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ABSTRACT The ultrasonic anemometer is widely used in the field of wind speed measurement in the
coal mine. To compensate for the error of wind speed caused by the shadow effect, we propose a method
based on kernel extreme learningmachine combinedwith particle swarm optimization (PSO-KELM). Firstly,
we established and analyzed the simulation experiment by computational fluid dynamics (CFD). Secondly,
we used the PSO to optimize the parameters of the KELM. The evaluation indexes of the PSO-KELM on
the test set are better than other regression models. Finally, the accuracy of the PSO-KELM was verified
by experimental data obtained by the ultrasonic anemometer in the wind tunnel. The results show that
the compensation effect of the PSO-KELM is better than other regression models. The PSO-KELM model
proposed in the paper can effectively compensate for the error of wind speed, and make the measurement
results of the ultrasonic anemometer more accurate.

INDEX TERMS Ultrasonic anemometer, coal mine, shadow effect, kernel extreme learning machine, error
compensation.

I. INTRODUCTION
Accurate measurement of wind speed in coal mine roadway is
one of the necessary guarantees for safety production [1], [2].
By accurately measuring the wind speed of the coal mine
roadway, we can calculate and analyze the migration pro-
cess of gas, dust, and other harmful gases [3]. And we can
control the distribution of temperature and humidity in the
coal mine roadway in real-time. Traditional anemometers are
used widely, but they have the limitation of low sensitivity,
and they need human intervention [4], [5]. In the complex
environment of high humidity and high dust in the coal mine,
the accuracy of traditional anemometers is low. Therefore,
to realize the effective monitoring of ventilation parameters,
people need an intelligent mine wind anemometer with strong
stability and high measurement accuracy urgently.

With the development of science and technology, the tech-
nology of ultrasonic wind measurement is gradually mature.
The ultrasonic anemometer has many advantages, such as
no rotating parts, easy installation, stable performance, low
maintenance cost, and no start-up wind speed [6]–[8]. How-
ever, in the measurement process of the ultrasonic anemome-
ter, the specific wake area will be formed behind transducers
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on the windward side, which will make the wind speed on the
leeward side lower. This phenomenon is called the shadow
effect. Due to the shadow effect, there is a deviation in
the measurement process of wind speed. Researchers have
studied the influence of the shadow effect on the ultrasonic
anemometer. Horst et al. [9] studied the dependence of trans-
ducer shadowing on sonic path geometry, wind direction,
and atmospheric stability with simulations, and proposed that
the flow distortion within a non-orthogonal CSAT3 sonic
anemometer is primarily due to transducer shadowing. Nev-
ertheless, there is a principal shortcoming in this method,
that is, the results depend on the comparison between son-
ics and the correction of dimensionless turbulence statistics,
as well as the limited wind-direction range. With this in
mind, Nasab et al. [10] proposed the compensation function
to calibrate the sensor outputs by several wind-tunnel tests on
the single-axis ultrasonic anemometer. They placed the signal
path of the ultrasonic anemometer at various azimuthal angles
concerning the wind direction. This method works well when
the anemometer rotates continuously around its vertical axis.
While in the actual measurement process, it is difficult to
compensate for the error caused by the shadow effect quickly.
And the process of obtaining data is complex. Given this,
Yang and Chen [11] proved the numerical method can effec-
tively verify the influence of transducer shadowing on the
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wind velocity by the data obtained from Fluent software. The
compensation method they proposed is effective to analyze
the influence of the shadow effect on measurement results
through simulations. And the wind speed error is reduced to
1.74 % by this method. However, we have higher accuracy
requirements in some cases, so the measurement accuracy of
this method still needs to be further improved. They might
consider using advanced learning methods to process data.
The shadow effect has a great influence on the accurate mea-
surement of wind speed. Therefore, it is very important for us
to solve the measurement error caused by the shadow effect.
Unfortunately, there is still a lack of specific methods to
compensate for the wind speed of the ultrasonic anemometer
and make the measurement results more accurate.

