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ABSTRACT Computed tomography (CT) in medical is an imaging procedure employed to generate detailed
images of bones, soft tissue, internal organs, and blood vessels. However, prolonged acquisition time is yet
a bottleneck that can lead to patient discomfort in addition to the cost constrain and exposure to X-rays
used by CT. In medical imaging technologies and implementations, effective sampling and transmission
techniques are some of the main areas of study to overcome such problems. To fulfill this requirement,
the compressive sensing (CS) technique was introduced demonstrating that such compression is possible
and can be accomplished throughout the process of data restoration; and that the uncompressed frames can
be recovered employing a scalable approach of computational optimization. Sparsity averaging reweighted
analysis (SARA) was proposed in compressed imaging, exploiting multi-basis sparsity with averaging
approach and basis pursuit denoise (BPDN) with high signal to noise (SNR) results. In SARA, the processing
time is not considered due to the high processing time because of iteration in the reweighted process and
it is not feasible for the medical image that needs fast processing with high SNR result. To fulfill this gap,
this paper proposes total variation based average sparsity model with reweighted analysis for CT imaging.
The SNR, structural similarity index (SSIM), and processing time are used as performance metrics for
the comparison of the proposed and existing techniques. From detailed experimental results, the proposed
technique outperforms the existing CS techniques and is considered as a feasible solution for compressed
sensing (CS) based CT images compression with faster delay process and better visual quality for medical
images.

INDEX TERMS Average sparsity model, compressive sensing, CT images, SARA, SNR, SSIM, total
variation (TV).

I. INTRODUCTION
Computed tomography (CT) scans are employed to perform
a very significant role in disease diagnosis and surgical
planning. CT was introduced as an alternative tool designed
to help physicians in the examination of multiple diseases.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

Those tools utilize analysis of the data to evaluate the con-
dition of the patient [1]. Nevertheless, by its characteristics,
exposure to high X-ray radiations of CT scans and prolonged
acquisition time is yet a bottleneck that can lead to patient
discomfort and lifetime risk of cancer [2]. Another dilemma
related to CT images is the storage of the large size of the
image file and transmission. For instance, a total of 150 MB
size of an image file size of 512 × 512 encoded at 16-bit
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is reported for a data set comprised of 200 to 400 image
files. Managing such data is a hard task, therefore; data must
correspond to high-quality standards to guarantee that the
clinical data is accurate and reliable. Effective data compres-
sion techniques can help in the mitigation of these issues [3].

Compressive sensing (CS) provides a sampling structure
for a signal below the Nyquist sampling rate principle for
retrieving signal from a compressed amount of samples
[4]–[6]. By utilizing the CS method, simultaneous sampling
and compression of sparse signals are performed, and the
sparse signals can be reconstructed from compressed signal
in measurements process [7]. CS is approved by the U.S.
Food and Drug Administration and employed for taking the
advantage both in terms of speed and quality for the diagnosis
cases [8]. Furthermore, in the CS techniques, there is no need
for adjacent approximation within the image characteristic
and sampling pattern, i.e, medical imaging data. Medical
imaging data such as CT where prolonged acquisition time is
yet a bottleneck that can lead to patient discomfort in addition
to the cost constrain and exposure to dangerous X-rays [9].

Previously, sparsity averaging was proposed in natu-
ral images considering CS with coherent dictionaries and
the relevant algorithm is also based on the analysis of
reweighted `1 formulations, which is labeled as Sparsity
Averaging Reweighted Analysis (SARA) [10]. SARA is fur-
ther enhanced bymulti-basis sparsity averaging (M-BRA) for
4-datamedical images [11]. InM-BRA, SSIM and processing
time are considered. In medical imaging, processing time
is a critical issues and not considered in [10]. SARA is
compared with Haar type wavelet with reweighted analysis
(RW-Haar), Daubechies wavelet with reweighted analysis
(RW-Db), curvelet with reweighted analysis (RW-Curvelet),
and total variant with reweighted analysis (RW-TV).
RW-TV is a simple reconstruction method with less iteration
compared to SARA and a good comparison for SARA in the
view of processing time.

Motivated by the above discussion, total variant based
average sparsity model with reweighted analysis is proposed
for CT imaging. For CT image compression based on CS,
the signal to noise (SNR), structural similarity index (SSIM),
and processing time are employed as performance metrics.
The followings are the main contributions of the paper:
• A detailed comparative analysis of the CS method for
reconstruction in CT images filling the gap for medical
imaging, we have investigated the proposed CS tech-
nique that is benchmarked with average sparsity model,
Haar, and Curvelet.

• The performance of the proposed and the existing CS
technique is investigated in terms of performance met-
rics such as SNR, SSIM, and processing time that was
lacking in the previous studies. Evaluation of its resulted
in filling the gap of reconstruction of medical image
analysis such as CT.

• Based on the experimental results, detailed results
are provided in this study showing that the proposed
approach as CS technique outperformed the SARA

technique in terms of better SNR and lesser processing
time for reconstruction.

