
Received July 20, 2021, accepted August 13, 2021, date of publication August 24, 2021, date of current version September 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3107601

Automated Multi-Layered Bytecode Generation
for Preventing Sensitive Information Leaks
From Android Applications
GEOCHANG JEON , MINSEONG CHOI , SUNJUN LEE, JEONG HYUN YI , (Member, IEEE),
AND HAEHYUN CHO
School of Software, Soongsil University, Seoul 06978, South Korea
Cyber Security Research Center, Soongsil University, Seoul 06978, South Korea

Corresponding author: Haehyun Cho (haehyun@ssu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant through the Korean Government (MSIT) under
Grant NRF-2021R1A4A1029650.

ABSTRACT Sensitive information leakages from applications are a critical issue in the Android ecosystem.
Despite the advance of techniques to secure applications such as packing and obfuscation, a lot of applica-
tions are still under the threat of repackaging attacks that inject malicious code and re-distribute applications.
Also, as we are becoming more dependent on mobile technologies, more sensitive information is used
on our mobile devices. Hence, it is of great importance to reduce the risk of such sensitive information
leaks. In this paper, we first present a threat model that attempts to leak users’ sensitive information by
using the repackaging attack, named ReMaCi attack. By analyzing the top 8,546 applications downloaded
from Google Play Store, we show that 50% of them are really vulnerable to the ReMaCi attack. We, thus,
propose a novel, automated static anti-analysis tool, called AmpDroid, for preventing sensitive information
leaks. AmpDroid identifies sensitive dataflows and isolates the code that handles the sensitive data from
an application. To demonstrate the effectiveness of AmpDroid, we perform the security and performance
evaluation of AmpDroid, comparing it with other obfuscation tools.

INDEX TERMS Sensitive information leaks, obfuscation, android security, code protection.

I. INTRODUCTION
Aswe are becoming more dependent on mobile technologies,
the amount of sensitive information such as user names,
phone numbers, e-mail addresses, and credit card num-
bers used on our mobile devices has been dramatically
increased [1], [2]. Not to mention, currently, sensitive infor-
mation leakages from applications are a critical issue in
the Android ecosystem [3], [4]. Therefore, it is of great
importance to reduce the risk of such sensitive information
leaks. Especially, to reduce the risk, we must secure sensitive
data flows in applications [3]. If attackers identified such
sensitive data flows in Android applications, they can leak
the sensitive data of users by conducting repackaging attacks
[5]–[7]. Attackers abuse the repackaging policy of Android
that allows an application to re-distribute to third-party mar-
kets with a different developer’s signature. Therefore, it is

The associate editor coordinating the review of this manuscript and

approving it for publication was Gaurav Somani .

possible to inject malicious code leaking confidential infor-
mation to an application and re-distribute it.

However, despite the advance of techniques to secure
applications such as packing and obfuscation from attacks,
a lot of applications are still under the threat of repackaging
attacks [8]. Especially, such techniques are ineffective when
attackers use dynamic analysis methods to reveal sensitive
data flows that should not be exposed [9], [10]. It is worth
noting that simply encrypting sensitive data cannot prevent its
leakages. This is because, by the nature of program execution,
encrypted data must be decrypted by the application itself
before the data is used. Therefore, if attackers can identify
where encrypted sensitive data is decrypted, a sensitive infor-
mation leak can occur by employing the repackaging attack.
The repackaging attack is to redistribute an application to
third-party markets after an attacker injects malicious codes
to leak sensitive information from the application or to access
unpermitted files.

In this paper, we focus on the threat: (1) We first present
the threat model, named Repackaging with Malicious Code

119578 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7738-1225
https://orcid.org/0000-0001-8478-5658
https://orcid.org/0000-0002-2720-0593
https://orcid.org/0000-0002-5344-5252
https://orcid.org/0000-0001-7147-165X

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

Injected (ReMaCi) attacks, and show that roughly 50% of
top-downloaded applications in the Google Play Store are
really vulnerable to the attack model. (2)We propose an auto-
mated anti-analysis system, named AmpDroid, that generates
multi-layered bytecode for preventing the ReMaCi attack.
AmpDroid identifies sensitive data flows and isolates code
that handles the sensitive data from an application so that
attackers cannot analyze the application. The isolated code is
separately managed and be provided to the application when
it executes.

To demonstrate the effectiveness of AmpDroid, we imple-
ment a proof-of-concept of it with sub-applications and thor-
oughly evaluate AmpDroid. Our evaluation results show that
AmpDroid can effectively mitigate the ReMaCi attack and
show that AmpDroid imposes a reasonable performance and
memory overhead on applications in comparison with other
state-of-the-art obfuscation tools (i.e., Liapp [11], Obfus-
capk [12], and Dexprotector [13]). In the spirit of open sci-
ence, we have released the source code of AmpDroid that we
developed as part of our research.1

In summary, this paper has the following contributions.

• We demonstrate the severity of private information leak-
age in real-world applications.

• We present an automated multi-layered bytecode gen-
eration system that identifies sensitive data flows and
prevents sensitive information leaks by isolating code
handling the sensitive information.

• We implement the proof-of-concept of AmpDroid and
thoroughly evaluate it in comparison with state-of-the-
art obfuscation tools.

II. BACKGROUND
In this section, we introduce sensitive data flows in commer-
cial applications and how the sensitive data can be leaked, and
look around obfuscation techniques.

A. SENSITIVE DATA FLOW
A data flow is a term to show how data passes from one
component to another, through an application. In this work,
we define a sensitive data flow as that shows how sensi-
tive information such as credit card number, phone number,
e-mail, and International Mobile Equipment Identify (IMEI),
is passed among variables or methods. We introduce real-
world examples of the sensitive data flow in Android appli-
cations that we identified.

Listing 1 shows Smali2 instructions that we traced by
using a dynamic analyzer of a commercial application
(Payment teacher manager app in Korea, 1.0.15ver [14]).
Reg5 of the com.google.gson.Gson.a method con-
tains not only the message interface between the server
with the client but also unencrypted personal informa-
tion as shown from Line 7 to 17. This private information

1https://github.com/ssu-csec/code-AmpDroid
2Smali is a disassembler implementation for the dex format used by

Android runtime (Dalvik virtual machine).

Listing 1. Getting user information from server in payment application
downloaded from google play store.

including member_id, member_phone, member_nm,
and member_e-mail, member_idx is stored into the
internal string object for displaying it on the screen
(Line 21 to 24).