With the significant improvement of computer perfor-
mance, the machine learning algorithm has been used in
many fields widely [12]–[15]. The regression algorithm is
a typical classification in the machine learning algorithm.
There are many common regression algorithms, such as
support vector regression (SVR) [16], [17], extreme learn-
ing machine (ELM) [18], [19], back-propagation neural net-
works (BPNN) [20], [21], and decision tree (DT) [22]–[24],
etc. The kernel extreme learning machine uses the method
of stable kernel mapping to replace the random genera-
tion of some parameters in ELM, and it has the advantages of
fewer adjustment parameters and fast convergence [25]–[27].
KELM has superior performance in practical application.
Lu et al. [28] realized the single-step prediction of burn-
ing zone temperature by combining the sliding time win-
dow and KELM method. As we can see, the single average
running time of KELM is 0.0002s, which is significantly
shorter than SVR. The KELM method greatly reduced the
single average running time of model training and predic-
tion. Shamshirband et al. [29] proposed that the potential of
KELM to predict the daily horizontal global solar radia-
tion from the maximum and minimum air temperatures is
appraised. They compared the KELM regression model with
the SVRmodel, and the evaluation index of the KELMmodel
is better than SVR. The results show that KELM regression
has a good prediction effect. In addition to comparing with
SVR, we can also compare with other regression models.
With this in mind, Fu et al. [30] proposed a KELM tech-
nique to predict the indicators of Holstein dry cows’ diet
digestible energy (DE) and energy digestibility (ED) and
compared the prediction effect of theKELMmodel with other
regression models. The prediction results showed that the
KELM was superior to other methods in most performance
indexes. These studies show that the KELM model has good
performance in the field of prediction. In addition, KELM
has been successfully applied to short-term passenger flow
prediction [31], short-termwind speed forecasting [32], smart
grid protection [33], etc. Based on the good regression perfor-
mance of KELM, it is selected to compensate for the shadow
effect of the ultrasonic anemometer. Although the KELM
regression model has excellent performance, it is sensitive to
the parameter setting. It takes a lot of time to determine the

optimal parameters of KELM manually. Therefore, we need
to adopt the common algorithm to optimize the parameters of
the KELM model.

Particle swarm optimization (PSO) is derived from the
study of the predation behavior of birds. The basic idea of
the particle swarm optimization algorithm is to find the opti-
mal solution through cooperation and information sharing
among individuals in the group. It is easy to implement,
and it does not need to adjust many parameters [34], [35].
Zhu et al. [36] used PSO to optimize the parameters of chaos
recurrent adaptive neuro-fuzzy information system (CRAN-
FIS) and predicted the ground vibration. As we can see,
the PSO model can effectively improve the limitations of
the CRANFIS algorithm, such as slow convergence, etc. The
model is more reliable and accurate after optimization. And
the effect is better than ANN and other models. In addition,
Tang et al. [37] used PSO to optimize the parameters of SVR
and predicted the cooling capacity and system coefficient
of performance of the battery thermal management system.
They compared the PSO-SVR model with the SVR model.
The results show that the effect of the PSO-SVR model was
better than the SVR model. By considering these application
examples, the PSO algorithm is selected as the optimization
algorithm of the KELM model.

Based on these, we propose an error compensation method
for the wind speed of the mine ultrasonic anemometer based
on Fluent and the PSO-KELMmodel. First of all, we built the
hardware model and designed a mine high-precision ultra-
sonic anemometer based on the ultrasonic time-difference
method. However, if we study the influence of the shadow
effect systematically, we need immense experimental data.
The operation process of obtaining these data in the wind
tunnel is very complex, and the cost of the experiment is
high. Therefore, we consider using the theoretical analysis
method to study the error compensation method for wind
speed. Computational fluid dynamics (CFD) is widely used
in aviation, meteorology, industry, and chemistry [38]–[43].
In the paper, the shadow effect of ultrasonic anemometer
under different wind speeds is modeled and simulated by
Fluent software. We analyze the influence of the shadow
effect on the ultrasonic anemometer. We use simulation data
to provide sample data for the error compensation algorithm
and establish the KELM regression model. We use the PSO
algorithm to optimize the parameters of KELM and use the
PSO-KELM regression model to compensate for the wind
speed of the ultrasonic anemometer. The accuracy of the
PSO-KELM regression model is verified by the measured
data obtained from the wind tunnel. The methods and results
of the paper provide a certain reference value for the error
correction of the wind speed. At the same time, it realizes the
intelligent detection of wind speed in the coal mine roadway
and ensures the efficiency of tasks in the coal mine.

This research aimed to explore whether PSO-KELM
is suitable for the error compensation of wind speed.
Section 1 contains the literature review. The rest of the paper
is organized as follows: Section 2 contains principles and
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methods. The construction and optimization of the KELM
model are described in this part. Section 3 contains modeling
and simulation. Section 4 contains the results and discussion.
The KELM model is compared with the SVR, BP, ELM, and
DT model, respectively. And the KELM model is optimized
by the PSO algorithm. At the same time, the performance
of the model is compared according to the evaluation index.
Section 5 contains the conclusions of this study.

II. PRINCIPLES AND METHODS
A. PRINCIPLE OF ULTRASONIC TIME-DIFFERENCE WIND
MEASUREMENT
When the measurement of wind speed parameters in the coal
mine is inaccurate, the number of accidents will increase.
As we can see in Table 1, these accidents that occurred in
the coal mines have caused a large number of casualties and
economic losses. Therefore, it is necessary for us to improve
the measurement accuracy of wind speed.

TABLE 1. Accidents occurred in the coal mines.