II. RELATED WORK
Recently, CS offered observations both in terms of engineer-
ing application aspects and theoretical aspects [7]. Distin-
guished from other compressing methods, CS promotes an
advantage in an area like slower sampling conditions, espe-
cially when dealing with medical data such as CT. Here in
CT data where prolonged acquisition time is yet a bottleneck,
a slower sampling rate is considered as a significant disad-
vantage. Research work has been performedwhile employing
the CS methods for the reconstruction of CT image based
on sampling strategy and sparse-view [12]–[14]. Approxi-
mate message passing (AMP) methods outline the popularity
for determining under-sampling CS dilemmas with arbitrary
linear estimations, but there are yet no explicit explications
on how AMP can operate with real-world obstacles. AMP is
employed for CT imaging of sparse nature where the recon-
struction is achieved by performingmodificationwithinAMP
yielding into an algorithm i.e., denoising generalized approx-
imate message passing CT. This modification is in terms of
the design of a reliable preconditioner for themethod depends
on the forward estimation model along with the Poisson non-
linear noise model [15]. Based on CSworks, a repetitive algo-
rithm is developed for the total variation (TV) minimization
of the image subjected to the restriction that the computed
projected image lies in between a particularized threshold of
the prepared image. The TV-based approach which utilizes
sparseness has proven its capacity in the reconstruction of CT
images despite smoothing of the image can result in lessening
the spatial resolution and contrast of the image [16]. The
sparsity view CT restoration problem is coped with a min-
imization composite restoration framework that combines
the wavelet frame to TV. This composite model employs
the low-frequency wavelet image coefficients TV-norm and
high-frequency wavelet image coefficients of `0 norm for
eliminating the staircase effect and providing smooth reg-
ularization [17]. Wavelet packet extensions have been the
focus of various research enigmas in the last several years.
Approximation of the L2(R) employing wavelet packets for
different transforms such as Hilbert and Hartley-like is inves-
tigated [18], [19]. For image restoration, a prior information
regularization method and reweighted TV (RTV-PIR) is pre-
sented. The RTV-PIR is based on the TV the minimization for
miss-computed as wall structures [20]. Prior discriminative
information based joint evaluation structure named discrim-
inative prior-prior image restrained CS method is presented
for the reconstruction of low dose CT image [21]. A Radon
transform based on fast pseudo polar Fourier transform is
proposed for lessening the computational restrictions and
processing time for CT images. The maximum-a-posterior
approach has opted for the analysis of the restoration pro-
cess [22]. Furthermore, a deterministic measurement matrix
is formed for the reconstruction of the original signal from
the compressed representations without the information of
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the order of sparsity [23]. Employing smoothed `o norm as
a reconstruction method [24], high-quality images are recon-
structed from CS measurements.

Deep learning (DL) approaches are extensively explored
for the CS techniques to reconstruct images in an effi-
cient manner [25]. Two versions of the unique DL model,
entitled as ADMM-CSNet are proposed that integrate the
conventional model-based CS approach and data-driven DL
approach for the reconstruction of the image from sparsely
sampled measures [26]. A multi-scale deep compressive
imaging that simultaneously acquires to disintegrate, sample,
and restore images at multi-scale is proposed. The framework
is a three-stage end-to-end training system where the primary
two stages are employed for the reconstruction followed
by the performance enhancement stage [27]. Furthermore,
a two-branch convolution residual network that is comprised
of a two-branch convolution auto-encoder network and a
residual network is proposed for CS [28]. Moreover, genera-
tive adversarial neural networks are explored in detail manner
for the reconstruction of images as CS approaches [29], [30].

Sparsity Averaging Reweighted Analysis (SARA) was
introduced for restoration considering radio-interferometric
images employing Fourier imaging [10]. Moreover, SARA
was examined employing natural images with redundant
dictionaries that are coherent [31]. In our previous work,
a detailed investigation of using the enhanced form of
the SARA method using a varying number of frames and
unique wavelet basis for medical data such as colonoscopy,
endoscopy, and MRI was performed. However, we move to
step ahead for the examination of CT images which are eval-
uated to fill the gap in the lack of SARA evaluation in med-
ical images and compared to the reweighted total variation
(RW-TV) [11].

III. METHODOLOGY
The proposed CS technique has an average sparsity model
to generate sparsity averaging and a reweighted analysis
to update the weight for TV reconstruction method. This
architecture is illustrated in Fig. 1. To obtain the prepared
image, the original CT image is processed within the data
preparation stage. The preparation starts with the data pro-
cessing as described in section IV-A followed by the spread-
spectrum (SS) [32] analysis for the CS measurements to
obtain the compressed or measured vector. Then, for the
average sparsitymodel as detailed in section III-A, generation
of a sparsity averaging basis is performed. Furthermore, this
work only concentrating on basis pursuit denoise (BPDN)
and TV approach for the CS restoration that is practiced in
the early research work for benchmarking purposes. Lastly,
a reweighted analysis is conducted for convex optimization
that is described in section III-B.

A. AVERAGE SPARSITY MODEL
Considering a CT image with n × n pixels denoted as I ∈
Rn×n and reshaped to one dimension signal (1D) s ∈ RN×1

where N = n × n. Then, s is transformed by Fourier

transform in a way of complex-valued as x ∈ CN×1, where x
denotes sparse signal according to an 9 ∈ CN×N orthonor-
mal basis. Here, the signal x is represented by a sparse
transform basis s, i.e., x = 9s for s ∈ CN×1. Moreover,
the measurement vector method y ∈ CM is modeled by
y = 8x, where 8 ∈ CM×N with M < N denotes a
measurement matrix.

A conventional approach for recovering s from y is a
convex problem subjected to mins̄∈CM ‖s‖1 and limited to
‖y−89 s̄‖2 ≤ ε, where ‖ · ‖1 is `1 norm and ε is the upper
bound of `2 norm. The recovered signal is denoted by x̂ = 9 ŝ
where ŝ is the solution for the convex problem declared above,
named as a synthesis based problem. In [4], 9 and 8 are
needed to be orthonormal according to a restricted isometry
property (RIP).