Listing 2 shows another Smali instruction that sets the text
of the TextView with a phone number to display it (same
application with Listing 1). Reg1 containing an unencrypted
phone number in Line 8 is transferred as the first argument of
the onTextChanged function in Line 13.

If attackers identified such sensitive data flows in Android
applications, they can leak the sensitive data of users by per-
forming repackaging attacks [5]–[7]. We discuss this attack
model in detail (in Section III).

B. OBFUSCATION TECHNIQUES
We introduce obfuscation techniques that make reverse engi-
neering very difficult, which in turn can be used to prevent
exposures of sensitive data flows.

1) IDENTIFIER RENAMING
Well-defined identifiers of applications help attackers under-
stand the internal logic of the code and its semantics
[15], [16]. Identifier renaming is an obfuscation technique to
change identifiers such as package, class, method, and field
names to random strings [17], [18].

2) CONTROL FLOW OBFUSCATION
Control flow obfuscation is to alters control flows of an
application program without altering its semantics [19], [20].

VOLUME 9, 2021 119579

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

Listing 2. Updating user phone number in TextView.

This technique makes it difficult for making static analysis
very difficult to determine the original control flows.

3) API HIDING
API hiding is a frequently used obfuscation technique for
Java applications for preventing being statically analyzed
by hiding which APIs are called by an application. APIs
invoked by the application are dynamically determined dur-
ing the runtime based on the context. Albeit API hiding
can effectively hinder a static analysis, we can easily reveal
APIs used in applications by directly monitoring instructions
executed [21]–[26].

4) DATA ENCRYPTION
Any type of data used in an application including code
can be stored as encrypted data [27], [28]. Applications
using encrypted data must decrypt the data when they
actually use it. Therefore, similar to the API hiding tech-
nique, encrypted data can effectively impede static analysis
methods.

However, unfortunately, all of the above obfuscation tech-
niques are not able to completely protect sensitive data flows
from being revealed [29].

III. REMACI ATTACK
In this work, we assume that an attacker attempts to leak
sensitive information in an android application through the
repackaging attack. The repackaging attack is to re-distribute
applications after inserting malicious code to an original
application downloaded from application stores such as
Google Play Store [30]. We define such attacks for leak-
ing sensitive information as the Repackaging with Malicious
Code Injected (ReMaCi) attack.
To perform ReMaCi attacks, the attacker needs to inject

malicious code that leaks private data such as e-mail or phone

numbers to the compromised server after identifying sensitive
data flows in applications. Then, the attacker repackages the
application and redistributes it. To this end, the attacker first
needs to perform dynamic analysis and/or a static analysis
to identify sensitive data flows. Once the attacker identified
sensitive data flows, it is straightforward to find the exact
locations of code that handles the sensitive data. We note that,
albeit applications are heavily obfuscated, the attacker can
accomplish this step by using a dynamic analyzer that can
monitors instructions executed [31], [32]. Therefore, ReMaCi
attacks can be applied to any application regardless of the
protection mechanisms applied to them. Once the flow of
sensitive data was revealed from a dynamic analyzer and/or
static analyzer, an attacker injects malicious code that leaks
the sensitive data. Finally, the tampered application is repack-
aged with the attacker’s private key and re-distributed to a
third-party app store. Later, if potential victims download
and use the application, their personal information such as
a phone number will be leaked to the attacker.

In Section VII-A, we demonstrate the severity of the threat
by showing real-world applications downloaded fromGoogle
Play Store are really vulnerable to the ReMaCi attack.

IV. AMPDROID
We demonstrated that the exposure of sensitive data flows
can lead to sensitive data leakages in Section III. Therefore,
the flow of sensitive data must be hidden to attackers for
protecting users’ private information. To this end, we segmen-
talize our goal as follows and propose an automated multi-
layered bytecode generation system for preventing sensitive
information leaks.

G1: Identifying Sensitive Data flows.
To protect sensitive data flows in applications,
we first should identify them. Such data flows can
be expressed by using the following three com-
ponents. The entry method is the start method
fetching sensitive data from storage or the network
into a process (called a source). Next, the end
method sends data out of the process (called a sink).
Furthermore, execution paths between the start
method and end method (called tainted paths). For
the rest of this paper, we call the above three com-
ponents a stem. Our first goal is to find the stems
in applications. There can be numerous stems in
an application. The more stems we find, the more
we can prevent data leakage by hiding them. Also,
we should decide which stem will be used to hide
among stems (called a selected stem). We demon-
strate how we identify and select stems to hide them
in Section V-A.
G2: Generating Multi-Layered Bytecode.
The next goal is to generate bytecodes of an appli-
cation into multi-layered bytecode. The original
dex file will be divided into 3 dex files which are
the sensitive code Dex (called SC dex), all of the
other user-defined classes Dex (called UDC dex),

119580 VOLUME 9, 2021

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

andclasses.dex containing library classes such
as java, android, and kotlin. By dividing
the original dex file, we can manage them sepa-
rately. Specifically, if we can hide the SC dex files
securely, attackers will not discover sensitive data
flows from applications. We discuss how we can
achieve this goal in Section V-B.

V. DESIGN
We aim to design an automated anti-analysis mechanism
to protect applications against the ReMaCi attack. In this
section, we introduce the design of our automated multi-
layered bytecode generation system, codenamed AmpDroid,
that can identify sensitive data flows and prevent information
leaks by isolating code that handles sensitive data.

A. IDENTIFICATION OF SENSITIVE DATA FLOWS
1) FINDING THE STEMS
To discover the stems mentioned in Section IV, we employ
a taint analysis tool, Flowdroid [33]. Flowdroid defines func-
tions that find device-dependent sensitive information such as
IMEI and serial numbers and the other internal messages used
in an application as a source. Flowdroid then defines func-
tions that send sensitive information over the network or save
it to storage as a sink. Next, Flowdroid finds the sources in
the application to check if the application uses sensitive data
obtained by using APIs. If Flowdroid discovers a source,
it performs a taint analysis to discover execution paths that
end up with transferring the sensitive data (e.g., functions
sending data over the network) from the source by using
the Inter-procedural Control-Flow Graph (ICFG). Identified
execution paths include a sequential procedure that sensitive
data is passed into variables or functions from source to sink.

