the sectorS and the part of the sector where the stability of the
fourth order model is true, highlighted in green. This being
a converter of nominal power 9 kW, the region of interest
H is, say the disk defined by

√
P2 + Q2 ≤ 20 kW, shown

in Figure 4. Within H, we see that the green part is exactly
H ∩ S. The figure also shows the set of stable equilibrium
points of the model for four different values of k .

In the following, we will illustrate the excessive sensitivity
of the synchronverter to measurement errors by using Bode
amplitude plots for a numerical example.

FIGURE 4. The stable regions of the grid-connected synchronverter from
Example 1, for four values of the gain k . Only the region H (a disk with
center at the origin) is of practical interest, and within the disk H,
stability holds for points (P,Q) above the line CM.

Example 1: We use the parameters of a synchronverter
designed to supply a nominal active power of 9 kW to a grid
with frequency ωg = 100π rad/sec (50 Hz) and line voltage
V = 230

√
3 Volts. This is based on a real inverter that we

have built, see [15]. The parameters are: J = 0.2 kg·m2/rad,
Dp = 3 N·m/(rad/sec), Ls = 2.27 mH, Rs = 0.075 �,
K = 5000 A, n = 25, Dq = 0 VAr/Volt, m = 3.5 H. We take
Tm = 31.69 Nm (according to [20, eq.(24)], this mechanical
torque corresponds to Pset = 9000W andQset = 0 VAr). For

simplicity we let vset =
√

2
3V = 325.26 Volt, Qset = 0 VAr,

so that Q̃ = 0, and m = 1. We have R = nRs = 1.875 �,
L = nLs = 56.75 mH, φ = 83.99◦, and If = [1.3; 13.4].
Note that at the grid frequency, positive (negative) measure-
ment error sequences are mapped through the Park transfor-
mation into constants (sinusoids with frequency 2ωg). There-
fore, when looking at the Bode plots from Figures 5 and 6,
we have to focus our attention to the frequency range [0, 2ωg].

From Theorem 8 we know that there are four equilibrium
points. We are interested in the two that have ief > 0:

ied,1
ieq,1
ωg
δe1
ief ,1

 =

−15.24
−16.68
314.16
42.42◦

0.54

 ,

ied,2
ieq,2
ωg
δe2
ief ,2

 =

−235.04
−2.38
314.16
−90.58◦

3.81

 .

Some routine computations show that the first equilibrium
point is stable and the second one is unstable.

We mention that if we compute the active power P at the
above two equilibrium points according to (19), we get that
P = 9 kW at the stable equilibrium point (which is exactly
Pset ) whileP = −93.64 kWat the unstable equilibrium point.
This corresponds to what we expect based on Theorem 8.
It can be verified that the two symmetric equilibrium points
x̃e1 and x̃

e
2 (where i

e
f < 0) are unstable.
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FIGURE 5. The gains from the measurement errors to id , near the stable
equilibrium point for Example 1. These are Bode amplitude plots, with
the axes in dB and in Hz.

It is not true that one of the two equilibrium points with
if > 0 (whose existence is guaranteed by Theorem 8) has
to be stable. Indeed, if we modify this example by taking
K = 100 A (instead of 5000 A), then both equilibrium
points with if > 0 are unstable. It is possible that, simi-
larly to the main result of [21], under additional assumptions
on the parameters, (18) has a stable equilibrium point that
is almost globally asymptotically stable - this is an open
question.

Figure 5 shows the Bode amplitude plots of the small signal
transfer functions from each measurement error to id , at the
stable equilibrium point. Figure 5(a) shows a large gain from
ηd to id at the grid frequency (which corresponds to the
frequency zero in dq coordinates). This gain is of the order
of 3 dB, which means that a voltage measurement error of 4 V
(entirely plausible, as it is about the resolution of the voltage
sensor) would cause a current deviation of about 6 A, which
is unacceptable. (This particular conclusion was already pre-
sented in Section I, based on an intuitive argument, while
here we have deduced it from more precise computations.)
An even larger peak of the gain from ηd to id occurs around
the frequency 30 Hz in dq coordinates. The gain from ηq to
id is almost as large as the gain from ηd to id , and again we
see a peak around 30 Hz.

Figure 6 shows the Bode amplitude plots of the transfer
functions from the measurement errors to iq. The plots in
Figure 6 are less critical than those in Figure 5. Note that in
both Figures 5 and 6, the gains from the current measure-
ment errors to the output currents are less disturbing than
the gains from the voltage measurement errors to the output
currents.

FIGURE 6. The gains from the measurement errors to iq, near the stable
equilibrium point for Example 1. These are Bode amplitude plots, with
the axes in dB and in Hz.