CS can be represented as multiple dictionaries with spar-
sity basis 9 ∈ CN×D having N < D, x = 9s, and
s ∈ CD. To retrieve s as synthesis problem formulation having
condition on 9 that 89 meet the requirements of RIP [33].
A theoretical approach where the signal determines the analy-
sis for the problem of `1 norm investigation is performed [34],
and is given as:

min
s̄∈CM

∥∥∥9†s̄
∥∥∥
1

subject to ‖y−8x̄‖2 ≤ ε, (1)

where 9† indicates the ad-joint operator of 9.
A CS approach is introduced named a SS framework with

a sub-sampled Fourier matrix where the multiplication of
the signal with a wide bandwidth modulation is performed.
The outcomes are validated by a mathematical investigation
of the state transition of the `1 minimization problem [32].
When 9 and 8 satisfy the basis of D-RIP along with the
representation of all frames, then the answer to (1), expressed
by ŝ satisfies the error threshold as follows:

‖ŝ− s‖2 ≤ C0ε + C1K−
1
2

∥∥∥9†s−
(
9†s

)
K

∥∥∥
1
, (2)

where
(
9†s

)
K
indicates the fittestK -iteration approximation

of 9†s while C0 and C1 are constants. The �-RIP also
reflected the same D-RIP characteristics resulting in the pre-
sentation of co-sparsity analysis model [35].

CT images are intricate and include multiple structures
yielding sparse representations in multiple bases. A dictio-
nary incorporating a concatenation of 8 Daubechies (Db)
wavelet bases 9 is expressed [31] by

9 =
1
√
8
[91,92, . . . ,98] , (3)

where 91 denotes the first Daubechies (Db) wavelet basis
and denoted as Db1, and so on 98 denoted as Db8. The
analysis-based formation is a fitting method for enhancing
the average sparsity; consequently, the subsequent method is
recommended that is equal to a new average sparsity model
which is expressed by∥∥∥9†x̄

∥∥∥
0
=

8∑
f=1

∥∥∥9†
f x̄
∥∥∥
0
. (4)
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FIGURE 1. The proposed system model of CS-based CT medical image compression.

Every frame in this formation contains the complete
knowledge of the signal, therefore a method of such nature
cannot be represented in a synthesis-based frame. For
multiple frames, prior investigations conceded a compo-
nent separation approach that decomposes the signal as
x =

∑8
f=1 xf where each segment xf in the fth basis is

sparse [36], [37].

B. TV-SA WITH REWEIGHTED ANALYSIS
Algorithm 1 detail the approach of the proposed technique
which initiates with average sparsity 9 model construction
process followed by the computation of a solution for TV γ ki
employing (6). Then for enhancing the initial TV solution,
the process of reweighted is conducted as a loop. The loop
of the reweighting process is terminated subjected to the
condition that the successive solutions are smaller than the
restrained η ∈ (0, 1), or the highest number of iterations, tmax ,
has been obtained.

TV is a typical regularizer that takes use of natural images
with a piecewise smooth structure. In image, TV norm penal-
izes the presence of edges to achieve sparsity of image
edges. Isotropic TV convention is applied, which a group `2,1
sparsity penalty to penalize horizontal and vertical forward-
differences jointly are used. For the example, ‖x‖TV =∑N

i=1 ‖T ix‖2, where T i ∈ R2×N denotes a TV matrix whose
rows performs the extraction of the horizontal and vertical
forward differences of the ith pixel of x ∈ RN . Furthermore,
reweighted TV (RW-TV) is commonly declared as an itera-
tive algorithm:

x̂(k+1) = argmin
x≥0

1
2
‖y−MAx‖22 + γ0

N∑
i=1

γ
(k)
i ‖T ix‖2 , (5)

where the goal is to retrieve from measurements y ∈ RM ,
the underlying signal x ∈ RN

+ (e.g., a vectorized non-negative
image), that has been linearly operated on by matrices

Algorithm 1 The Proposed Algorithm
Input: y, 8, β, η, σx , tmax , and ε
Output: Reconstructed image x̂
Construct average sparsity 9
Compute TV solution γ ki
Initialization ρ = 1, t = 1, υ(0) = σx(9†x̂(0)), and
W (0)
= 1;

while t < tmax and p > η do
Weight matrix updateW (t)

ij = f (υ(t−1), x̂(t−1))δij, for
i, j = 1, . . . ,G with x̂(t−1) = 9†x̂(t−1);
Compute a solution x̂(t) = γ (k+1)

i with W (t)
ij ;

Update υ(t) = max
{
βυ(t−1), σx

}
;

Update ρ =

∥∥∥x̂(t)−x̂(t−1)∥∥∥
2∥∥∥x̂(t−1)∥∥∥

2

;

t ← t + 1;
end

A ∈ RN×N indicating a convolution operator (i.e., Toeplitz)
and M ∈ {0, 1}M×N representing a masking matrix whose
rows are a subset of the rows (i.e., M ≤ N ) of an identity
matrix defining the non-masked pixel support.