Flowdroid is a widely-used static taint analyzer
to analyze data flows in an Android application.
Tofighi-Shirazi et al. [34] demonstrated that Flowdroid with
Iccta shows the noticeable accuracy to find information flow
in mobile applications compared to other tools. Also, because
Flowdriod has been steadily updated by users up to these
days, it is quite stable and can be used for applications that
run on the most recent version of the Android platform.
Therefore, we believe that we can effectively find the stems
from applications by employing Flowdroid.

As such, analysis results of Flowdroid are sound, and thus,
we can provide a proper defense against ReMaCi attacks by
generating multi-layered bytecode based on them.

2) SELECTING A CLASS TO ISOLATE
After discovering the stems, we select a class that will be
isolated from an application based on the identified stems
where the sensitive data is handled. AmpDroid, currently,
supports one class to be isolated from the application. For
the effectiveness of the isolation, AmpDroid finds a class
that has the most instructions in stems. A stem is a series of
instructions from the start of processing for data to the end of

sending data outside of an application. Therefore, a stemmay
consist of instructions over multiple classes in an application.

To choose a class, we analyze an application to find which
class has the most instructions in stems. To this end, we stat-
ically find the number of instructions contained in stems in
each class by comparing instructions between a class and
each stem. If more than or equal to two classes have the
same number of instructions in stems, AmpDroid picks a
class randomly. It is worth noting that even thoughAmpDroid
isolates one class, we can successfully mitigate ReMaCi
attacks because an AmpDroid-protected application cannot
be statically analyzed and dynamically analyzed (it cannot
execute without the isolated class). Specifically, if a class can
access sensitive data with few instructions that were not be
selected for isolating from the application, the few instruc-
tions may be exploited by the ReMaCi attack. To this end,
the application must execute for leaking sensitive data, but it
conclusively cannot start executing without the isolated class.
Consequently, the remaining instructions that use sensitive
information cannot be exploited. We note that AmpDroid-
protected applications can execute only with the isolated
class. For the rest of the paper, we call a class that will be
isolated by AmpDroid as sensitive code.

B. MULTI-LAYERED BYTECODE GENERATION
classes.dex of an application includes user-defined
classes, third-party libraries, android platform API, etc.
To generate multi-layered bytecode, AmpDroid divides
classes.dex into three dex files: sensitive code dex
(called SC dex), user-defined classes dex (called UDC dex),
and the rest code for the classes.dex.

1) SC DEX
To prevent ReMaCi attack, we hide the sensitive code so
that attackers cannot reveal it through reverse engineering
applications. To this end, AmpDroid isolates the sensitive
code as an SC dex file from the classes.dex. The isolated
sensitive code will be dynamically loaded and used when an
application executes. Also, we need to manage the SC dex
to not exist in the application. This is because as far as the
SC dex is in an application, attackers are able to monitor the
execution of the sensitive code and reveal sensitive data flows
even if SC dex was heavily obfuscated.

To isolate the sensitive code, AmpDroid first decom-
piles the classes.dex. It, then, parses decompiled Smali
files to obtain and manage all packages, classes,
methods, and fields defined in the application. Next,
AmpDroid finds the sensitive code and stores it in a separate
file. Also, AmpDroid deletes the sensitive code from the
decompiled Smali files. Furthermore, AmpDroid finds all
instructions invoking methods in the sensitive code to patch
them.

To be specific, AmpDroid creates a DexClassLoader
object in theclasses.dex to dynamically load the SC dex.
By using the method, an application dynamically loads the
class isolated in the SC dex when it executes. Also, because

VOLUME 9, 2021 119581

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

FIGURE 1. Overview of the proposed system.

the sensitive code was separated from the classes.dex,
we should patch method call sites that invoke methods in the
sensitive code as well.

Remaining code in classes.dex has to invoke isolated meth-
ods by using the Reflection of Java. To invoke a method with
the reflection, we need the procedure to get and access objects
and methods to invoke. AmpDroid, thus, must patch all the
calling sites invoking methods defined in the isolated class.
However, patching all the invoke instructions can increase
the size of code unnecessarily. To minimize the redundancy,
we design a Generic Reflection Call Method (GRCM) that
can invoke any method in the sensitive code with reflection.
GRCM is designed to easily provide the procedure to the
remaining code without heavily modifying it. GRCM takes
the following three arguments: (1) the name of a class object
that contains a method to invoke; (2) an array including the
name of the method to be called and objects to be passed as
parameters when calling the method; and (3) the number of
parameters used in the method call. By using GRCM, we can
minimize the code redundancy for calling isolated methods.
Lastly, AmpDroid re-compiles the Smali files to generate a
new classes.dex.

2) UDC DEX
After isolating the sensitive code, AmpDroid finds all user-
defined classes including MainActivity and isolates
them into a UDC dex. The AmpDroid uses the package
names of Android libraries to distinguish between user-
defined classes and android library classes. Android provides
libraries such as java, org/apache, com/google,
android, and kotlin, so the other packages can be rec-
ognized as user-defined classes and can be split into the
UDC dex.

Because an application must calls the onCreate method
of MainActivity in the UDC dex to execute, AmpDroid
patches the classes.dex to call the method by using
the reflection. After the onCreate method is executed,
the other user-defined methods can be directly invoked.

AmpDroid isolates the UDC dex for making static analyses
difficult on user-defined classes. By isolating the UDC dex
from classes.dex file, an attacker cannot easily analyze it

because the code is separated and hidden even though the file
exists in the APK file.

3) CLASSES.DEX
After splitting the sensitive code and all user-defined classes,
classes.dex has classes of Android libraries. Also, Amp-
Droid inserted code for loading dynamically other dex files
with GRCM in the classes.dex.

VI. IMPLEMENTATION
We implement a proof-of-concept of AmpDroid that prevents
information leaks by isolating the sensitive code and its sub-
applications. Sub-applications are a sensitive code manage-
ment server (CMS) that saves and provides the SC dex and
a sensitive code management application (CMA) that sends a
request to the server and provide the SC dex to an AmpDroid-
protected application. AmpDroid is currently publicly avail-
able at https://github.com/ssu-csec/code-AmpDroid.

A. MANAGING THE SC.DEX
To protect applications against the ReMaCi attack, we should
securely manage SC dex files isolated from applications.
In this work, we focus on identifying and isolating the sen-
sitive code, leaving the secure management of the sensitive
code as future work.

