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ABSTRACT This paper presents a method that finds the expected values of self- and mutual impedances
of overhead lines with the uncertainties such as the ground resistivity, conductor characteristics, and
transmission line structures. For this purpose, this study designs a stochastic random sampling method that
removes the uncertainties. A finite element analysis method that includes a single logarithmic closed-form
solution to Carson’s improper integral is adopted. The impact of an increase in sags and an imbalance in
phase conductors on self- and mutual impedances is examined. As a result, the expected values of the self-
and mutual impedances of an overhead line are evaluated. It is also shown that as the sag ratio increases,
the self- and mutual impedances decrease.

INDEX TERMS Carson’s integral, closed-form solution, self- and mutual impedances, finite element
method, Monte Carlo simulation.

NOMENCLATURE
ABBREVIATIONS
CDER = complex depth of earth return.
EM = electromagnetic.
EV = expected value.
FEM = finite element method.
GMR = geometric mean radius.
GMD = geometric mean distance.
LB = lower bound.
OL = overhead line.
SLA = single logarithm approximation.
TEM = transverse electromagnetic.
UB = upper bound.

VARIABLES
Cmethod and Dmethod = cost function and relative differ-

ence of a specific impedance calcu-
lation method.

σg = conductivity of the ground.
ε0, εg, and εr = dielectric permittivity of vac-

uum, permittivity of the ground,
and relative permittivity of the
ground.

The associate editor coordinating the review of this manuscript and

approving it for publication was Arpan Kumar Pradhan .

µ0, µg, and µr = permeability of vacuum, perme-
ability of the ground, and relative
permeability of the ground.

H = horizontal tension in the con-
ductor at the maximum deflection
point.

l = conductor length or span.
λ = integration variable.
Nrow and Ncol = total number of rows and

columns of impedance matrix.
ri = radius of conductor i.
ρ = ground resistivity in �·m.
s = sag length of the conductor.
θij = expected value of the ith row

and jth column in the impedance
matrix.

w = weight per unit length of the
conductor.

zeq = total equivalent impedance.
zk = impedance in the kth element in

the finite element method.
ẑk = impedance in the kth variable-

sized element.
ẑs,k and ẑm,k = self- and mutual impedances in

the kth variable-sized element.
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Zij = the ith row and jth column in the 3 by
3 impedance matrix.

Zref = 3 by 3 impedance matrix defined as the
reference case.

Zmethod = 3 by 3 impedance matrix determined by
a specific impedance calculation method.

I. INTRODUCTION
Carson derived the propagation equations of electromag-
netic waves along sufficiently long overhead lines (OLs) [1].
The equations including the improper integral can calcu-
late the self- and mutual impedance of OLs. The integral,
in the form of the Struve function and the second kind
Bessel function [2], was solved by infinite series and asymp-
totic expansions [1]. Thus, many studies have approximated
a closed-form solution. For example, a single-logarithmic
closed-form solution was presented in [3]–[6], which is
referred to as the complex depth of earth return (CDER)
model. The accuracy of the CDER method was improved
in [7], [8], which is referred to as a single logarithmic approx-
imation (SLA) model. A double logarithmic approximation
was also presented in [9], which was improved in [10].
Recently, the accuracy of the various closed-form solutions
was compared in [11]. In that sense, closed-form solutions
have been widely used because of their easy applicability.

The integral presented by Carson was also solved by
numerical integration in [12], [13]. For example, the accu-
racy of such a numerical integration method was verified by
the finite element method (FEM) in [14]. However, these
methods ignored the sags of OLs. For example, a method
that calculates the sag and tension of OLs as the classical
graphic method was presented in [15]. The effect of the sag of
OLs suspended by towers with identical heights and spans on
electromagnetic (EM) field was examined in [16], [17]. The
EM field for more realistic OLs with unequal height towers
and unequal spans was also calculated in [18], [19]. In most
studies, the FEM has been commonly applied for EM field
estimating problems, but none of the above studies examined
the effect of the sag on the self- and mutual impedance of
OLs by using the SLA improved in [8]. Thus, this study
modifies a FEM so that it can examine the effect of the
sags and phase conductor imbalances of OLs on self- and
mutual impedances. For this purpose, this study designs a
two-step variable-sized FEM that calculates the self- and
mutual impedances of parallel conductors. This study also
integrates the compensated SLA method validated in [8] into
the proposed FEM, so it can examine the more accurate effect
of sages on impedance. The proposed method can be not only
applied to multi-phase OLs with equilateral and inequilateral
conductor dispositions but also valid for an OL with a weak
sag.