Normally, we calculate the wind speed by the ultra-
sonic time-difference method. Figure 1 shows the schematic
diagram of the principle of the ultrasonic time-difference
method. We can see two pairs of transmitter-receiver ultra-
sonic transducer probes on the ultrasonic anemometer. Their
positions are constant. They emit ultrasonic pulse trains at a
fixed frequency. In the presence of wind, the wind speed will
have the effect of superposition or reduction on the propaga-
tion velocity of ultrasonic, and it will cause two kinds of con-
ditions: tailwind or headwind.We calculate the wind speed by
measuring the propagation time of ultrasonic waves between
probes. In Figure 1, the east-west direction corresponds to
the x-axis, and the north-south direction corresponds to the
y-axis. In the presence of wind, the wind speed (ν) can
vectorially decompose into the wind speed component (vy) in
the y-axis and the wind speed component (vx) in the x-axis.

FIGURE 1. Schematic diagram of the principle of the ultrasonic
time-difference method.

The distance between each pair of opposite-type ultrasonic
probes is D.

In the y-axis direction, the TSN is the propagation time in
the tailwind, and TNS is the propagation time in the headwind.
At the same time, in the x-axis direction, the TWE is the
propagation time in the tailwind, and TEW is the propagation
time in the headwind. In the y-axis direction, the wind speed
(vy) can be expressed as follow:

vy = D (TNS − TSN )
/
(2TSNTNS) (1)

Similarly, the wind speed (vx) can be expressed as follow:

vx = D (TEW − TWE )
/
(2TWETEW ) (2)

When TSN , TNS , TWE , and TEW are measured, the wind
speed (v) can be expressed as follow:

v = D
√
(1
/
TSN − 1

/
TNS )2 + (1

/
TWE − 1

/
TEW )2 (3)

Obviously, the core of the ultrasonic time-difference
method is to measure the propagation time. As we can know,
the actual process of the wind tunnel test is very complex
and the test cost is high. With this in mind, we should study
the influence of shadow effect on wind speed by simulation
method. In the actual processing process, we just need to
record the propagation time of ultrasonic waves, and we can
quickly calculate the wind speed at this time. However, in the
simulation process of Fluent, it is difficult to get the propa-
gation time. The simulation data obtained by Fluent are just
the wind speed at each point of the wind tunnel in the simula-
tion model. Therefore, we should apply the ultrasonic time-
difference method to the simulation process of Fluent. The
flow chart of the practical application of the ultrasonic time-
difference method is shown in Figure 2. Due to the influence
of the shadow effect, the propagation velocity of each point on
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FIGURE 2. Flow chart of the ultrasonic time-difference method.

the measurement path will change unevenly, and wind speed
change along the measurement path. Therefore, we adopt the
infinitesimal method and divide the measurement path into
N segments averagely. Each segmentation point is taken as a
detection point.

In Figure 1, the length of each segment (1D) is D/N ,
then the average velocity of each segment is (vN−1 + vN )

/
2.

When N tends to infinity, the length of each segment tends to
zero. At this time, the average velocity of each segment can
be used to replace the instantaneous velocity. The velocity
of each point on the measurement path can be obtained
by Fluent software, and then the propagation time of each
segment can be obtained. After superposition, we can obtain
the propagation time between probes. The specific formulas
of the propagation time are as follows:

t+ =
N∑
i=1

1t+i =
N∑
i=1

1D
vC + (vi + vi−1)/2

(4)

t− =
N∑
i=1

1t−i =
N∑
i=1

1D
vC − (vi + vi−1)/2

(5)

where t+ is the propagation time in the tailwind and t− is the
propagation time in the headwind.1ti is the propagation time
in each segment, vC is the propagation speed of the ultrasonic
wave, and vi is the wind speed of the i-th detection point.
According to formulas (4) and (5), if we want to get

accurate wind speed, the key is to get the wind speed at
N + 1 detection points. But each detection point is affected
by the shadow effect differently. Therefore, we simulate the
influence of the shadow effect on the ultrasonic anemometer
in the wind tunnel accurately by CFD. After obtaining sample
data of each detection point, we use the regression model of
the machine learning algorithm to compensate for the error
of sample data and obtain a more accurate wind speed value.

B. PRINCIPLE OF REGRESSION ALGORITHM
1) KELM
ELM is a novel single-hidden layer feedforward neural net-
work (SLFN). The input weight and hidden layer offset of
ELM can be assigned randomly. There is no need to update
through multiple iterations.

KELM replaces the feature mapping in ELM with kernel
matrix, which makes KELM more stable and accurate than
ELM.

The schematic diagram of ELM is shown in Figure 3.

FIGURE 3. Schematic diagram of ELM.