In our proof-of-concept implementation, we used the CMS
and CMA to manage the sensitive code. After splitting the
sensitive code, AmpDroid calculates a hash value of the appli-
cation to check its integrity. It, then, sends the SC dex file and
the hash value to the code management server to save it and it
manages them with pairs. When the code management server
receives a request from the CMA for the SC dex, the CMA
calculates and sends the application’s hash value as well.
By doing so, we can check the integrity of the application
(whether or not the application is modified). After the CMA
receives the sensitive code, the CMA delivers it via Intent.
To securely transfer intents between AmpDroid-protected

applications and the CMA, every intent is encrypted.
To this end, AmpDroid and the CMA use a secret key-based
encryption algorithm such as AES to transfer intent securely.
When AmpDroid isolates a class from an application, it gen-
erates a secret key and stores the key into the application

119582 VOLUME 9, 2021

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

and the isolated class. When the AmpDroid-protected appli-
cation requests the SC dex by using an intent to the CMA,
the AmpDroid-protected application encrypts the intent with
the secret key and sends it. In the case of delivering the SC
dex to the AmpDroid-protected application, the CMA also
encrypts the intent and then sends it. By doing so, the intent
can be delivered securely.

As we described the management of the SC dex, Amp-
Droidmakes AmpDroid-protected applications executable by
dynamically loading the SC dex received from the CMA.
The CMA provides the SC dex when AmpDroid-protected
applications start executing and request it. Once the CMA
first downloads the SC dex from the server, CMA can store
it on the device. Therefore, CMA does not need to download
the same SC dex several times.

B. AMPDROID-PROTECTED APPLICATIONS
The AmpDroid-protected application executes with checking
whether the CMA is installed on a device or not, and loads the
UDC dex only if the CMA is installed (If not installed, exit the
process). After loading the UDC dex, the application sends
an intent for obtaining the SC dex to the CMA. The CMA
calculates the hash value of the application and provides the
SC dex to it. The application, then, can load the SC dex. Once
loading the SC dex has completed, the application executes
the onCreate method of the MainActivity.

When calling the onCreate method using reflection
APIs, AmpDroid-protected applications can mitigate that
an attacker resolves the static arguments of reflection APIs
by using dynamic analysis tools. The calling onCreate
method is the next step after the SC dex is dynamically
loaded. The attacker without the CMA cannot obtain the SC
dex, and thus, the attacker cannot execute the onCreate
method even if the attacker uses a dynamic analyzer such as
Frida.

AmpDroid can also mitigate the collusion attack,
two ormore applications collaborate to perform stealthymali-
cious actions, by restricting the execution of the application.
To perform the collusion attack, colluded applications must
be executed and malicious code which accesses private data
must be inserted in colluded applications. But, the application
protected by AmpDroid must be able to execute only with
SC dex which includes sensitive data flows which can be
exploited by an attacker’s malicious code. AmpDroid uses
also an encryption algorithm to prevent a hijacking when it
sends SC dex using an intent that can be exploited by colluded
application.

VII. EVALUATION
In this section, we first demonstrate how many recent appli-
cations are vulnerable to ReMaCi attacks in Seciton VII-A.
We, also, present how effectively AmpDroid protects appli-
cations from sensitive information leaks in Section VII-B,
Section VII-C, and Section VII-D, comparing with other
obfuscation tools. Also, we demonstrate the performance
impact of AmpDroid in Section VII-E.

TABLE 1. The number of real-world applications vulnerable to the
ReMaCi attack.

FIGURE 2. Comparison of the class tree of unprotected application (left
figure) and protected application by AmpDroid (right figure).

Our evaluation addresses the following research questions:
RQ1: Are real-world applications really vulnerable to the

ReMaCi attack?
RQ2: Does AmpDroid effectively prevent ReMaCi

attacks?
RQ3: What is the runtime performance overhead imposed

by AmpDroid in comparison with other obfuscations tools?

1) EVALUATION SETUP
We collected 8,546 applications from the Google Play Store
within the last 2 years and used them for demonstrat-
ing the threat of ReMaCi attacks. Our dataset includes
quite famous apps that have 1 million+ downloads such as
‘‘com.tflat.phatamtienganh.apk’’, ‘‘com.bianf.avatars.couple.
dance.apk’’ to provide an effect of our approach on a variety
of applications. The size of our dataset is about 160GB
and includes applications from 13KB to 376MB in size and
various categories such as Education, Business, Finance, and
Lifestyle.3

To evaluate the performance of AmpDroid, we used
1,870 random applications (in Section VII-D and
Section VII-E) published from 2019 through ApkPure [35].

3We provide our dataset to everyone via a public repository at
https://github.com/ssu-csec/code-AmpDroid/tree/main/doc

VOLUME 9, 2021 119583

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

FIGURE 3. SC class tree of protected application by AmpDroid.

We performed our evaluations on the Google Pixel 2XL
device of the android 8.1.0 version. The detailed specifica-
tions of the device are composed of a CPU of 2.35GHz x 4 &
1.9GHz x 4 Quad-Core Processor, and 4GB of RAM.

A. REAL-WORLD APPLICATIONS VULNERABLE
TO ReMaCi ATTACKS
To demonstrate real-world Android applications are really
vulnerable to the ReMaCi attack, we first selected the top-
selling 8,546 applications. We then used AmpDroid to find
the stems from the applications. Each stem represents an iden-
tifiable execution path that accesses the sensitive information
and sends the data out of the application. If we can identify
such stems in an application, we can inject malicious code
that transfers the data to an arbitrary server or other devices
in the application and repack the application for distributing
it through third-party markets. Therefore, the existence of
identifiable stems in an application can imply the application
is vulnerable to the ReMaCi attack.

The experimental result in Table 1 shows that around 50%
of applications have more than one stem, and thus, they are
vulnerable to the ReMaCi attack. Also, 23% of our dataset
has more than 100 sinks to transfer sensitive data to outside,
and thus, they can be valuable targets from attackers. If an
application has a lot of sensitive data flows, the sensitive data
can be easily identified and repacked by attackers. In other
words, those applications really need proper protection to
prevent sensitive information leaks.

The accuracy of identifying stems or sensitive code relies
on Flowdroid we employed for implementing AmpDroid.
Tofighi-Shirazi et al. [34] showed Flowdroid has an accuracy
of about 90% and 100% for DroidBench and ICC-bench,
which is higher than other taint analysis tools. Therefore,
we believe that our identification module would have high
accuracy as well. Unfortunately, we do not have the ground
truth of how many sensitive data flows exists in our dataset
because we downloaded applications from the Google Play
Store (we do not have the source code of them), and thus,
it is not feasible to evaluate the accuracy of the identification
module against the dataset.