The self- and mutual impedances of OLs at different resis-
tances, permeabilities, and permittivities of the conductor, air,
and ground were calculated in [20]. Uncertainties in elasticity
modulus and conductor creep values showed a weak effect on

actual sag values of OLs. In contrast, conductor temperature
and sag values showed a significant effect on sag calculation
errors [21]. Uncertainties in the dynamic thermal rating of
OLswere examined by a combination of affine arithmetic and
probabilistic optimal power flow models [22]. The previous
studies did not take the uncertainty in conductor heights into
account. Thus, the uncertainty in heights of OLs was removed
by examining the effect of the height on EM calculation
results by the image charge method in two dimensions [23].
However, none of the above studies examined the effect of
the uncertainties in frequency, ground resistivity, conductor
characteristics, and transmission line structures on self- and
mutual impedances of OLs with equilateral and inequilateral
conductor dispositions. Thus, the second objective of this
study is to estimate the expected value (EV) of the self- and
mutual impedances of OLs with the uncertainties such as
frequency, ground resistivity, conductor characteristics, and
transmission line structures. For this, this study presents a
stochastic random number-based simulation model, or Monte
Carlo simulation. Then, the proposed stochastic method finds
(a) the EVs of self- and mutual impedances of OLs with the
uncertainties, (b) a maximum accuracy improvement case of
the SLA presented in [8], and (c) correlation coefficients of
the uncertainties on the self- and mutual impedances.

The rest of the paper is organized as follows: Section 2
presents the problem statement. In section 3, an overview of
the SLA closed-form solutions is presented. Sections 4 and 5
provide the proposed FEM and stochastic simulation models.
In Section 6, the numerical results are evaluated. Finally,
section 7 summarizes the major findings of this paper.

II. PROBLEM STATEMENT
In the quasi-TEM (transverse electromagnetic) mode of prop-
agation, Carson defined the ground return impedance of OLs
in terms of an improper integral. Carson’s solution, necessary
to be expanded into infinite series, and many other closed-
form approximations can be used to estimate an EV of the
self- and mutual impedances of OLs. The EVs are defined by

θij = E[Zij], (1)

where
θij = EV of the ith row and jth column (e.g., ii corresponds

to the self-impedance and ij the mutual impedance of an OL).
To calculate the EV of the self- and mutual impedances

for OLs, the uncertainties in the frequency, ground resistiv-
ity, conductor characteristics (e.g., geometric mean radius
[GMR] and dc resistance), and transmission line struc-
tures (e.g., a single, double, or more circuit structure, and
geometric mean distance [GMD]) should be taken into
account. Other uncertainties also include a line sag and
an imbalance in phase conductors. To remove the uncer-
tainties, this study presents a stochastic random sampling
method, or Monte Carlo simulation, which is combined by
a two-step variable-sized FEM. In the proposed method,
the self- and mutual impedances are calculated by the
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following closed-form approximation methods proposed in
the literature.

III. CARSON’S GROUND RETURN IMPEDANCE
The two conductors in parallel in each other are presented in
Fig. 1. In the air with ε0 and µ0, the EM properties of the
ground are defined by εg = εrε0, µg = µrµ0, and σg. The
propagation constant of the ground is given as:

γg =
√
jωµg(σg + jωεg). (2)

For a TEM mode of propagation, Carson defined the for-
mula of the mutual impedance [1]:

Zm =
jωµ0

2π

(
ln
(
Dij
dij

)
+ Jm

)
, (3)

Jm =
∫
∞

0

 2e−Hλ

λ+
√
λ2 + γ 2

g

 cos(xijλ)dλ, (4)

where
Dij =

√
(hi + hj)2 + x2ij, dij =

√
(hi − hj)2 + x2ij, and H =

hi+ hj.
The self-impedance can be also derived from (4) by setting

dij = ri (the radius of the conductor i), Dij = 2hi, H = 2hi,
and xij = 0.

FIGURE 1. Two-conductor example located in parallel in the air.

Carson presented the solution of the improper integral of
(4) in the form of the Struve function and the second kind
Bessel function [1], [24]. Since Carson’s solution includes
the infinite series, many studies have presented closed-form
approximation solutions.