As we can see in Figure 3, suppose n samples constitute
sample sets: A = {(x1, y1), (x2, y2), · · · (xn, yn)}. y1 =
(y1, y2,. . . , yn), l is the number of nodes in the hidden layer.
s(x) is the output of the hidden layer. O(x) is the output
function of ELM. The formula of O(x) is as follow:

Ol(x) =
l∑
i=1

βisi(x) = s(x)β (6)

where βi is the weight between the i-th hidden layer neuron
and the output layer, si(x) is the output vector generated by
the i-th hidden layer node. β̂ = s†T can be used to calculate
the optimal output weight (β̂) of β, where s† is the Moore-
Penrose generalized inverse of s. In the paper, the kernel
function is used to replace the random initial number in ELM,
so the output function of KELM is as follow:

O(x) =

 K (x, x1)
...

K (x, xN )


T

(
I
C
+ ssT )−1Y (7)

where C is the regularization coefficient and K (x, xN ) is
the kernel matrix. The kernel functions in KELM include
linear kernel function, polynomial kernel function and
Gaussian (RBF) kernel function. The function of RBF is
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as follow:

k(x, y) = exp(−‖x − y‖2
/
k1) (8)

where k1 is the parameter of the kernel function.

2) PARAMETER OPTIMIZATION OF THE KELM
Particle swarm optimization (PSO) is a parallel optimiza-
tion algorithm that imitates the birds’ predation behavior.
It has the characteristics of fast convergence and strong global
searchability. Each particle in the particle swarm represents
the possible solution of a problem, and the intelligence of
solving the problem is realized through the information inter-
action between individual particles.

In the training process of the KELM, the type of ker-
nel function, the parameters of the kernel function, and the
penalty coefficient play an important role in the learning
accuracy and generalization ability of the KELM model.
Therefore, we use the PSO algorithm to optimize the param-
eters of the KELM.

The processing flow of the PSO-KELM regression model
is shown in Figure 4. As we can see, we need to optimize
the parameters of the KELM model and obtain the error
compensation method in the next step.

TheGaussian kernel function is used as the kernel function.
The penalty coefficient (C) is the tolerance of error, and g is
the parameter of the RBF function. We get a good regression
model by finding the best parameters C and g. The basic
processes of KELM parameter optimization by PSO are as
follows:

(1) Divide the training set and the test set of the KELM
model, and select the search interval of C and g;

(2) Initialization particle swarm optimization randomly,
and determine the position and speed;

(3) The calculation and evaluation of particle fitness values
are carried out;

(4) Change individual speed and position;
(5) Find and determine the optimal parameters C and g;
(6) Select the optimal solution C and g, and establish the

PSO-KELM regression model.
After we obtain the PSO-KELM model, we need to calcu-

late the evaluation index of the model and analyze the results.
Finally, we get the optimal error compensation method we
need.

3) EVALUATION INDEX
The effect of wind speed error compensation is determined by
the comparison of the evaluation indexes, such as mean abso-
lute percentage error (MAPE), mean absolute error (MAE)
and R-Square (R2).
The formula of MAPE is as follow:

MAPE =
100%
z

z∑
p=1

∣∣∣∣ q̂p − qpqp

∣∣∣∣ (9)

FIGURE 4. The processing flow of the PSO-KELM regression model.

The formula of MAE is as follow:

MAE =
1
z

z∑
p=1

∣∣q̂p − qp∣∣ (10)

The formula of R2 is as follow:

R2 =

z∑
p=1

(
q̂p − q̄p

)2
z∑

p=1

(
q̄p − qp

)2 (11)

where z is number of samples, q̂p is the processed value, qp is
the actual value, q̄p is the average value of the actual value.
In the process of evaluation, the better the smaller the value

of the MAPE and MAE, and the R2 just the opposite.

III. MODELING AND SIMULATION
A. HARDWARE AND APPEARANCE DESIGN
1) HARDWARE DESIGN
Figure 5 shows the schematic block diagram of the ultrasonic
anemometer. When we design and develop the ultrasonic
anemometer, we choose the STM32F103 microprocessor as
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FIGURE 5. Schematic block diagram of ultrasonic anemometer.

the control core. And it is equipped with many functional
modules, such as Ultrasonic transmitting and receiving, Fre-
quency output, LCD, Communication, etc. Keil µ Vision5 is
selected as an integrated development environment. Mean-
while, we also set up the upper computer system. To ensure
the safety of workers, we deal with the intrinsic safety of the
ultrasonic anemometer.

2) APPEARANCE DESIGN
The wind direction of the coal mine roadway is single. Con-
sidering the practicability and portability of the equipment,
we design the appearance of the ultrasonic anemometer reli-
ably. Figure 6 is the physical diagram and three views of the
ultrasonic anemometer designed by our team. It consists of
an upper shell, a lower shell, and a battery back cover. The
radius of the ultrasonic sensor is 3mm, the inner diameter
of the upper cylinder is 40mm, and the outer diameter is
54.5mm. The height of the whole ultrasonic anemometer is
200mm, and the distance between each pair of opposite-type
ultrasonic probes is 84.62mm.