B. EFFECTIVENESS OF AMPDROID
To conduct the ReMaCi attack, attackers need to discover
sensitive data flows via static analysis and/or dynamic anal-
ysis. To evaluate how effectively AmpDroid can mitigate the
attack, we applied AmpDroid to a real-world application,

FIGURE 4. File structure of protected application by AmpDroid.

FIGURE 5. UDC class tree of protected application by AmpDroid.

Kyoungki Bus App, vulnerable to the ReMaCi attack.
We, then, performed static and dynamic analyses for the
applications to identify sensitive data flows.

1) STATIC ANALYSIS
Figure 2 shows the comparison of class tree of unpro-
tected classes.dex and protected classes.dex ana-
lyzed by JEB [36]. The unprotected class tree contains
the kr/or/gbushybrid/HybridIntroActivity$1
class marked with yellow rectangular box. However,
in protected classes.dex, the protected classes.dex
contains only the android and google libraries and custom
packages created by AmpDroid as described in Section V-B.
Because the sensitive code and UDC dex have been isolated
from class.dex, they do not exist in the class.dex.

Figure 2 also illustrates that we cannot only observe the
isolated HybridIntroActivity$1 class but also all the
user-defined classes such as com/acecounter, com/gc,
and kr as root of selected class. The isolated sensitive
code is in the SC dex as shown in Figure 3. On the other
hand, Figure 4 shows the file structure of the protected
APK, in which there is the UDC dex under the Assets
folder. AmpDroid makes it difficult to statically analyze
the application by isolating user-defined classes from the
classes.dex. UDC dex has all of the user-defined pack-
ages such as acecounter, gc, and kr isolated from the

119584 VOLUME 9, 2021

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

FIGURE 6. Smali instructions of protected application monitored by a
dynamic binary instrumentation tool.

original classes.dex as shown in the class tree of UDC
dex (Figure 5).

2) DYNAMIC ANALYSIS
To demonstrate AmpDroid can protect sensitive data flows
from being revealed by attackers through dynamic analyses,
we performed a dynamic analysis on the same application
used in Section VII-B1. To this end, we employed a dynamic
binary instrumentation tool (DBI) for Android applications
proposed by Wong and Lie et al. [37], by which we can
directly monitor Smali instructions executed.

Figure 6 shows Smali code extracted by the DBI when
the application starts executing. The application executes
its <init> function in the com.allthatsoft.c.B
class in Line 2. Then, the application loads a native
library that checks whether the code management applica-
tion was installed or not on the device at the native level
in Line 10 to 11. Thus, the DBI tool cannot monitor the
checking process because the module is implemented with
the native code. This makes it difficult to infer the behaviors
of the application. If the code management application has
not been installed on the device, the library returns false
and the application fails to initialize. In the log, it can only
see the callback method of the checking process received
from the library in Line 15 to 16. Finally, the application
calls the onInitializeFailure function and finishes
executing.

C. IDENTIFIED SENSITIVE DATA FLOWS
We demonstrate that how AmpDroid identifies the sensi-
tive data flows in an application and then finds a class that
has the most instructions among the identified data flows
as described in Section V-A. To this end, we used twenty
applications and count the Class, Method, and Instruction
identified by AmpDroid as the sensitive data flows and the
most instruction class to isolate.

Section 2 shows the experimental result. AmpDroid found
that each application has 15 sensitive classes, 38 sensitive
methods, and 1,393 sensitive instructions on average. Then,
AmpDroid selected a class, which has the most instruc-
tions, including 3 methods and 291 instructions on aver-
age. Finally, AmpDroid isolates them from applications.

FIGURE 7. Average numbers of identifiers in dex files with
1,870 applications between obfuscation tools.

In Table 2, the Rate column means a rate that the instructions
of the selected class occupy in the identified sensitive data
flows. AmpDroid selected the most instruction class taking
32.74% of sensitive data flows on average.

D. RECOGNIZABLE IDENTIFIERS
We show that recognizable identifiers in classes.dex
protected by AmpDroid, comparing with other obfusca-
tion tools. To this end, we used the CallIndirection
and Reflection of obfuscapk [12] and the code
protection of Liapp [11] and the class encryption
of Dexprotector [13]. Then, we used a static analysis tool,
AndroGuard [38], to extract identifiers from classes.dex
files protected by AmpDroid and the other obfuscation tools.

Figure 7 illustrates the evaluation result where we can
find the number of recognizable identifiers (Dex size, Class,
Method, String, Field) between the classes.dex files.
The classes.dex file protected by AmpDroid has the
lowest number of recognizable identifiers with Class, Meth-
ods, and Field as shown in Figure 7 because of the iso-
lated class. Having lower identifiers implies that AmpDroid

VOLUME 9, 2021 119585

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

TABLE 2. Identified sensitive data flows and the most instructions class to isolate targeting. We used twenty applications to measure how many sensitive
data flows exist in applications and in a class that is going to be isolated by AmpDroid.

can protect applications better than the other tools against
ReMaCi attacks from being statically analyzed.

E. RUNTIME PERFORMANCE EVALUATION
We evaluated the runtime performance of AmpDroid with
1,870 applications, comparing it with the performance
impacts of the other obfuscation tools. Specifically, we first
measured loading times of the applications until the
MainActivity executes because the biggest performance
impact of using obfuscation tools and AmpDroid is when
an application is being loaded. Secondly, we evaluated the
CPU and memory usages of loading times by using Sim-
pleperf [39] and Dumpsys [40]. To this end, we measured
not only the main process’s CPU and memory usages, but
also one of the sub-processes to reasonably conduct the
evaluation.

Figure 8 shows the evaluation result of loading times
between AmpDroid and the other obfuscations tools. The
average loading time of applications protected by Amp-
Droid is lower than Liapp but higher than the other obfus-
cation tools. This is because AmpDroid requires additional
processes for dynamically loading the UDC dex and SC
dex. Also, our proof-of-concept implementation of Amp-
Droid requires the communication process for requesting and
receiving the SC dex from the code management application.