V. SENSITIVITIES OF THE SYNCHRONVERTER WITH
IDEAL CURRENT SOURCES AT ITS OUTPUTS
In the previous section, we have shown that the output cur-
rents of a classical synchronverters are very sensitive to the
grid voltage measurement errors. To overcome this problem,
we propose to use controlled current sources at the output
of the converter. We will modify the basic control algorithm
accordingly. Similar modifications have been proposed, for
instance, in [3], [10], [17], [19], [22], [26]. An interesting
recent synchronverter design is in [7], which proposes to
include an output admittance synthesizer in the control algo-
rithm of the inverter, that enables to allocate desired output
admittance values at multiples of the grid frequency, sepa-
rately for the positive and negative sequence components, and
without the need to measure the grid voltages. This technique
allows to obtain very clean sinusoidal output currents (it is
an interesting question whether this is desirable for the grid).
Our design will behave like a SG, so that if the grid voltages
are distorted or unbalanced, then the currents will also be
distorted or unbalanced, since they are ‘‘trying to counteract’’
the distortions on the grid.

A simplified representation of the proposed modified AC
output power circuit of the converter is as shown on Figure 7,
that shows only one out of three identical phases. In this
modified version of the synchronverter algorithm, we use the
virtual currents ivirt = [ivirt,a ivirt,b ivirt,c]> as references for
the current sources and also for computing the electric torque.
The virtual impedance consists of an inductor Lg ≈ nLs in
series with a resistor Rg ≈ nRs. Since Lg and Rg are much
larger than Ls and Rs, the voltage measurement errors will
influence the output currents much less, as we show below.
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FIGURE 7. A modified synchronverter with controlled current sources at
its output (only one phase is shown). ea is the synchronous internal
voltage.

We denote again by η = [ηa ηb ηc]> the voltage measure-
ments errors in the three phases. Then the virtual current in
phase a satisfies the differential equation

Lg
d ivirt,a
d t

+ Rgivirt,a = ea − (va + ηa)

and we have similar equations for the other phases.
Applying the Park transformation and using (4), (3), we get

Lg
d ivirt,d
d t

= −Rgivirt,d + ωLgivirt,q + V sin δ − ηd , (29)

Lg
d ivirt,q
d t

= −ωLgivirt,d − Rgivirt,q−mif ω + V cos δ − ηq.

(30)

The measured synchronverter output currents (in dq coor-
dinates) are (ivirt,d+ ξ̃d ), (ivirt,q+ ξ̃q), where the measurement
errors ξ̃d , ξ̃q are partly due to the original measurement errors
ξd , ξq and partly due to the imperfection of the controlled
current sources.

The electric torque computed using ivirt is

Te = −mif ivirt,q

and the estimate Qest of the instantaneous output power is
computed in the control algorithm by

Qest = (vq + ηq)ivirt,d − (vd + ηd )ivirt,q
≈ V [ivirt,q sin δ − ivirt,d cos δ]+ ηqivirt,d − ηd ivirt,q.

(31)

In the model of the new system, the currents id , iq are
replaced with ivirt,d , ivirt,q. Comparing the equations (29),
(30) with their counterparts from (7), (8) (remembering that
Lg ≈ nLs = L, Rg ≈ nRs = R) shows that what has changed
is that the influence of ηd , ηq on the (virtual) currents has
been decreased by a factor 1/(n− 1). The equilibrium points
of the new system are the same as for the model (18). In the
linearization of the new system, that looks similarly to (28),
the matrices Alin and Clin remain the same, but in the matrix
Blin the terms n− 1 have been replaced by 1. The other rows
of Blin remain unchanged, so that we do not get an overall
(n− 1) times reduction of the influence of ηd , ηq, but we still
get a substantial improvement, as we shall see in the Bode
plots corresponding to Example 1 from the previous section.

FIGURE 8. The gains from the measurement errors to id , near the stable
equilibrium for Example 1, for the original and the modified system.
These are Bode amplitude plots, with the axes in dB and in Hz.

Figure 8 shows a comparison between the Bode amplitude
plots of the small signal transfer functions from each mea-
surement error to id , at the stable equilibrium point for the
original and modified system. Figure 8(a) shows a decrease
of approximately 20 dB for the gain from ηd to id at the grid
frequency (which corresponds to the frequency zero in dq
coordinates). This new gain is of the order of−17 dB, which
means that a voltage measurement error of 4 V (the resolution
of the voltage sensor) would cause a current deviation of
about 0.56 A, which is acceptable.

Figure 9 shows the Bode amplitude plots of the transfer
functions from the measurement errors to iq for the original
and the modified system. These plots also show a consider-
able improvement due to the use of the current sources.