B. MODELING AND SIMULATION
1) MODELING AND MESHING
While building the hardware model, we need to build the sim-
ulation model with Fluent software. The purpose of building
the simulation model is to obtain the wind speed data and
provide the sample data for the algorithmmodel. Then we can
obtain the error compensation method accurately. The flow
chart of the simulation established by CFD software is shown
in Figure 7.

Based on the requirements of the ultrasonic anemometer’s
hardware model, we design it by SOLIDWORKS.

FIGURE 6. Physical drawing and three views of the ultrasonic
anemometer.

We import the file exported from SOLIDWORKS into
Gambit software and carry out the simulation of experiments
in the wind tunnel. Figure 8 shows the air domain model
created in Gambit software. In the process of building the
air domain, the larger air domain can improve the calculation
accuracy, but also increase the amount of calculation. When
the size of the air region is ten times that of the device model,
the accuracy is enough for the calculation requirements.
Based on this, the wind tunnel model is a cylinder with a
height of 2m and a radius of 1m. After building the air domain
model, we import it intoWorkbench 14.5 for boundary setting
and mesh generation.

Before we carry out the calculation of the finite volume
method, it is necessary to mesh the model before CFD
simulation. Figure 9 shows the grid division of ultrasonic
anemometer model. The upside of Figure 9 shows the grid
division of the computational domain. The inlet is the air
intake, and the outlet is the air outlet. We establish the wall
named wall-wai in the wind tunnel at the same time. The
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FIGURE 7. The flow chart of the simulation established by Fluent.

FIGURE 8. Air domain model created by Gambit.

calculation area is so large. To see the grid division clearly,
the grid division around the ultrasonic anemometer shows in
the lower part of Figure 9. The middle part on the upside of
Figure 9 is the ultrasonic anemometer, and its periphery is the
air domain. The model adopts a non-uniform grid division.
Not only can we simulate the changes of the flow field near
the ultrasonic anemometer accurately, but also we can reduce
the calculation time of the simulation.

2) SIMULATION AND RESULT ANALYSIS
In the paper, the wind field distribution of the ultrasonic
anemometer and its vicinity were simulated by Fluent soft-
ware. When the wind speed is low, the trajectory of fluid
particles is a regular smooth curve, which is called laminar.

FIGURE 9. Grid division of ultrasonic anemometer model.

When the wind speed exceeds a certain range, the trajectory
of fluid particles presents an irregular flow, and vortices
appear in the flow field. This phenomenon is called turbu-
lence. In hydrodynamics, Reynolds number (Re) is used to
divide laminar and turbulence, and the formula is as follow:

Re =
ρνD
µ

(12)

where ρ is the fluid density, ν is the fluid velocity, D is
the characteristic length, µ is the viscosity coefficient of
the fluid. When the Reynolds number is small, the laminar
model is used for the simulation. As the wind speed increases,
so does the Reynolds number. When the flow state of the
fluid is converted to turbulence, we need to add the governing
equation of turbulence. After the grid file was imported into
Fluent, we can calculate the Reynolds number according to
the solid calculation model of the ultrasonic anemometer.
When the wind speed is less than 0.17m/s, we use the laminar
model for simulation. And when the measured wind speed
value is more than 0.17m/s, we use the k-ε model for sim-
ulation. The air inlet and outlet are set to velocity type and
pressure type respectively. Because of the large number of
grids, the number of iterations sets to 400.

Figure 10 shows the velocity cloud of the Fluent simula-
tion. At this time, the input wind speed is 10 m/s. On the
left side of the graph, the color distribution changes with the
speed value. The dark part is the area affected by the shadow
effect. According to the theoretical method proposed above,
we can calculate the wind speed affected by the shadow
effect.

IV. RESULTS AND DISCUSSION
A. ACQUISITION OF EXPERIMENTAL DATA
By dividing the wind measurement path equally and substi-
tuting wind speed data of each point obtained from Fluent
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FIGURE 10. Wind field distribution of ultrasonic anemometer and its
vicinity.

TABLE 2. Conditions and parameters of the test in the wind tunnel.

software into formulas, we can calculate the accurate wind
speed data through the ultrasonic time-difference formula.
Each experiment in the paper has run several times inde-
pendently. All the experiments in this work are carried out
on a personal computer with AMD Ryzen 54600h with a
radon graphics processor, 3 GHz, 16GB RAM, and we take
Windows 10 as the operating system. In addition, we carried
out the wind tunnel test in Huaibei Engineering Testing Co.,
Ltd., which is located in Anhui Province, China. And we use
the mine ultrasonic anemometer developed by our team. The
conditions and parameters of the test in the wind tunnel are
shown in Table 2.

FIGURE 11. Comparison of simulated wind speed, wind speed of wind
tunnel, and expected wind speed.