The parameter γ0 refers to the TV regularization parameter

while the individual weights γi are a function of
∥∥∥T ix̂(k)∥∥∥

2
,

i.e., the ith weight

γ
(k+1)
i =

1∥∥∥T ix̂(k)∥∥∥
2
+ ε

, (6)

includes the ith edge of the previous iteration’s estimation in
its denominator, as well as a tiny positive constant ε to prevent
weights from blowing out to infinity. Iteratively, active edges
will be penalized less, encouraging them to be active, while
inactive edges will be penalized more.
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IV. EXPERIMENT
A. DATASET AND DATA PREPARATION
For an overarching CT image compression analysis of the
patients who had head, neck, and lung cancer, L3 abdom-
inal axial CT images were obtained [38]. The data set
was acquired by one expert operator using Slice-O-Matic
V4.3 software at the Cross Cancer Institute (CCI), Uni-
versity of Alberta, Canada. Total data of 100 images in a
512× 512 pixels resolution DCM file format. The resolution
of the CT images is recorded in DICOM format for the
specific implementation and may be taken from 512×512 up
to 64×64. In addition, the pixels values of theDICOM images
are transformed to gray images; mean they are standardized
to [0, 1].

B. PERFORMANCE METRIC
For the performancemetric of themethods as a reconstruction
quality, the signal-to-noise ratio (SNR) and structural similar-
ity index (SSIM) is opted in this paper.

The SNR is determined as:

SNR = 20log10

(
‖s‖2∥∥s− ŝ∥∥2

)
, (7)

where s and ŝ indicates the original images and reconstructed
images.

The SSIM is a perceptual metric that reflects the quality
deterioration produced by data compression or by losses in
data transmission is given as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (8)

where

l(x, y) =
2µxµy + Co
µ2
x + µ

2
y + Co

,

c(x, y) =
2σxσy + Cp
σ 2
x + σ

2
y + Cp

,

s(x, y) =
σxy + Cq
σxσy + Cq

, (9)

where µx and µy are the local means, σx and σy are standard
deviations, and σxy is cross-covariance for CT images x, y.
If Cq is used as default, Cq = Cp/2, and α = β = γ = 1

is set for exponents, the SSIM interprets to:

SSIM(x, y) =

(
2µxµy + Co

) (
2σxy + Cp

)(
µ2
x + µ

2
y + Co

) (
σ 2
x + σ

2
y + Cp

) . (10)

V. RESULT
This section evaluates the proposed technique by comparing
with SARA, reweighted Haar (RW-Haar), and reweighted
curvelet (RW-Curvelet), in terms of SNR, SSIM, and process-
ing time. The ratio of (M ) and (N ) is the most critical variable
and M

N ≤ 0.5 denotes sampling ratio under Nyquist rate.
Therefore, the simulation condition is defined as follows: the
sampling ratio (MN ) number is [0.1, 0.2, . . . , 0.5], the maxi-
mum number of iterations of the reweighted algorithm is 10,

the minimum relative change in the solution is 10−3, L = 4
is used for the wavelet level decomposition, and Daubechies
type.

A. SNR RESULT
The SNR of the reconstructed images is calculated using
(7) and evaluated for the proposed technique, SARA,
RW-Haar, and RW-Curvelet. The SNR results are presented
in box plot and shown in Fig. 3 for 100 CT images. The red
line in box plot denotes median, the lower edge of the blue
box denotes 25th percentile, the upper edge of the blue box
denotes 75th percentile, and the black dashed line denotes
upper and lower adjacent of the SNR results. The X-value
of the figure corresponding four different method (Proposed,
SARA, RW-Haar, RW-Curv.) and Y-value is the SNR results.
The proposed technique outperforms all existing CS tech-
niques with higher median result in box plot at all MN setting
as presented in Fig. 3.

Fig. 3(a) show the highest adjacent at SNR = 50.86 dB
for the proposed technique and the lowest adjacent at SNR =
5.99 dB for RW-Haar. The proposed technique outperforms
SARA, RW-Haar, and RW-Curvelet in median, maximum,
25%, 75%, lower adjacent, and upper adjacent of 100 SNR
results. For lower adjacent of SNR results, the proposed
technique achieves SNR = 11.85 dB and SARA achieves
SNR = 10.85 dB, where the proposed technique outperforms
SARA with the SNR gap is 1 dB in the box plot. The upper
adjacent of the proposed technique is 52.25 dB and the upper
adjacent of SARA is 51.24 dB, where the different of the
upper adjacent result is 1.01 dB. For 25th percentile of SNR
results, 16.23 dB and 15.37 dB are achieved by the proposed
technique and SARA, respectively. For 75th percentile of
SNR results, 47.49 dB is achieved by the proposed technique
and SARA achieves 46.23 dB. Clearly, the proposed tech-
nique outperform all method with higher SNR at MN = 0.1.

From Fig. 3(b), the highest adjacent at SNR = 60.55 dB is
achieved by the proposed technique and the lowest adjacent
at SNR = 12.41 dB is achieved by RW-Curvelet. Clearly,
the proposed technique outperforms SARA, RW-Haar, and
RW-Curvelet, in terms of median, upper adjacent, lower
adjacent, 25th percentile, 75th percentile of the SNR results.
For the lower adjacent of SNR results, the proposed tech-
nique achieves SNR = 20.15 dB, SARA achieves SNR =
19.21 dB, RW-Haar achieves SNR = 13.53 dB, and
RW-Curvelet achieves SNR = 12.41 dB in the box plot. The
upper adjacent of the proposed technique, SARA, RW-Haar,
and RW-Curvelet are 60.55 dB, 57.76 dB, 49.27 dB, and
50.70 dB, respectively. For 25th percentile of SNR results,
27.52 dB is achieved by the proposed technique, 26.20 dB is
achieved by SARA, 18.46 dB is achieved by RW-Haar, and
15.92 dB is achieved by RW-Curvelet. For 75th percentile
of SNR results, the proposed technique achieves 56.55 dB,
SARA achieves 52.134 dB, RW-Haar achieves 37.76 dB,
and RW-Curvelet achieves 46.80 dB. The proposed technique
outperforms all CS techniques with higher SNR at MN = 0.3.
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FIGURE 2. An example of CT images. First, original image is processed to prepared image. Second, mask
is used to measure the prepared images for measured image. Third, measured image is reconstructed
using TV based SA method. Last, the result from TV-SA is perform reweighted TV to get reconstructed
image.