VI. EXPERIMENTAL RESULTS
We have built a small 3 level inverter with nominal power
2.5kW designed for grid voltages up to 230V rms, see Figure
10. The output filter parameters are Ls = 7.2mH,Rs = 0.2�,
with filter capacitor Cs = 2.2µF, with an ST microcontroller
executing the algorithm every 100µsec. We have realized
on this inverter both the ‘‘old’’ algorithm from [20] with
J = 0.04kg · m2, Dp = 0.06kg · m2/s, Dq = 0, K = 2000 A
and n = 20, as well as the algorithm with current sources
described here, that we call the ‘‘new’’ algorithm for brevity.
The details of the current source design are not essential
for this paper and would take much space, so we give them
separately in [14]. For the new algorithm we have chosen
Lg = nLs and Rg = nRs, and the other parameters are the
same as for the old algorithm, so that if there would be no
measurement errors, then in both cases the grid connected
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FIGURE 9. The gains from the measurement errors to iq, near the stable
equilibrium for Example 1, for the original and the modified system.
These are Bode amplitude plots, with the axes in dB and in Hz.

FIGURE 10. The inverter used in our experiments.

inverter would follow the model (18) with u = 0. This allows
us to make a realistic comparison of the sensitivity of the
currents to measurement errors using the two algorithms.

In both algorithms, there are various extra details that
we do not describe here: start-up procedures, current limi-
tations, torque limitations, various low-pass filters to reduce
the noise, as well as large virtual capacitors in series with the
output, to prevent DC currents. These extra details have very
little influence when the inverter is working normally.

Because of the high sensitivity of the old algorithm to mea-
surement errors, we have cautiously done all these compari-
son experiments at a low grid voltage of 70 V rms (using an
autotransformer). Figure 11 shows the grid voltagesmeasured
at the inverter legs at idle. It is clear that these voltages are
distorted, and moreover the three phases are not balanced,
with phase a having 1.3% lower voltage than phase c and
phase b having 2.7% lower voltage than phase c.

FIGURE 11. The grid voltages measured at the inverter output with the
inverter disconnected.

FIGURE 12. Grid currents when the inverter works at steady state and a
rectangular pulse shaped measurement error is introduced at time t = 0.
(a) With the old algorithm. (b) With the new algorithm. The blue curve,
denoted ηa, indicates a 5 msec measurement error of 4V added to
phase a.

FIGURE 13. The grid current id during repeated 5 msec measurement
error pulses of 4V on phase a.

FIGURE 14. The grid current iq during repeated 5 msec measurement
error pulses of 4V on phase a.

Figure 12 shows the grid currents of the inverter running
at steady state, with Pset = 200 W and Qset = 40 VAr,
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FIGURE 15. The active power during repeated 5 msec measurement error
pulses of 4V on phase a.

FIGURE 16. The current id when a 5% calibration error is introduced on
phase a at t = 1.

FIGURE 17. The current iq when a 5% calibration error is introduced on
phase a at t = 1.

as measured by external Hall sensors not connected to the
inverter. The currents are distorted because the grid voltage is
distorted, as we have seen earlier. At amoment denoted t = 0,
we artificially introduce a voltage measurement error of 4V
lasting for 5 msec in phase a, via the inverter control software.
With the old algorithm, this measurement error causes a
considerable overshoot of the current in phase a, lasting for
about one period. The same experiment conducted with the
new algorithm shows no visible impact on the currents.

Figures 13 and 14 show the influence of measurement error
pulses on phase a (of the same amplitude and duration as
before) on id and iq. The pulses are repeated every second.
The data shown has been extracted from the microcontroller.

We see that the impact of the pulses is significantly larger
with the old algorithm than with the new one.

Figure 15 shows the impact of these pulses on the active
power. In the case of the old algorithm the calculated active
power exhibits disturbances lasting for about 100 msec.

We have conducted experiments where at first we have
let the inverter work at steady state, and then at t = 1 we
have artificially introduced a calibration error of 5% on phase
a, proportional to the measured signal. Figures 16 and 17
show the currents id and iq, as extracted from the micro-
controller. This calibration error introduces disturbances
with an amplitude of about 380 mA in id and iq with
the old algorithm, while only about 120 mA with the new
algorithm.

VII. CONCLUSION
We have presented the sensitivity analysis for a fifth order
synchronverter model connected to an infinite bus, with
respect to voltage and current measurement errors. We have
shown that the sensitivity of the grid currents to voltage
measurement errors is too large to be acceptable, leading to
distorted grid currents (as observed in experiments). We have
proposed a modification of the basic control algorithm by
using current sources controlled by virtual currents gener-
ated in the algorithm, via virtual output impedances. Com-
puting the sensitivities for an example, we have seen that
this modification dramatically improves the synchronverter
sensitivities. The design of these current sources, integrated
with the synchronverter design, is a long story that will be
discussed in the paper [14]. Our computations and simulation
results are well supported by experimental results, where we
have compared the sensitivity of the currents of an inverter
running according to the algorithm from [20] against the
new algorithm proposed here. To make the comparison fair,
we have taken the virtual impedances in the new algorithm
equal to n times the real filter impedance of the inverter,
so that the mathematical models describing the two inverters
are equal, except for the influence of the measurement errors.
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