Due to the complexity of the test in the wind tunnel, when
we change the input wind speed, it will take a long time for us
to make the wind tunnel stable. Therefore, we select 0.3m/s,
1.0m/s, 2.02m/s, 10.09m/s and 13.09m/s as the wind tunnel
input wind speed. At this time, the display values of the ultra-
sonic anemometer are 0.32m/s, 1.02m/s, 2.13m/s, 10.29m/s
and 13.80m/s, respectively. All the input wind speed cited
above have been simulated by Fluent software at the same
time, and we compare the calculated wind speed data with
the data of the wind tunnel measured in the field. The result
is shown in Figure 11.

In Figure 11, the wind speed of the wind tunnel is the wind
speed value measured by the ultrasonic anemometer in the
wind tunnel, simulated wind speed is the wind speed value
calculated by the Fluent software, and expected wind speed
is wind speed which we want to get. Due to the interference
of shadow effect on wind speed measurement, there is a
deviation between expected wind speed and wind speed of
wind tunnel. But the simulated wind speed value is in good
agreement with the wind speed of the wind tunnel. It shows
that the sample data used to build the PSO-KELM model in
the paper are accurate and reliable.

Figure 12 shows the comparison between actual wind
speed and expected wind speed. The actual wind speed is
the value of the wind speed simulated by Fluent, and the
expected wind speed is the real value that we want to get.
When the expected wind speed is 5m/s and 15m/s, the actual
wind speed is 5.1294m/s and 15.4366m/s separately. In the
following, we will use the data of wind speed simulated by
Fluent as the input data, and we take the expected wind speed
as the fitting target. Based on this, we can complete the goal
of error compensation for wind speed.

B. THE RESEARCH BASED ON KELM FOR ERROR
COMPENSATION OF WIND SPEED
In the paper, the samples of the wind speed obtained by
Fluent were divided into 140 training samples and 60 test
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FIGURE 12. Actual wind speed and expected wind speed.

samples. And each regression model tests 50 times. We get
the corresponding average values of MAPE, MAE, and R2,
and compare the performance of KELM, SVR, ELM, and
BP, DT regression models. The comparison of MAE, MAPE,
and R2 of KELM, BP, SVR, ELM, and DT regression models
shows in Table 3. Each regression model trains 50 times
independently, and We choose the model with the lowest
MAPE value for analysis. The number of hidden layer nodes
of ELM is 3, while that of BP is 9.

TABLE 3. Comparison of prediction results of five regression models.

On the test set, the averageMAPE of KELMwas 2.9038%.
When SVR, BP, DT, and ELM regression models were used
to predict the wind speed, the MAPE of the test set was
8.8344%, 7.3260%, 6.8512%, and 13.8386%, respectively,
which was much higher than KELM’s. In addition, the MAE
is similar to the MAPE. The MAE of the KELM is 0.1750.
The value of MAE of the KELM is much smaller than other
regression algorithms. The opposite is true for R2, and the
R2 of the KELM is the largest among several algorithms.
By comparing the MAPE, MAE, and R2 of the regression
models, we can find that KELM has the best effect on error
compensation of wind speed in the test set.

Comparing the prediction time of each regression model,
we can see that the prediction time of the BP regressionmodel
is 0.1359s. It is the longest, and it is much longer than that
of other regression models. The prediction time of ELM is

0.0004s, and it is the shortest. But the MAPE of ELM is
much higher than other regression models, and the prediction
effect of the ELM is poor. Since the ELM selects weights in
the hidden layer randomly, it leads to the poor generalization
ability of the algorithm. The KELM not only has the lowest
MAPE value, but also its prediction time is only 0.0008s.

Based on the above analysis, the Figure 13 shows the
comparison among the corrected wind speed, actual wind
speed, and expected wind speed of five regression models on
the test set. In Figure 13, actual wind speed is the wind speed
value calculated by the Fluent software, corrected wind speed
is the wind speed value corrected by the regression model,
and expected wind speed is wind speed which we want to
get. We can see that the effect of error compensation for the
wind speed of SVR, DT, and ELM is poor. In the SVRmodel,
when the wind speed is high, the corrected wind speed of the
sample point is lower than the expected wind speed, while
when the wind speed is low, the corrected wind speed of the
sample point is higher than the expected wind speed. As we
can see, the corrected wind speed and expected wind speed
of the SVR fit well in the range of 7 to 12 m/s. In Figure 13,
compared with other regression models, the corrected wind
speed of the KELM model has the best fitting degree with
the expectedwind speed in the whole range of the wind speed.
The KELM uses the method of stable kernel mapping, and it
has the advantages of fast convergence. And the data in the
paper is simple. Based on these, the KELM model can get
good results.

C. ERROR COMPENSATION FOR THE WIND SPEED OF
KELM WITH PARAMETER OPTIMIZATION
The purpose of the paper is to compensate for the error of
the wind speed of the ultrasonic anemometer so that we can
make the measurement result more accurate. When we use
the KELM regression model to compensate for the error of
the wind speed, the average value of MAPE is 2.9038%.
It is still large, so we need to optimize the parameters of
KELM further. The PSO optimization algorithm performs
well in practical applications. Based on this, the paper uses
the PSO optimization algorithm to find the best parameters
of the model.