Next, Figure 9 shows the overhead of CPU and memory
usages while the applications are loaded. In Figure 9–(a),
CPU Cycles refer to the number of cycles to process instruc-
tions from the CPU. Instructions refer to the number of
instructions executed from the CPU. Task-clock refers to the
usage time of the CPU. Context-switch refers to the time used
to replace the CPU’s register values. In Figure 9–(B), Private
total refers to all memory sizes allocated in the process.
Private dirty refers to the used memory. Private clean refers
to the memory size allocated to the process, excluding dirty.
SwapPss Dirty refers to the swapped size to obtain memory.

FIGURE 8. Overhead of the load time from start to calling MainActivity
between obfuscation tools.

On average, for loading applications, applications pro-
tected by AmpDroid used almost 170% of CPU cycles and
300% of instructions more than unprotected ones. Also,
AmpDroid-protected applications showed the highest CPU
usages among the obfuscation tools. We note that after load-
ing an application has been completed, the performance
overhead of AmpDroid-protected applications is nearly zero
because no additional task is required to execute them.
While the memory overhead of AmpDroid-protected applica-
tions is 16% higher than unprotected applications. However,
the memory overhead of applications protected by AmpDroid
lower than ones obfuscated by the other tools.

These performance evaluation results demonstrate that
AmpDroid takes the second most overhead of the load time
and shows the highest CPU usages but the lowest memory
usages among the protection tools.

F. LIMITATION
AmpDroid relies on the static analysis result for selecting
the sensitive code to isolate from an application. As a result,
if our static analyzer fails to analyze sensitive data flows,
AmpDroid cannot provide a proper defense to an applica-
tion. Unfortunately, in our experiments using the real-world
dataset, we cannot analyze 50% of applications and cannot
start to execute 30% of applications after protecting them

119586 VOLUME 9, 2021

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

FIGURE 9. The runtime average overhead of the usage of CPU (a) and memory (b) between obfuscation tools.

by using AmpDroid. Our dataset consists of applications
downloaded from the Google Play Store within the last two
years and most applications in our dataset were protected by
various obfuscation schemes such as class encryption and
string encryption. Therefore, AmpDroid failed to analyze
around 50% of our dataset and to start to execute 30% of
our dataset. To protect sensitive data on unanalyzable appli-
cations, we must identify sensitive data flows on them even
though their codes are strongly obfuscated. But, we note that
statically analyzing obfuscated applications is a challenging
problem and leave this problem as our future work. However,
except for such cases, AmpDroid can be generally used for
protecting the application.

VIII. RELATED WORK
We proposed AmpDroid, a system for preventing sensitive
information leaks for Android applications. In this section,
we introduce other protection mechanisms that can be used
against the ReMaCi attack.

Obfuscapk [12], which obfuscates bytecode to difficult
the understanding of code stream such as our system, is a
static obfuscation tool and proposes various functions such
as CallIndirection and LibEncryption to secure
the code. Also, they transform the identifier such as pack-
age, class, and method name to confuse the understanding
of the code. Further, they insert a new method that invokes
the original method (IndirectionCall) and supports
encryption to protect library and asset files. It’s effective
protection on static analysis. However, at runtime, decrypted
files are loaded inmemory and can be tracked from a dynamic
analyzer.

Dexpro [41] can confuse the flow of register data and
combines opaque predicates to make it difficult to under-
stand the control flow. Fundamentally, the control flow is
obfuscated by inserting dummy code or by switching codes.
Liapp [11], which is used as a commercial tool, is also a static
obfuscation tool that receives an APK file as input. It not
only protects the source code against anti-analysis but also
supports anti-repackage so that the app cannot be decompiled.
Although Liapp’s code protection hides the class in a specific
location, when the binary is loaded on memory, the flow of

sensitive data can be monitored from the dynamic analyzer
(see Appendix).

Another commercial tool, Dexprotector [13], provides
code protection such as class encryption, string encryption,
and API Hiding. Dexprotector uses encryption to protect
bytecode such as Obfuscapk. Our protection scheme has
differed from Dexprotector in that it identifies the flow of
sensitive data and isolates the code, not encryption.

Zhang et al. [42] proposes the application code protection
scheme that acquires a memory area where the binary is
loaded and relocates it to a special area. Since it is relocated
into the kernel area, the only user who can access the kernel
is permitted to control the memory of the application. It is
difficult to trace or penetrate because the data is hidden in
the kernel. However, to apply this approach, the kernel of the
Android device must be customized and it is difficult to use
it in general.

App Guardian [43] is a technique that provides immediate
protection when an app is installed and does not need to
change the operating system or target app. It is similar to
our system in a point of achieving the goal of preventing
sensitive information leaks. However, App Guardian focuses
on finding some suspicious background processes to block
gathering runtime information of the target app. It protects the
runtime information gathering of the target app by pausing
all suspicious background processes when the target app is
running.

On the other hand, Zhao et al. [44] introduced the Virtual
Machine (VM)-basedMultiDex and share object (SO) protec-
tion approach. They used the newly stack-based native code
system to protect apps from reverse engineering techniques.
They prevent reverse engineering by executing the app on
different execution tracks every time. The key is to prevent
dynamic cumulative attacks by running different VMs each
time.

IX. CONCLUSION
In this paper, we first assess real-world Android applications
to illustrate that are really vulnerable to attacks for leaking
sensitive information. We, then, proposed a novel system,
AmpDroid, that can prevent sensitive information leaks by

VOLUME 9, 2021 119587

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

Listing 3. Monitoring the obfuscated code of Liapp.

generating Multi-Layered Bytecode. AmpDroid selects the
sensitive code by identifying sensitive dataflows and isolates
the code. We demonstrated the effectiveness of our system.
In addition, we show that our system can be used for Android
applications.

APPENDIX
A. THE TRACKING OF THE OBFUSCATED CODE BY
DYNAMIC ANALYZER
The obfuscation technique that makes it difficult to under-
stand the code is one of the enhancing security of an applica-
tion. Obfuscation can effectively prevent static analysis, but
it can still be traced against dynamic analysis can monitors
executable code. We used the Lipp and Obfuscapk tools to
show that.

Listing 4. Monitoring the obfuscated code of Obfuscapk.

1) LIAPP
Listing 3 shows the execution log that a sample of
Liapp (commercial obfuscation tool) applied code protection
was dumped by a dynamic analyzer. The dynamically mea-
sured code is part of the onClick. Line 9 shows the etID
of the EditText is moved to v5. And, the etPWD of the
EditText is moved to v0 in Line 14. The value of etID
and etPWD is copied to v5 through Line 20 to Line 29.
The user account transformed with String is passed as a sec-
ond argument of Toast’s makeText function in Line 31.