A. DUBANTON’S CLOSED-FORM
The SLA simplifies the improper integral of (4) [3]–[6],

Zs ≈
jωµ0

2π
ln
(2hi + 2p)

ri
, (5)

Zm ≈
jωµ0

2π
ln

√
(H + 2p)2 + x2ij

dij
, (6)

p = γ−1g . (7)

This method, added by 2p, is also referred to as the CDER
method.

B. ALVARADO–BETANCOURT’S CLOSED-FORM
The accuracy of the CDER method, or (5) and (6), was
improved in [7],

Jm ≈
1
2
ln


(
1+ p

H/2

)2
+ β2

1+ β2


−

1
24

 1(
H
2p (1+ jβ)+ 1

)3 + 1(
H
2p (1− jβ)+ 1

)3
 , (8)

where

H = hi + hj and β = xij/H .

The self-impedance is also derived by setting xij = 0 and
hi = hj.

C. COMPENSATED SINGLE LOGARITHMIC
APPROXIMATION
A compensated SLA was presented in [8],

Js ≈ −
1
2
ln (q1)+

1
2
ln (q1 + 1)−

1
24
(q1 + 1)−3

+
12
5
(2q1 + 5)−5 , (9)

Jm ≈ −
1
2
ln (q2)+

1
4
ln
(
q2 +

1
1+ jβ

)
+
1
4
ln
(
q2 −

1
−1+ jβ

)
+ J1 + J2, (10)

where

q1 =
hi
p
, (11)

q2 = (hi + hj)/2p. (12)

The detailed derivations of J1 and J2 terms are presented
in [8].

FIGURE 2. Line sag and span.

IV. PROPOSED LINE SAG MODELING
A. LINE SAG AND SPAN
Sag and tension in OLs depend on the span of the conductor.
For example, the sag of the conductor, s, suspended by the
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two same height poles in Fig. 2 is proportional to the weight
per unit length, w, and the square of the distance between
the two poles, l, and inversely proportional to the horizontal
tension (H ) at themaximum deflection point (at x0) [15]. That
is, the shape of the conductor can be approximated by the
following parabola expressed on the x-y plane:

y(x) ≈
wl2

8H
=
w(x − x0)2

8H
for x1 ≤ x ≤ x2. (13)

B. PROBLEM FORMULATION
An OL consisting of three parallel conductors for phases a, b,
and c of carrying each phase current is considered in Fig. 2.
The self- and mutual impedances of the three parallel con-
ductors are calculated by the two-step variable-sized FEM,
the detailed procedures of which are presented in the next
section. The OL is divided by N elements in the x-y plane.
In such a case, the following procedures calculate the self-
and mutual impedances of the OL:
• An element of three parallel conductors for phases a, b,
and c carries the arbitrary-amplitude sinusoid currents,
but the other elements are set to carry zero currents.

• To approximate the line sag shape described in (12),1x
and 1y are sufficiently small.

• Using the two-step variable-sized FEM, the kth self- and
mutual impedances are calculated. This step is repeated
until calculating the N th element. If a double or more
circuit model is considered, the number of phase con-
ductors of an OL increases. Therefore, the proposed
problem is reduced into that of calculating the self- and
mutual impedances of the OL in per unit length, which
can be solved by the following proposed FEM.

C. TWO-STEP VARIABLE-SIZED FINITE ELEMENT METHOD
The FEM has been applied for unbounded EM potential
problems in several approaches. The approaches include the
discretization method [25], Green’s integral formula [26],
or multigrid methods. For the same reasons as the EM field
estimation problem of an OL [14], the first method is adopted
in this paper.

FIGURE 3. Proposed two-step FEM.

In the previous OL consisting of the three parallel con-
ductors for phases a, b, and c and N elements in Fig. 2, let
the total equivalent impedance of the OL with span l be zeq.
The impedance (zeq) can be the summation of each small line
impedance, zk (k = 1, 2, . . . ,N ), for the OL with a slight
sag with the angle of θ in Fig. 3. Additionally, let the self- or

mutual impedance be ẑk for the kth element of the OL with
a sag. If each ẑk is known (k = 1, 2, . . . ,N ), zeq can be
approximated by

zeq =
N∑
k=1

zk ≈
N∑
k=1

ẑk
(1x ′/1x)

. (14)

To determine each ẑk , the discretization method in [25] is
modified in the following steps and assumptions:

• The discretization area includes a square of 1x × 1y,
used in the first step, and 1x ′ ×1y, used in the second
step. In the second step, the OL in the kth element is
assumed to be sufficiently long enough to neglect the
end effects. In other words, 1x ′ in Fig. 2 is sufficiently
long.