1) ERROR COMPENSATION IN WIND SPEED BASED
ON PSO-KELM
When the parameters of KELM optimize by PSO, the max-
imum number of iterations is 100, and the initial number of
particles is 10. The initial value of C and g are 1 and 100,
respectively. The optimization range of parameter C is [2−8,
28], and the optimization range of parameter g is [2−6, 26].
The optimization curve of the KELM model optimized by
PSO shows in Figure 14. We can see that the PSO algorithm
performs well in KELM’s optimization, and the model can
converge to the optimal value quickly. At the beginning of the
iteration of the PSO algorithm, the R2 of the test set reaches
more than 0.99. And it converges to the global optimumwhen
the number of iterations is 4. At this time, the R2 is 0.9999,
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FIGURE 13. Comparison of corrected wind speed, expected wind speed
and actual wind speed of five regression model on the test sets. (a) KELM.
(b) SVR. (c) BP. (d) ELM. (e) DT.

FIGURE 13. (Continued.) Comparison of corrected wind speed, expected
wind speed and actual wind speed of five regression model on the test
sets. (A) KELM. (B) SVR. (C) BP. (D) ELM. (E) DT.

FIGURE 14. Optimization curve of KELM regression model optimized by
PSO.

the optimal value of C is 91.9888, the optimal value of g is
1.3977, and the prediction time is 0.0058s.

The comparison of MAE, MAPE, and R2 between PSO-
KELM and KELM regression models shows in Table 4.
In Table 4, PSO-KELM indicates that the parameters C and g
of the KELM model are the optimal value. KELM indicates
that the parameters C and g of the KELM model are default
setting values. On the test set, the average MAPE of KELM
is 2.9038%. After the parameters of KELM are optimized
by the PSO algorithm, the average MAPE of PSO-KELM
is 0.0974%. In other words, after parameter optimization,
the prediction accuracy of KELM is greatly improved. Due to
the PSO has the characteristics of fast convergence and strong
global searchability. Based on the data in the paper, the PSO
combined with the KELM model can achieve good results.

Figure 15 shows the comparison among the corrected wind
speed, actual wind speed, and expected wind speed of the
PSO-KELM regression model on the test set. In Figure 15,
actual wind speed is the wind speed value calculated by the
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TABLE 4. Comparison of prediction results of PSO-KELM and KELM.

FIGURE 15. Comparison of corrected wind speed, expected wind speed,
and actual wind speed of PSO-KELM regression model on the test set.

Fluent software, corrected wind speed is the wind speed value
corrected by the PSO-KELM, and expected wind speed is
wind speed which we want to get. We can see that the coin-
cidence degree of the corrected wind speed and the expected
wind speed of the sample points is very high, which indicates
that the PSO-KELM regression model has a good effect on
the error compensation of wind speed.

Figure 16 shows the relative error between the corrected
wind speed and the expected wind speed of each regression
model on the test set. After the correction of PSO-KELM,
the relative error between the corrected wind speed and the

FIGURE 16. The relative error between the corrected wind speed and the
expected wind speed of each regression model on the test set.

expected wind speed is stable between −0.2% and 0.25%,
and the relative error of the 25th sample data is the largest,
which is 0.236%. At this time, the expected wind speed is
1.1m/s, the actual wind speed is 1.1111m/s, and the corrected
wind speed is 1.1026m/s. The relative error of the 18th sample
data is the smallest, and the value is −0.023%. At this time,
the expected wind speed is 17.1m/s, the actual wind speed
is 17.6008m/s, and the corrected wind speed is 17.0961m/s.
As we can see, the corrected wind speed is very close to
the expected wind speed. Compared with the PSO-KELM
regression model, the relative error between the wind speed
corrected by other regression models and the expected wind
speed is larger. Among them, the relative error of the 25th
sample data in KELM, SVR, and BP models is the largest,
reaching 21.8581%, 59.2806%, and 26.4634%, respectively.
At this time, the expected wind speed is small, which is
1.1m/s. The relative error of the 59th sample data in the ELM
model is the largest, which is −28.3678%. The relative error
of the 39th sample data in the DT model is the largest, which
is 47.6190%. In Figure 16, we can more intuitively see that
the error compensation effect of PSO-KELM is the best in the
paper.

2) STATISTICAL TEST
In order to ensure the superiority of the PSO-KELM model,
we also carried out some calculations in a statistical test.
We adopt the method of the independent sample t-test in
statistical tests to process the results of the above regression
models. The comparison of multiple regression models in the
independent sample t-test is shown in Table 5. In Table 5,
the P-value indicates that the probability of sample observa-
tions or more extreme results when the original hypothesis
is true. If the P-value is very small, it means that the prob-
ability of the original hypothetical situation is very small.
The smaller the p-value, the more sufficient the reason for
rejecting the original hypothesis. The P-value of the PSO-
KELM is 0.993, which is greater than 0.05. This shows that
there is no significant difference between the output data of
the PSO-KELMmodel and the expected data under the 99.3%
confidence interval.