119588 VOLUME 9, 2021

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

Finally, we can see that the ID and password are sinking to the
outside through Toast’s show. The codes executed at the
runtime of Liapp are traceable because plain text is exposed.

2) OBFUSCAPK
Listing 4 shows the execution code of another tool, Obfus-
capk’s CallIndirection and Reflection function.
The id entered by the user is transferred to v5 in Line 4.
Line 5 shows that the method name is replaced with
NImOqzKvYLLigOdV due to the CallIndirection of
Obfuscapk. This method cast the type to String over multiple
function calls. The v5 (user-id) having the result of casting is
passed via the CallIndirection of Obfuscapk. Finally,
the user-id can be tracked by a dynamic analyzer that is sunk
to the outside via the Show method of Toast Object.
The above two samples show that the flow of sensitive

data can be tracked by a dynamic binary instrumentation tool.
Obfuscation, which makes the code difficult to understand,
still has the limit that the original executable code can be
dumped, and the monitored log can be used for tracking the
flow of sensitive data. Thus there remains still a potential risk
of sensitive data leaks.

REFERENCES
[1] R. Salvia, A. Cortesi, P. Ferrara, and F. Spoto, ‘‘Intents analysis of Android

apps for confidentiality leakage detection,’’ in Advanced Computing and
Systems for Security. Singapore: Springer, 2021, pp. 43–65.

[2] N. Williams, ‘‘Persistent private information,’’ Econometrica, vol. 79,
no. 4, pp. 1233–1275, 2011.

[3] OWASP Mobile Top 10, Accessed: Feb. 25, 2021. [Online]. Available:
https://owasp.org/www-project-mobile-top-10

[4] C. Gibler, J. Crussell, J. Erickson, and H. Chen, ‘‘Androidleaks: Automat-
ically detecting potential privacy leaks in Android applications on a large
scale,’’ in Proc. Int. Conf. Trust Trustworthy Comput. Berlin, Germany:
Springer, 2012, pp. 291–307.

[5] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi, ‘‘Repackaging attack on
Android banking applications and its countermeasures,’’ Wireless Pers.
Commun., vol. 73, no. 4, pp. 1421–1437, Dec. 2013.

[6] Y. Lee, S. Woo, J. Lee, Y. Song, H. Moon, and D. H. Lee, ‘‘Enhanced
Android app-repackaging attack on in-vehicle network,’’ Wireless Com-
mun. Mobile Comput., vol. 2019, pp. 1–13, Feb. 2019.

[7] Z. He, G. Ye, L. Yuan, Z. Tang, X. Wang, J. Ren, W. Wang, J. Yang,
D. Fang, and Z. Wang, ‘‘Exploiting binary-level code virtualization to pro-
tect Android applications against app repackaging,’’ IEEE Access, vol. 7,
pp. 115062–115074, 2019.

[8] S. Liu, R. Guo, B. Zhao, T. Chen, and M. Zhang, ‘‘APPCorp: A cor-
pus for Android privacy policy document structure analysis,’’ 2020,
arXiv:2005.06945. [Online]. Available: http://arxiv.org/abs/2005.06945

[9] L. Xue, H. Zhou, X. Luo, Y. Zhou, Y. Shi, G. Gu, F. Zhang, and M. H. Au,
‘‘Happer: Unpacking Android apps via a hardware-assisted approach,’’
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2021, pp. 1641–1658.

[10] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, ‘‘A generic
approach to automatic deobfuscation of executable code,’’ in Proc. IEEE
Symp. Secur. Privacy, May 2015, pp. 674–691.

[11] Liapp, Accessed: Feb. 25, 2021. [Online]. Available: https://liapp.
lockincomp.com

[12] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, ‘‘Obfuscapk: An
open-source black-box obfuscation tool for Android apps,’’ SoftwareX,
vol. 11, Jan. 2020, Art. no. 100403.

[13] Dexprotector. Accessed: Feb. 25, 2021. [Online]. Available: https://
dexprotector.com

[14] payment Manager App. Accessed: Jun. 12, 2021. [Online]. Available:
https://play.google.com/store/apps/details?id=com.paymint.payssam_
aos_manager&hl=ko&gl=US

[15] R. Baumann, M. Protsenko, and T. Müller, ‘‘Anti-ProGuard: Towards
automated deobfuscation of Android apps,’’ in Proc. 4th Workshop Secur.
Highly Connected IT Syst. (SHCIS), 2017, pp. 7–12.

[16] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, ‘‘TriggerScope: Towards detecting logic bombs in Android
applications,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 377–396.

[17] R. Tofighi-Shirazi, M. Christofi, P. Elbaz-Vincent, and T.-H. Le, ‘‘DoSE:
Deobfuscation based on semantic equivalence,’’ in Proc. 8th Softw. Secur.,
Protection, Reverse Eng. Workshop (SSPREW), 2018, pp. 1–12.

[18] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, ‘‘Statistical deobfus-
cation of Android applications,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 343–355.

[19] Z. Wang, Y. Shan, Z. Yang, R. Wang, and S. Song, ‘‘Semantic redirection
obfuscation: A control flow obfuscation based on Android runtime,’’ in
Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy Comput. Commun. (Trust-
Com), Dec. 2020, pp. 1756–1763.

[20] V. Balachandran, D. J. J. Tan, and V. L. L. Thing, ‘‘Control flow obfus-
cation for Android applications,’’ Comput. Secur., vol. 61, pp. 72–93,
Aug. 2016.

[21] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, ‘‘CopperDroid: Automatic
reconstruction of Android malware behaviors,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2015, pp. 1–15.

[22] Y. Zhang, X. Luo, and H. Yin, ‘‘Dexhunter: Toward extracting hidden code
from packed Android applications,’’ in Proc. Eur. Symp. Res. Comput.
Secur. Cham, Switzerland: Springer, 2015, pp. 293–311.

[23] M. Y. Wong and D. Lie, ‘‘IntelliDroid: A targeted input generator for the
dynamic analysis of Android malware,’’ in Proc. NDSS, vol. 16, 2016,
pp. 21–24.

[24] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, ‘‘Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,’’ ACM Trans.
Comput. Syst., vol. 32, no. 2, pp. 1–29, 2014.