• The proposed method iteratively calculates the self- and
mutual impedances (ẑs,k and ẑm,k ) of ẑk . For example, ẑk
can be approximated by

ẑs,k ≈
jωµ0

2π

(
ln
(
2hi,k+2p

ri

))
(k=1, 2, . . . ,N ),(15)

ẑm,k ≈
jωµ0

2π

ln


√(

hi,k + hj,k + 2p
)2
+ x2ij,k√

(hi,k − hj,k )2 + x2ij,k


(k = 1, 2, . . . ,N ). (16)

• Then, ẑs,k and ẑm,k are scaled down by the ratio of 1x
and 1x ′ in (13).

The continuity requirement between neighboring finite
elements is solved by setting 1x and 1y to be sufficiently
small. Writing a KVL equation for the element in Fig. 3 gives

V (x +1x ′) = V (x)+ zk1x ′I (x). (17)

The solutions of (14) and (15) satisfy the condition of (16).
For simplicity, bundled conductors are neglected. However,
the proposed method can be extended to the bundled con-
ductors. The conductors are assumed to be the uniform equal
size in every element. The proposed method is valid for an
OL with a weak sag, in other words, if a sag ratio of s to h
in Fig. 2 is small.

V. PROPOSED UNCERTAINTY DESIGN
A. STOCHASTIC METHOD FOR FINDING EV
This study is to find the EV of self- and mutual impedances of
OLs. To determine the EV, the following uncertainties should
be considered as a random variable: Frequency, ground resis-
tivity, conductor characteristics (e.g., GMR and dc resis-
tance), and transmission line structures (e.g., a single, double,
or more circuit structure, and GMD). To remove the uncer-
tainties in the random variables, a stochastic Monte Carlo
simulation is proposed in the following steps:
Step 1 Initialization: The representative intervals of

the frequency, ground resistivity, conductor characteristics,
and transmission line structures are defined as an upper
bound (UB) and lower bound (LB) for practical OLs.
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Step 2 Random Selection of an Overhead Line The total
number of samples of OLs is selected as sufficiently large
at the logarithmic scale. For example, the total number of
samples is 106, which is selected by trial and error because
simulation beyond 106 samples takes long time to complete at
a laptop computer (e.g., HP ZBook, Intel i7-7700HQ CPU@
2.80GHz, 16.0 GB memory, and MATLAB 2019b). This
study generates uniformly distributed random numbers for
the polyhedral uncertainty set (e.g., the ground resistivity,
overhead line structure, and cable) within UBs and LBs.
Then, each case randomly selects the OL structure (e.g., a sin-
gle or double line circuit), the position of phase conductors
(e.g., GMD), the cable characteristics (e.g., GMR and dc
resistance), the ground resistivity, and the frequency.
Step 3 Calculation of Self- and Mutual Impedances: The

self- and mutual impedances of each OL are calculated using
one of the previous methods.
Step 4 Termination:The previous steps 2 and 3 are repeated

until to complete the total number of OLs.

B. MATHEMATICAL FORMULATION OF FINDING EV
The relative difference (Dmethod) to the reference impedance
is defined by

Dmethod,ij(%) =

∣∣∣∣Zref,i,j
∣∣− ∣∣Zmethod,i,j

∣∣∣∣∣∣Zref,i,j
∣∣ , (18)

where
Zref = 3 by 3 impedance matrix as the reference
Zmethod = 3 by 3 impedance matrix determined by one of

the previous methods.
The cost function (Cmethod) is also defined by the average

of the relative difference,

Cmethod =

Nrow∑
i=1

Ncol∑
j=1

Dmethod,ij

NrowNcol
, (19)

where Nrow and Ncol = total number of rows and columns of
impedance matrix Z(e.g., 3).
The objective of the proposed stochastic method is to

calculate the accurate EV by minimizing the cost function
(e.g., in (18)),

Minimize Cmethod,i, (20)

TABLE 1. Stochastic Simulation Design for an EV Estimation Problem of
Self- and Mutual Impedances of an Overhead Line.