FIGURE 3. Box plot of SNR results. (a) M
N = 0.1. (b) M

N = 0.3. (c) M
N = 0.5.

From Fig. 3(c), the proposed technique achieves the high-
est SNR = 62.56 dB and outperform SARA, where the
lowest SNR = 18.66 dB is achieved by RW-Curvelet.
Clearly, the proposed technique outperform SARA in terms
of median, upper adjacent, lower adjacent, 25th percentile,
75 percentile of the SNR results. For median, the proposed
technique achieves 33.75 dB, SARA achieves 33.16 dB,
RW-Haar achieves 30.87 dB, and RW-Curvelet achieves
26.04 dB. For 25th percentile of SNR results, 32.32 dB is
achieved by the proposed technique, 31.54 dB is achieved by
SARA, 27.40 dB is achieved by RW-Haar, and 21.71 dB is
achieved by RW-Curvelet. For 75th percentile of SNR results,
the proposed technique achieves 58.79 dB, SARA achieves
51.67 dB, RW-Haar achieves 40.13 dB, and RW-Curvelet

achieves 50.81 dB. The lower adjacent of the proposed tech-
nique is 28.59 dB, SARA is 27.01 dB, RW-Haar is 21.72 dB,
and RW-Curvelet is 18.66 dB. The upper adjacent of the
proposed technique, SARA, RW-Haar, and RW-Curvelet are
62.56 dB, 61.83 dB, 58.78 dB, and 56.03 dB, respectively.

In addition, Table. 1 and Fig. 4 present the detailed of aver-
age SNR results for measurement ratio M

N = [0.1, . . . , 0.5].
Table 1 also presents the ± denotes the standard deviation
of the 100 SNR results for 100 CT images. Fig. 4 shows the
proposed technique achieves the best average SNR result.

B. SSIM RESULT
The SSIM of the reconstructed images using the proposed
technique, SARA, RW-Haar, and RW-Curvelet are evaluated

VOLUME 9, 2021 119163



T. Rahim et al.: Total Variant Based Average Sparsity Model With Reweighted Analysis for CS of CT

TABLE 1. Comparison of average SNR measures between different measurement rate.

FIGURE 4. Average SNR results.

according to (10). Fig. 5 shows the box plot of SSIM results
for 100 CT images, where a red line is median, a lower edge
blue box is 25th percentile, and the upper edge of the blue
box is 75th percentile of the 100 SSIM results. The Y-value is
the SSIM results and the X-value is the four different method
(Proposed, SARA, RW-Haar, RW-Curvelet).

Fig. 5(a) show SSIM results for M
N = 0.1 with the highest

adjacent value (SSIM = 0.9957) is achieved by the proposed
technique and the lowest adjacent value (SSIM = 0.01 at the
outlier value) is achieved by RW-Curvelet. For RW-Curvelet,
26 finite outliers are appeared, lower adjacent is 0.1528, 25h
percentile is 0.3696, median is 0.4400, 75th percentile is
0.5295, and upper adjacent is 0.6510. For RW-Haar, lower
adjacent is 0.3115, the 25th percentile is 0.3940, themedian is
0.4831, the 75th percentile is 0.8665, and the upper adjacent
is 0.9593. For SARA, the lower adjacent is 0.6310, the 25th
percentile is 0.7554, the median is 0.8270, the 75th percentile
is 0.9837, and the upper adjacent is 0.9947. For the proposed
technique, the lower adjacent is 0.6874, the 25th percentile is
0.7691, the median is 0.8379, the 75th percentile is 0.9880,
and the upper adjacent is 0.9957.

Fig. 5(b) show SSIM results for M
N = 0.3 with the highest

adjacent value (SSIM = 0.9993) is achieved by the pro-
posed technique and the lowest adjacent value (SSIM =

0.6404) is achieved by RW-curvelet. For RW-Curvelet, 25th
percentile is 0.7342, median is 0.8104, 75th percentile is
0.9840, and upper adjacent is 0.9937. For RW-Haar, lower
adjacent is 0.7289, the 25th percentile is 0.8301, the median
is 0.8945, the 75th percentile is 0.9334, and the upper adja-
cent is 0.9922. For SARA, the lower adjacent is 0.9165, the

25th percentile is 0.9617, the median is 0.973, the 75th per-
centile is 0.9956, and the upper adjacent is 0.9986. For the
proposed technique, the lower adjacent is 0.9352, the 25th
percentile is 0.9726, the median is 0.9809, the 75th percentile
is 0.9983, and the upper adjacent is 0.9993.