[25] L. Xue, H. Zhou, X. Luo, L. Yu, D.Wu, Y. Zhou, andX.Ma, ‘‘PackerGrind:
An adaptive unpacking system for Android apps,’’ IEEE Trans. Softw. Eng.,
early access, May 21, 2020, doi: 10.1109/TSE.2020.2996433.

[26] C. Sun, H. Zhang, S. Qin, J. Qin, Y. Shi, and Q. Wen, ‘‘DroidPDF: The
obfuscation resilient packer detection framework for Android apps,’’ IEEE
Access, vol. 8, pp. 167460–167474, 2020.

[27] S. Inshi, R. Chowdhury, M. Elarbi, H. Ould-Slimane, and C. Talhi, ‘‘LCA-
ABE: Lightweight context-aware encryption for Android applications,’’ in
Proc. Int. Symp. Netw., Comput. Commun. (ISNCC), Oct. 2020, pp. 1–6.

[28] A. Skillen, D. Barrera, and P. C. van Oorschot, ‘‘Deadbolt: Locking down
Android disk encryption,’’ in Proc. 3rd ACM Workshop Secur. Privacy
Smartphones Mobile Devices (SPSM), 2013, pp. 3–14.

[29] H. Cho, J. H. Yi, and G.-J. Ahn, ‘‘DexMonitor: Dynamically analyzing
and monitoring obfuscated Android applications,’’ IEEE Access, vol. 6,
pp. 71229–71240, 2018.

[30] Google Play Store, Accessed: Feb. 25, 2021. [Online]. Available:
https://play.google.com/store

[31] V. Costamagna and C. Zheng, ‘‘Artdroid: A virtual-method hooking frame-
work on Android art runtime,’’ in Proc. IMPS@ ESSoS, 2016, pp. 20–28.

[32] Frida. Accessed: Feb. 25, 2021. [Online]. Available: https://frida.re
[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel, ‘‘Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps,’’ ACM
SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[34] L. Qiu, Y. Wang, and J. Rubin, ‘‘Analyzing the analyzers: Flow-
Droid/IccTA, AmanDroid, and DroidSafe,’’ in Proc. 27th ACM SIGSOFT
Int. Symp. Softw. Test. Anal., Jul. 2018, pp. 176–186.

[35] Apkpure. Accessed: Feb. 25, 2021. [Online]. Available: https://apkpure.
com/kr

[36] JEB. Accessed: Feb. 25, 2021. [Online]. Available: https://www.
pnfsoftware.com

[37] S. Lee, ‘‘Bytecode instrumentaion scheme for evading anti-analysis tech-
niques based on method hooking,’’ M.S. thesis, Soongsil Univ., Seoul,
South Korea, 2021.

[38] Androguard. Accessed: Feb. 25, 2021. [Online]. Available:
https://androguard.readthedocs.io

[39] Simpleperf. Accessed: Feb. 25, 2021. [Online]. Available: https://
developer.android.com/ndk/guides/simpleperf

[40] Google. Dumpsys. Accessed: Feb. 25, 2021, available:. [Online]. Avail-
able: https://developer.android.com/studio/command-line/dumpsys

VOLUME 9, 2021 119589

http://dx.doi.org/10.1109/TSE.2020.2996433

G. Jeon et al.: Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks

[41] B. Zhao, Z. Tang, Z. Li, L. Song, X. Gong, D. Fang, F. Liu, and Z. Wang,
‘‘Dexpro: A bytecode level code protection system for Android applica-
tions,’’ in Proc. Int. Symp. Cyberspace Saf. Secur. Cham, Switzerland:
Springer, 2017, pp. 367–382.

[42] X. Zhang, Y.-A. Tan, C. Zhang, Y. Xue, Y. Li, and J. Zheng, ‘‘A code
protection scheme by process memory relocation for Android devices,’’
Multimedia Tools Appl., vol. 77, no. 9, pp. 11137–11157, May 2018.

[43] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, ‘‘Leave me alone:
App-level protection against runtime information gathering on Android,’’
in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 915–930.

[44] M. A. R. Khan and M. K. Jain, ‘‘Protection Android app with multiDEX
and SO files from reverse engineering,’’Mater. Today, Proc., Jan. 2021.

GEOCHANG JEON received the B.S. degree
in computer science from Myongji University,
Seoul, South Korea, in 2015. He is currently
pursuing the master’s degree with the School of
Software, Soongsil University. He was a Junior
Researcher at the Network Laboratory, Telefield
Company, South Korea, from 2018 to 2019. His
research interests include android security, embed-
ded systems, network security, and system soft-
ware security.

MINSEONG CHOI received the B.S. degree
in computer science from Soongsil University,
in 2019, where he is currently pursuing the mas-
ter’s degree with the School of Software. His
research interests include mobile security and sys-
tem security.

SUNJUN LEE received the B.S. and M.S.
degrees in computer science and engineering from
Soongsil University, in 2019 and 2021, respec-
tively. He is currently a Research Staff with the
Cyber Security Research Center. His research
interests include binary analysis, reverse engineer-
ing, system security, and mobile security.

JEONG HYUN YI (Member, IEEE) received
the B.S. and M.S. degrees in computer science
from Soongsil University, Seoul, South Korea,
in 1993 and 1995, respectively, and the Ph.D.
degree in information and computer science from
the University of California at Irvine, Irvine,
in 2005. Hewas a Principal Researcher at Samsung
Advanced Institute of Technology, South Korea,
from 2005 to 2008, and a member of Research
Staff with the Electronics and Telecommunica-

tions Research Institute (ETRI), South Korea, from 1995 to 2001. From
2000 to 2001, he was a Guest Researcher with the National Institute of
Standards and Technology (NIST), MD, USA. He is currently a Professor
with the School of Software and the Director of the Cyber Security Research
Center, Soongsil University. His research interests include mobile security
and privacy, the IoT security, and applied cryptography.

HAEHYUN CHO received the B.S. and M.S.
degrees in computer science from Soongsil Uni-
versity, Seoul, South Korea, in 2013 and 2015,
respectively, and the Ph.D. degree from the School
of Computing, Informatics and Decision Systems
Engineering of Arizona State University, majoring
in computer science, and especially concentrating
on information assurance. He is currently anAssis-
tant Professor with the School of Software and the
Co-Director of the Cyber Security Research Cen-

ter, Soongsil University. His research interests include the field of systems
security, which is to address and discover security concerns stemmed from
insecure designs and implementations. He is passionate about analyzing,
finding, and resolving security issues in a wide range of topics.

119590 VOLUME 9, 2021