FIGURE 4. Tower structures.

where Cmethod,i = cost function at the ith Monte Carlo simu-
lation case, i = 1, . . . ,N , and N = number of the total cases.

In other words, if the proposed stochastic method finds the
impedance close to the reference impedance (Zref), the cost
function is minimized. The variance in the cost functions is
also minimized,

Minimize Var[Cmethod,i]. (21)

VI. NUMERICAL RESULTS
A. EXPECTED VALUE OF SELF- AND
MUTUAL IMPEDANCES
The reference impedance (Zref) is defined by calculating up
to the 24th high-order terms of the infinite series presented
in [8], [27], [28]. In [8], the impedance determined by the
compensated SLA was closest to the reference impedance
through the two-conductor, distribution line, and transmission
line examples [8]. Thus, this study integrates the compensated
SLA method into the proposed FEM.

In the EV estimation problem, the stochastic method (i.e.,
Monte Carlo simulation) for the ground resistivity, overhead
line structure, and cable is proposed with polyhedral uncer-
tainty sets, which enable themost straightforward ‘‘tractable’’
representation [29]. For example, anOL consists of a single or
double circuit with ACSR cables. The representative interval
of ACSR cable specifications such as GMR and dc resistance
is presented in the Appendix in [30]. Types of towers and
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FIGURE 5. Cost and objective functions (equilateral conductor
disposition).

positions of cables are presented in Fig. 4, which can be
classified as the equilateral (e.g., Fig. 4 (a) and (b)) and
inequilateral type (e.g., Fig. 4 (c)). The intervals of the single
and double circuit structures such as an UB and LB of vertical
and horizontal distances of phase conductors are presented
in [23], [31], [32]. The detailed simulation parameters are
presented in TABLE 1.

In EV estimation Monte Carlo simulations, the total
number of OLs increases at the logarithmic scale (e.g.,
10 to 106). Each case randomly estimates the self- and mutual
impedances of the OL with the polyhedral uncertainty sets
described in TABLE 1. That is, this study generates uniformly
distributed random numbers in the polyhedral uncertainty
set. For example, an OL initially picks its structure type
(e.g., a single or double circuit in Fig. 4) and then picks its
random distances of phase conductors (e.g., the horizontal
and vertical distances) and cable specifications (e.g., GMR
and dc resistance). In the EV estimation problem, the OLwith
a length of 100 km at a line-to-line voltage of 138 kV, a base
of 100 MVA, and a frequency of 60 Hz is assumed.

FIGURE 6. EV of self- and mutual impedances of an overhead line with
equilateral conductor disposition.

B. EQUILATERAL CONDUCTOR DISPOSITION
In the EV estimation of impedance of OLs with the equilat-
eral conductor disposition (e.g., Fig. 4 (a) and (b)), the cost
function is the average of the relative differences to the
3 by 3 reference impedance matrix (Zref) in Fig. 5 (a). The
compensated SLA method (denoted as CSLA by the circle
symbol) shows the least cost at the sample size from 10 to 106.
The detailed equations of the compensated SLA method
are presented in [8]. In other words, the compensated SLA
method successfully improves the previous SLA method,
so its average relative difference to the reference is located
lower than that of the previous SLA method (denoted as SLA
by in the cross symbol).

The second objective function is to minimize the variance
in the average of the relative differences to the reference
impedance, defined in (20). Fig. 5 (b) compares the variance
in the relative differences as the sample size increases from
10 to 106. The compensated SLAmethod shows the least cost
function, or in Fig. 5 (a), and the least objective function,
or in Fig. 5 (b), when compared to the previous CDER and
SLA methods.

In Fig. 6 (a), as the sample size increases, the EV of the
self-impedance of the OL with a length of 100 km converges
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FIGURE 7. Cost and objective functions (inequilateral conductor
disposition).

to 0.0668 + j0.4501 p.u., at the LB of 0.0166 + 0.2182j p.u.
and the UB of 0.1563 + 0.5572j p.u. The EV of the mutual
impedance in Fig. 6 (b) converges to 0.0304 + 0.2416j p.u.,
at the LB of 0.0182 + 0.0655j p.u. and the UB of 0.0306 +
0.2922j p.u.