From Fig. 5(c), RW-TV achieves the highest SSIM =

0.9995 and outperform SARA, same result also for TV com-
pared to BPSA. For RW-Curvelet, lower adjacent is 0.8269,
25h percentile is 0.8963, median is 0.9278, 75th percentile is
0.9933, and upper adjacent is 0.9981. For RW-Haar, a finite
outlier is appeared, lower adjacent is 0.9148, the 25th per-
centile is 0.9524, the median is 0.9672, the 75th percentile
is 0.9786, and the upper adjacent is 0.9989. For SARA
method, the lower adjacent is 0.9701, the 25th percentile is
0.9843, the median is 0.9872, the 75th percentile is 0.9948,
and the upper adjacent is 0.9994. For the proposed technique,
the lower adjacent is 0.9734, the 25th percentile is 0.9885,
the median is 0.9909, the 75th percentile is 0.9989, and the
upper adjacent is 0.9995.

In comparison, Table 2 presents average SSIM results for
measurement ratio M

N = [0.1, . . . , 0.5] with the ± denotes
the standard deviation of the 100 SSIM results for 100 CT
images. The proposed technique outperforms SARA with
higher median result in box plot at all MN setting.

C. PROCESSING TIME RESULT
The processing time of the reconstructed images is eval-
uated for the proposed technique, SARA, RW-Haar, and
RW-Curvelet. The processing time result of 100 CT images
are presented in box plot and shown in Fig. 7. The median is
denoted by red line in box plot, the 25th percentile is denoted
by the lower edge of the blue box, and the 75th percentile
is denoted by the upper edge of the blue box. The X-value
of the figure corresponding four different method (Proposed,
SARA, RW-Haar, RW-Curvelet) and Y-value is the process-
ing time in seconds. The proposed technique outperforms
SARA, RW-Haar, and RW-Curvelet at all M

N setting which
is presented in Fig. 7.

Fig. 7(a) presents processing time for M
N = 0.1 with the

highest adjacent value is 45.04 seconds for RW-Curvelet and
the lowest adjacent value is 0.1359 seconds for RW-Haar.
For the proposed technique, six finite outliers are appeared,
the lower adjacent is 0.391 seconds, the 25th percentile is
0.840 seconds, the median is 1.060 seconds, the 75th per-
centile is 2.340 seconds, and the upper adjacent is 4.187 sec-
onds. For SARA, the lower adjacent is 2.118 seconds,
the 25th percentile is 6.732 seconds, the median is
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FIGURE 5. Box plot of SSIM results. (a) M
N = 0.1. (b) M

N = 0.3. (c) M
N = 0.5.

TABLE 2. Comparison of average SSIM measures between different measurement rate.

FIGURE 6. Average SSIM results.

7.646 seconds, the 75th percentile is 10.074 seconds, and
the upper adjacent is 13.6385 seconds. For RW-Haar, lower
adjacent is 0.1359 seconds, 25h percentile is 0.4387 seconds,
median is 8.3696 seconds, 75th percentile is 10.328 seconds,
and upper adjacent is 14.443 seconds. For RW-Curvelet,
lower adjacent is 4.4276 seconds, the 25th percentile is
8.0753 seconds, the median is 9.8907 seconds, the 75th
percentile is 17.7065 seconds, and the upper adjacent is
30.4884 seconds.

Processing time for M
N = 0.3 is shown on Fig. 7(b),

where the highest adjacent value with 17.712 seconds is
achieved by SARA and the lowest adjacent value with
0.0927 seconds is achieved by RW-Haar. For the proposed
technique, ten finite outliers are appeared, the lower adja-
cent is 0.430 seconds, the 25th percentile is 0.739 seconds,

the median is 0.964 seconds, the 75th percentile is
1.912 seconds, and the upper adjacent is 3.664 seconds.
For SARA method, the lower adjacent is 1.135 seconds,
the 25th percentile is 6.464 seconds, the median is
8.066 seconds, the 75th percentile is 10.995 seconds, and
the upper adjacent is 17.712 seconds. For RW-Haar, lower
adjacent is 0.0927 seconds, 25h percentile is 3.859 seconds,
median is 8.868 seconds, 75th percentile is 10.1361 seconds,
and upper adjacent is 12.766 seconds. For RW-Curvelet,
14 finite outliers are appeared, lower adjacent is 1.5773 sec-
onds, the 25th percentile is 4.0038 seconds, the median is
5.0709 seconds, the 75th percentile is 5.6471 seconds, and
the upper adjacent is 7.4639 seconds.

Fig. 7(c) show processing time for M
N = 0.5 with the

highest adjacent value is 32.650 seconds for SARA and
the lowest adjacent value is 0.08348 seconds for RW-Haar.
For the proposed technique, ten finite outliers are appeared,
the lower adjacent is 0.462 seconds, the 25th percentile is
0.652 seconds, the median is 0.846 seconds, the 75th
percentile is 1.170 seconds, and the upper adjacent is
1.937 seconds. For SARA method, four finite outliers are
appeared, the lower adjacent is 3.827 seconds, the 25th
percentile is 5.380 seconds, the median is 6.601 seconds,
the 75th percentile is 10.257 seconds, and the upper adja-
cent is 17.509 seconds. For RW-Haar, lower adjacent is
0.08348 seconds, 25h percentile is 0.15982 seconds, median
is 7.2454 seconds, 75th percentile is 8.41 seconds, and upper
adjacent is 10.8935 seconds. For BRW-Curvelet, lower adja-
cent is 0.4804 seconds, the 25th percentile is 2.403 seconds,
themedian is 3.908 seconds, the 75th percentile is 4.4311 sec-
onds, and the upper adjacent is 6.409 seconds.
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FIGURE 7. Box plot of processing time results. (a) Measurement ratio = 0.1. (b) Measurement ratio = 0.3. (c) Measurement ratio = 0.5.