TABLE 5. Comparison of multiple regression models in independent
sample t-test.
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As we can see, the P values of all regression models used
in the paper were greater than 0.05. The average value and
standard deviation of the PSO-KELM are close to that of
the Expected value. The P-value of the DT model is the
largest. However, the smaller P does not mean that the actual
difference is greater, but the more reason to explain that there
is a difference between the two.Whether the difference is sta-
tistically significant or not and whether there is professional
actual significance are not exactly the same. Although the
P-value of the PSO-KELM model is less than that of the DT
model, the MAPE, MAE, and other evaluation indexes of the
PSO-KELM model are less than that of the DT model. In a
word, the compensation effect of the PSO-KELM model is
better than other regression models in the paper.

3) THE ACCURACY VERIFICATION OF THE PSO-KELM
REGRESSION MODEL
In the previous paper, based on the data simulated from
Fluent, we verified the superiority of the error compensation
effect of the PSO-KELM regression model. In this section,
we check the accuracy of the PSO-KELM regression model
by combining the data measured by the ultrasonic anemome-
ter in the wind tunnel further. In Figure 17, the left axis is
the wind speed value, and it shows the comparison between
the corrected wind speed, expected wind speed, and actual
wind speed of the PSO-KELM on the test set. In Figure 17,
actual wind speed is the wind speed value measured by the
ultrasonic anemometer in the wind tunnel, corrected wind
speed is the wind speed value corrected by the PSO-KELM,
and expected wind speed is wind speed which we want to
get. The right axis is the relative error of wind speed. And it
shows the relative error between the actual wind speed and
the expected wind speed, and the relative error between the
wind speed corrected by the PSO-KELM and the expected
wind speed, and the difference between the two relative
errors. We can see that the corrected wind speed tends to the
expected wind speed after the actual wind speed obtained

FIGURE 17. Accuracy verification of PSO-KEIM regression model based
on the data obtained in the wind tunnel.

in the wind tunnel input into the PSO-KELM regression
model. The relative error of the first sample data is the
largest, which is 9.3549%. At this time, the expected wind
speed is 0.3m/s, and the absolute error between the corrected
wind speed and the expected wind speed is 0.02806m/s.
The reason for the larger relative error is that the expected
wind speed is small. The relative error between the corrected
wind speed and the expected wind speed is between −0.4%
and 10%. And the coincidence degree of the corrected wind
speed and the expected wind speed of the sample points is
very high. In Figure 17, we can see that the PSO-KELM
regression model is also effective for the error compensa-
tion of data obtained by the ultrasonic anemometer in the
wind tunnel. The PSO-KELM regression model can improve
the measurement accuracy of the ultrasonic anemome-
ter. The research results of the paper have the reference
value for the development of the high-precision ultrasonic
anemometer.

V. CONCLUSION
To compensate for the error of wind speed caused by the
shadow effect, we propose a method based on kernel extreme
learning machine combined with particle swarm optimiza-
tion. Firstly, it is difficult to obtain the wind speed data in
the field, and the time cost is very high. Therefore, we use
CFD to simulate the measurement scene of the ultrasonic
anemometer in the wind tunnel and analyze the influence
of the shadow effect. Then, the KELM regression model is
established based on the data simulated by Fluent. In order to
achieve the best result of error compensation for wind speed,
we also use SVR, BP, DT, and ELM to compensate for the
wind speed data. The MAPE of the KELM is 2.9038%, and
it is smaller than that of other models. In order to improve the
error compensation effect of the KELM regression model for
the wind speed further, we use the PSO algorithm to search
KELM’s parameters automatically and then build the PSO-
KELM regression model. Finally, based on the theoretical
analysis and simulation verification, we further verify the
accuracy of the PSO-KELM regression model by combining
the measured data obtained in the wind tunnel.

The results show that (1) It is effective to use the simulation
data to study the influence of shadow effect of ultrasonic
anemometer; (2) The PSO algorithm can effectively opti-
mize the parameters of the model, and improve the effi-
ciency and reliability of modeling; (3) The KELM model
has high prediction accuracy and short training time, which
effectively avoids overfitting and has a certain generalization
ability; (4) The PSO-KELM regression model can effectively
improve the accuracy of the ultrasonic anemometer, and it
makes the measurement results of the ultrasonic anemometer
more accurate. The PSO-KELM regression model proposed
in the paper can effectively compensate for the error of wind
speed. The research of the paper has a significant value for the
workers to measure the wind speed in the coal mine roadway
accurately.
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