C. INEQUILATERAL CONDUCTOR DISPOSITION
This study evaluates EVs of self- and mutual impedances of
OLs with the inequilateral conductor disposition (e.g., the tri-
angular shape in Fig. 4 (c)). The intervals of the circuit struc-
ture such as anUB and LB of vertical and horizontal distances
of phase conductors are presented in [23]. In Fig. 7 (a), the
average relative difference to the reference of the compen-
sated SLA method (denoted as CSLA by the circle symbol)
is the lowest when the sample size varies from 10 to 106,
whichmeans that the compensated SLAmethod improves the
previous SLA method, denoted as SLA in the cross symbol.
In Fig. 7 (b), the variance in the average of the relative
differences to the reference impedance is minimized when
the compensated SLAmethod is used. Thus, the inequilateral
conductor disposition case shows the same results as the
equilateral conductor disposition case.

FIGURE 8. EV of self- and mutual impedances of an overhead line with
inequilateral conductor disposition.

TABLE 2. Maximum Relative Difference Improvement.

As the main objective of this paper, this study evaluates
EVs of self- and mutual impedances of OLs with the inequi-
lateral conductor disposition. In Fig. 8 (a), the EV of the
self-impedance of the OL with a length of 100 km converges
to 0.0792 + j0.5160 p.u., at the LB of 0.0250 + 0.3439j p.u.
and the UB of 0.1565 + 0.5570j p.u. The EV of the mutual
impedance in Fig. 8 (b) converges to 0.0308 + 0.2899j p.u.,
at the LB of 0.0217 + 0.1195j p.u. and the UB of 0.0309 +
0.3583j p.u.

D. EFFECT OF THE COMPENSATED SLA ON
RELATIVE DIFFERENCE
Many studies introduced in the related literature survey
have verified their accuracy in calculating self- and mutual
impedances. However, they ignored the uncertainties in the
position of the phase conductors and the cable characteristics.
The compensated SLA method proposed in [8] improved
slightly the accuracy of the previous models. For example,
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TABLE 3. Correlation Coefficients of Random Variables for Absolute Value
of Impedance.

the compensated SLA model (denoted as Zproposed in [8])
decreased an average of the relative difference of the previous
SLA model (ZSLA) from 0.02952 to 0.02684% in the second
case study in [8].

To analyze the effect of the compensated SLA (e.g., ZSLA)
in [8] on the accuracy improvement to the previous models
(e.g., ZCDER and ZSLA), this study searches the maximum
accuracy improvement through all the Monte Carlo simula-
tion runs. TABLE 2 presents the maximum relative difference
improvement. At the frequency of 60 Hz, the maximum
improvement of the compensated SLA in the relative differ-
ence to the reference impedance (Zref) is 0.3366 percent for
the impedance Zac of the OL consisting of Cardinal cables
with a GMD of 17.281 m, a GMR of 0.012 m, and a dc
resistance of 0.067 �/km, on the ground with a resistivity of
8.6�·m. For example, when compared to a relative difference
of 0.3843 percent of the SLAmethod and a relative difference
of 1.8548 percent of the CDER method, the more accurate
impedance (e.g., a relative difference of 0.3366 percent) can
be used as input for other research purposes such as transient
simulations.

FIGURE 9. Sag in an overhead line.

E. CORRELATION COEFFICIENTS OF UNCERTAINTY
RANDOM VARIABLES
To analyze the correlation effect of the uncertainty random
variables on the self- and mutual impedances, correlation
coefficients of each uncertainty (ground resistivity, dij, GMR,
and dc resistance, excluding the frequency) to the absolute
value of the impedance are presented in TABLE 3.

For both the equilateral and inequilateral conductor dispo-
sitions, the ground resistivity indicates a positive correlation
for the self- and mutual impedances because of the 2p term

FIGURE 10. Self- and mutual impedance convergence when the number
of elements in the x-axis increases.

FIGURE 11. Absolute value of Zac when the sag ratio increases.

in (5) and (6), which is proportional to the square root of
the ground resistivity. The dij term shows a weak negative
correlation. In fact, the mutual impedance is logarithmically
inversely proportional to the dij term in (21). GMR and dc
resistance do not show a correlation to the impedance.