TABLE 3. Comparison of average processing time with regards to measurement ratio.

FIGURE 8. Average processing time results for RW-TV and SARA.

In comparison, Table 3 present average processing time for
measurement ratio M

N = [0.1, . . . , 0.5] in detail with the ±
denotes the standard deviation of the 100 results for 100 CT
images.

D. THE EFFECT OF IMAGE RESOLUTIONS
The effect of image resolutions is evaluated for the proposed
technique, SARA, RW-Haar, and RW-Curvelet. The SNR
result of 100 CT images are presented in bar plot and shown
in Fig. 9. The X-value of the figure corresponding three
different resolutions (64 × 64 pixels, 128 × 128 pixels, and
256× 256 pixels) and Y-value is SNR in dB.
Fig. 9(a) presents SNR results with regards to resolutions

for M
N = 0.1 with the best result is 37.64 dB achieved by

SARAwith 256×256 pixels and the lowest result is 13.15 dB

achieved by RW-Curvelet with 64× 64 pixels. For resolution
64 × 64 pixels, the proposed technique outperforms SARA,
RW-Haar, and RW-Curvelet with 0.66 dB, 8.88 dB, and
14.24 dB higher, respectively. For resolution 128×128 pixels,
the SNR of the proposed technique is 32.22 dB, the SNR of
SARA is 32.02 dB, the SNR of RW-Haar is 22.33 dB, and
RW-Curvelet is 22.01 dB. For resolution 256 × 256 pixels,
SARA achieves the best SNR result (37.60 dB), the proposed
technique achieves 36.12 dB, RW-Haar achieves 26.77 dB,
and RW-Curvelet achieves 25.76 dB.

SNR results with regards to image resolutions for MN = 0.3
is shown on Fig. 9(b), where the best result SNR (42.69 dB)
is achieved by the proposed technique with 256× 256 pixels
and the lowest SNR result (27.40 dB) is achieved by
RW-Curvelet with 64 × 64 pixels. The proposed technique
achieves 37.97 dB, 40.72 dB, and 42.69 dB for resolutions
64 × 64 pixels, 128 × 128 pixels, and 256 × 256 pixels,
respectively. The proposed technique outperforms SARA,
RW-Haar, and RW-Curvelet in all resolution conditions.

Fig. 9(c) presents SNR results with regards to resolutions
for M

N = 0.5 with the best result is 44.61 dB achieved by
the proposed technique with 256× 256 pixels and the lowest
results is 33.02 dB for RW-Curvelet with 64× 64 pixels. For
resolution 64× 64 pixels, the proposed technique (41.68 dB)
outperforms SARA (39.27 dB), RW-Haar (33.65 dB), and
RW-Curvelet (33.02 dB) with 2.41 dB, 8.03 dB, and 8.66 dB,
respectively. For resolution 128 × 128 pixels, the SNR of
the proposed technique is 43.55 dB, the SNR of SARA is
41.33 dB, the SNR of RW-Haar is 38.20 dB, and RW-Curvelet
is 36.17 dB. For resolution 256 × 256 pixels, the pro-
posed technique achieves the best SNR result (44.61 dB),
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FIGURE 9. SNR results with regards to image resolutions. (a) Measurement ratio = 0.1. (b) Measurement ratio = 0.3. (c) Measurement
ratio = 0.5.

FIGURE 10. SSIM results with regards to image resolutions. (a) Measurement ratio = 0.1. (b) Measurement ratio = 0.3. (c) Measurement
ratio = 0.5.

SARA achieves 43.50 dB, RW-Haar achieves 41.57 dB, and
RW-Curvelet achieves 40.54 dB.

Next, the SSIM result of 100 CT images with regards
to image resolutions are presented in bar plot and shown
in Fig. 10. The X-value of the figure corresponding three
different resolutions (64 × 64 pixels, 128 × 128 pixels, and
256× 256 pixels) and Y-value is SSIM.
Fig. 10(a) presents SSIM results with regards to resolutions

for M
N = 0.1 with the best result is 0.9715 for SARA with

256×256 pixels and the lowest result is 0.43 for RW-Curvelet
with 64× 64 pixels. For resolution 64× 64 pixels, the SSIM
of the proposed technique is 0.8587, the SSIM of SARA is
0.8465, the SSIM of RW-Haar is 0.5851, and RW-Curvelet
is 0.4348. For resolution 128 × 128 pixels, the SSIM of the
proposed technique is 0.9285, the SSIM of SARA is 0.9250,
the SSIM of RW-Haar is 0.6964, and RW-Curvelet is 0.6296.
For resolution 256 × 256 pixels, the SSIM of the proposed
technique is 0.9613, the SSIM of SARA is 0.9715, the SSIM
of RW-Haar is 0.8130, and RW-Curvelet is 0.7369.

SSIM results with regards to image resolutions for
M
N = 0.3 is shown on Fig. 10(b), where the best result
SSIM (0.9903) is achieved by the proposed technique with
256 × 256 pixels and the lowest SNR result (0.8372)
is achieved by RW-Curvelet with 64 × 64 pixels.

The proposed technique achieves 0.9815, 0.9867, and
0.9903 for resolutions 64× 64 pixels, 128× 128 pixels, and
256× 256 pixels, respectively. The proposed technique out-
performs SARA, RW-Haar, and RW-Curvelet in all resolution
conditions.