F. IMPACT OF LINE SAGS AND PHASE IMBALANCE
To take an increase in line sags and an imbalance in phase
conductors into account, this study performs Monte Carlo
simulations up to 105 total cases. In this simulation, this study
adds the uncertainty that each phase conductor can select
a different cable in TABLE 1, which models an imbalance
in phase conductors. At the frequency of 60 Hz, the maxi-
mum improvement of the compensated SLA in the relative
difference to the reference impedance is 0.3167 percent for
the impedance Zac of the OL consisting of Partridge, Finch,
and Flamingo cables with a GMD of 17.052 m, at a ground
resistivity of 9.5 �·m. Then, the self and mutual impedances
of the OLwith a length of 1 km are calculated at the sag ratios
of 0, 10, and 20 percent in Fig. 9 (defined in s/h in percent
in Fig. 2).

As the validation of the proposed FEM, the number of
small elements increases in Fig. 10. The FEM uses the
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FIGURE 12. Relative difference of Zac to the reference when the sag ratio
increases.

FIGURE 13. Absolute value of the self-impedance (Zcc ) when the cable
changes.

FIGURE 14. Relative difference of the self-impedance (Zcc ) to the
reference when the cable changes.

compensated SLA method, or equations from (8) to (11). For
the sag ratio of 20 percent, as the number of small elements
increases, self-impedances (Zaa, Zbb, and Zcc) converges to
0.2887 + 0.8094i, 0.1069 + 0.7570i, and 0.1452 + 0.7762i
in �/km. Mutual impedances (Zab, Zac, and Zbc) converge
to 0.0494 + 0.2347i, 0.0491 + 0.1825i, and 0.0494 +
0.2347i�/km. As the sag ratio increases, the self- and mutual
impedances decrease. It is because the more severely sagged,
the closer conductors approach the ground. In other words,
the GMD of the overhead line to its image conductor (e.g.,Dij

FIGURE 15. Average relative difference when the cable changes.

term in (3)) decreases, so the self- and mutual impedances
decrease.

To analyze the effect of the line sag on the self- and mutual
impedances of the OL, the sag ratio linearly increases from
0 to 20 percent. Fig. 11 and Fig. 12 indicate the absolute value
and relative difference of the mutual impedance (e.g., Zac)
when the line sag increases. In Fig. 11, as the sag increases,
the absolute value of the mutual impedance decreases. If the
overhead line is sagged, the GMD decreases, so the mutual
impedance decreases. For the weakly sagged OL with a sag
ratio of 20 percent, the mutual impedance calculated by the
compensated SLA (denoted as CSLA with the diamond) is
close to the reference impedance, denoted as the reference
with the square, compared to the CDER and SLA methods,
which is comparable to [8]. In Fig. 12, as the sag increases,
the relative difference of the mutual impedance calculated
by the compensated SLA slightly increases because the
mutual impedance also decreases according to the sag. The
self-impedance shows the same pattern as Fig. 11 and Fig. 12.

To analyze the effect of an imbalance in the phase conduc-
tors of the sagged OL on the self- and mutual impedances,
the conductor of phase c changes from the first to the last
ACSR cable in TABLE 1. The FEM also uses the compen-
sated SLA method. In Fig. 13, as the cable changes from
Joree to Partridge, the absolute value of the self-impedance
of phase c (e.g., Zcc in �/km) increases because the GMR of
the conductor decreases and the dc resistance increases. For
all the cables, a sag ratio of 20 percent decreases the abso-
lute value of Zcc. Fig. 14 presents the relative difference of
self-impedance (Zcc) to the reference, which decreases when
the GMR of the conductor decreases and the dc resistance
increases. The 20 percent sag also increases the relative dif-
ference of self-impedance (Zcc). Fig. 15 indicate the average
of the relative difference of self- and mutual impedances,
which shows the same decreasing pattern as Fig. 14.

VII. CONCLUSION
The objective of this study is not only to find EVs of
self- and mutual impedances of OLs with polyhedral uncer-
tainties (e.g., the ground resistivity, overhead line structure,
and cable) but also to examine the effects of an increase
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in line sags (e.g., the sag ratio from 0 to 20 percent) and
an imbalance in phase conductors on the self- and mutual
impedances. For this purpose, this study designed a stochastic
Monte Carlo simulation model and presented the two-step
variable-sized FEM. As a result of the case studies, the EVs
of the self- and mutual impedances of the ACSR OLs with
various uncertainties are successfully evaluated. It was also
shown that as the sag ratio increases, the self- and mutual
impedances decrease. However, this study ignored not only
other cable specifications (e.g., copper) in the Monte Carlo
simulations but also heavily sagged overhead lines, which is
the future work of this paper.
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