Fig. 10(c) presents SSIM results with regards to resolu-
tions for M

N = 0.5 with the best result is 0.9936 achieved
by the proposed technique with 256 × 256 pixels and
the lowest results is 9365 achieved by RW-Curvelet with
64 × 64 pixels. For resolution 64 × 64 pixels, the proposed
technique achieves 0.9923,SARA achieves 0.9886, RW-Haar
achieves 0.9640, and RW-Curvelet achieves 0.9365. For
resolution 128 × 128 pixels, the SSIM of the proposed
technique is 0.9933, the SSIM of SARA is 0.9912,
the SSIM of RW-Haar is 0.9829, and RW-Curvelet is 0.9662.
For resolution 256× 256 pixels, the proposed technique
achieves 0.9936, SARA achieves the best SSIM result with
result 0.9937, RW-Haar achieves 0.9887, and RW-Curvelet
achieves 0.9841.

Finally, the processing time result of 100 CT images are
presented in bar plot and shown in Fig. 11. The X-value
of the figure corresponding three different resolutions
(64 × 64 pixels, 128 × 128 pixels, and 256 × 256 pixels)
and Y-value is processing time in seconds.
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FIGURE 11. Processing time results with regards to image resolutions. (a) Measurement ratio = 0.1. (b) Measurement ratio = 0.3.
(c) Measurement ratio = 0.5.

Fig. 11(a) presents the processing time results with regards
to resolutions for M

N = 0.1 with the best result is 1.770 sec-
onds achieved by the proposed technique with 64× 64 pixels
and the longest processing time result is 143.026 seconds
for RW-Curvelet with 256 × 256 pixels. For resolution
64×64 pixels, the processing time of the proposed technique
is 1.770 seconds, the processing time of SARA is 8.4 seconds,
the processing time of RW-Haar is 6.612 seconds, and
RW-Curvelet is 14.115 seconds. For resolution
128 × 128 pixels, the processing time of the proposed tech-
nique, SARA, RW-Haar, and RW-Curvelet is 7.479 seconds,
16.55 seconds, 13.091 seconds, and 26.268 seconds,
respectively. For resolution 256 × 256 pixels, the result
of the proposed technique is 42.15 seconds, SARA is
68.36 seconds, RW-Haar is 62.34 seconds, and RW-Curvelet
is 143.02 seconds.

Fig. 11(b) presents the processing time results with regards
to resolutions for M

N = 0.3 with the best result is 1.519 sec-
onds achieved by the proposed technique with 64× 64 pixels
and the longest processing time result is 163.956 seconds
for RW-Curvelet with 256 × 256 pixels. For resolution
64×64 pixels, the processing time of the proposed technique
is 1.519 seconds, the processing time of SARA is 9.014 sec-
onds, the processing time of RW-Haar is 7.078 seconds,
and RW-Curvelet is 4.617 seconds. For resolution
128 × 128 pixels, the processing time of the proposed
technique, SARA, RW-Haar, and RW-Curvelet is 6.332 sec-
onds, 23.468 seconds, 18.344 seconds, and 17.951 seconds,
respectively. For resolution 256 × 256 pixels, the result
of the proposed technique is 31.49 seconds, SARA is
80.87 seconds, RW-Haar is 85.21 seconds, and RW-Curvelet
is 163.95 seconds.

Fig. 11(c) presents the processing time results with regards
to resolutions for MN = 0.5 with the best result is 1.05 seconds
achieved by the proposed technique with 64 × 64 pixels
and the longest processing time result is 171.47 seconds for
RW-Curvelet with 256× 256 pixels. For resolution
64×64 pixels, the processing time of the proposed technique
is 1.05 seconds, the processing time of SARA is 8.4 sec-
onds, the processing time of RW-Haar is 5.7 seconds, and
RW-Curvelet is 3.7 seconds. For resolution 128 × 128 pixels,

the processing time of the proposed technique, SARA,
RW-Haar, and RW-Curvelet is 6.046 seconds, 18.569 sec-
onds, 19.159 seconds, and 17.311 seconds, respectively. For
resolution 256× 256 pixels, the result of the proposed tech-
nique is 43.026 seconds, SARA is 53.21 seconds, RW-Haar
is 85.58 seconds, and RW-Curvelet is 171.47 seconds.

VI. CONCLUSION
In this paper, TV based average sparsity model with
reweighted analysis is proposed for computed tomogra-
phy (CT) image compression. The proposed CS tech-
nique is evaluated and compared to existing CS technique
(e.g., SARA, RW-Haar, RW-Curvelet) by evaluating the
SNR, SSIM, and processing time. Enlightened by the better
SNR, the proposed technique outperforms SARA, RW-Haar,
RW-Curvelet with 1.5 dB, 8.8 dB, 14.24 dB, respectively.
For SSIM results at measurement ratio 0.1, the proposed
technique outperforms SARA with 0.01 improvement, out-
performs RW-Haar with 0.3 improvement, outperforms
RW-Curvelet with 0.42 improvement. And in the same testing
parameter for 64 × 64 pixels of CT images, the processing
time of the proposed technique is 6.7 seconds faster than
SARA, 4.9 seconds faster than RW-Haar, and 12.4 seconds
faster than RW-Curvelet. In this way, the proposed technique
has better SNR with lower processing time, which is consid-
ers as a feasible solution for compressed sensing (CS) based
CT images compression with faster delay process and better
visual quality for medical images.
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