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ABSTRACT A millimeter-wave (mmW) classifier system applied to images synthesized from a
coded-aperture based computational imaging (CI) radar is presented. A developed physical model of a
CI system is used to generate the image dataset for the classification algorithm. A convolutional neural
network (CNN) is integrated with the physical model and trained using the dataset comprising of synthesized
mmW images obtained directly from the developed CI physical model. A k-fold cross validation technique
is applied during the training process to validate the classification model. The coded-aperture CI concept
enables image reconstruction from a significantly reduced number of back-scattered measurements by
facilitating physical layer compression. This physical layer compression can substantially simplify the data
acquisition layer of imaging radars, which is realized using only two channels in this article. The integration
of the classification algorithm with the CI numerical model is particularly important in enabling the training
step to be carried out using relevant system metrics and without the necessity for experimental data.
Leveraging the CI numerical model generated data, training step for the classification algorithm is achieved
in real-time while also confirming that the numerically trained CI classifier offers high accuracy with both
simulated and experimental data. The classifier integrated physical model also enables performance analysis
of the classification algorithm to be carried out as a function of key system metrics such as signal-to-noise
(SNR) level, ensuring a complete understanding of the classification accuracy under different operating
conditions. The trained CI system is tested with synthesized mmW images from the physical model and
a classification accuracy of 89% is achieved. The proposed model is also verified using experimental data
validating the fidelity of the developed CI integrated classifier system. A classification latency of 3.8 ms
per frame is achieved, paving the way for real-time automated threat detection (ATD) for security-screening
applications.

INDEX TERMS Millimeter-wave, imaging radars, computational imaging, neural networks, image classi-
fication, coded-aperture.

I. INTRODUCTION
Millimeter-wave (mmW) imaging has found applications
in various areas ranging from remote sensing [1]–[3] to
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autonomous robotics [4]–[6] and medical applications such
as breast cancer detection [7], [8]. Another such useful
application is concealed weapon detection [9]–[12] because,
unlike X-rays, radiation at mmW does not exhibit ionizing
effects, hence posing no health hazards. As a result, mmW
radar modalities have been widely used in places where
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security is of utmost importance. Various image process-
ing techniques have been demonstrated on mmW images
such as compressive sensing [13], [14], super-resolution
[15], [16], denoising and image enhancement [17], [18]. Clas-
sification techniques on such images have been previously
explored [19], [20], although the literature on these tech-
niques is still scarce. The majority of classification research
focuses on generating images with systems using traditional
imaging techniques, relying on a raster scanning principle,
i.e. carrying out a point-by-point scan of an imaged scene by
means of a beam synthesis on the radar aperture. In this con-
text, most commonly used techniques can be considered as
variants of synthetic aperture radar (SAR) [11], [21], [22] and
phased array based modalities [23], [24]. The SAR concept
conventionally involves performing a mechanical scan on the
aperture plane to directly measure the back-scattered radar
data on a point-by-point basis. The phased array technique
performs the raster scanning of the scene in an all-electronic
manner by making use of a radiation pattern which can be
steered electronically without physically moving the anten-
nas. Although such techniques are known to produce excel-
lent imaging results, they exhibit few shortcomings. The
mechanical scanning on the aperture plane used in SAR con-
cept poses significant challenges when it comes to real-time
data acquisition, particularly in security-screening applica-
tions which require imaging of electrically large scenes. The
all-electronic raster scanning in phased arrays makes use
of an array of dedicated phase shifting circuits and power
amplifiers to have full control of the individual array elements
forming the aperture. This can significantly increase the com-
plexity of the hardware layer and amount of power consumed
by the aperture.

For a classification problem, the convolutional neural net-
work (CNN) model requires a sufficient number of data
samples to ensure that the system generalizes well and does
not overfit to the training data. In the context of mmW
security-screening and classification for threat detection, this
requirement translates into the need for a sufficient number of
mmW images of threat objects to successfully train the CNN
model. Moreover, given the demand of the application to
produce a fast and accurate classification system and keeping
in mind the quality of mmW images, training the neural
network model for mmW classification typically requires a
large dataset. In light of these challenges, employing the tra-
ditional raster-scanning based methods to generate such large
datasets and train the classification system can be counter-
productive. This is because raster-scanning based imaging
modalities conventionally suffer from slow data acquisition
speeds and exhibit significant computational demands for
image reconstruction due to the need to process large datasets
caused by the dense sampling of the aperture layer, typi-
cally at the Nyquist limit. Moreover, generating the mmW
images of real targets for training by means of experimental
measurements can take a prohibitively long time. To relax
the raster-scanning requirement, sparse computational imag-
ing (CI) techniques [25]–[32] can be leveraged. In addition,

the training of the CNN network can be done on synthesized
mmW images.

CI differs from the conventional methods in that it makes
use of compressive single-pixel apertures radiating spatio-
temporally incoherent radiation patterns. Using these quasi-
random bases, the entire scene information can be encoded
and compressed onto a single channel at the antenna layer.
This can substantially simplify the hardware architecture of
mmW radars and reduce the number of data acquisition chan-
nels on the physical layer. This paper shows a CNN-enabled
classification algorithm integrated into a coded-aperture CI
model. To this end, a numerical CI forward model is used to
generate mmW images from CAD models of various threat
objects. The training of the model is achieved using the
reconstructedmmW images generated by the developed near-
field coded-aperture CI model.

The main novelty of the paper rests on three pillars:
• First, a numerical model of a single-frequency coded-
aperture based compressive CI system is developed for
the first time to facilitate the training of mmW CI based
radar image classification. This is achieved using the
synthetic mmW images reconstructed by the numer-
ical model itself. As outlined in Section II, conven-
tional classification research in mmW radar imaging
has a significant limitation in that it mainly focuses
on the learning algorithm – not the generation of the
imaging data for training. This poses a lack of com-
plete system analysis. The developed physical model
in this paper represents an end-to-end system, taking
into account all aspects of the radar imaging process,
from data acquisition to image reconstruction and clas-
sification. The developed CI model not only can sig-
nificantly simplify the hardware layer of conventional
radar architectures due to the single-frequency physical
layer compression (Section IV), it also paves the way
for physical model development for imaging systems
with deep learning to facilitate real-time classifica-
tion (Sections V and VI). This is particularly impor-
tant for security-screening applications, as real-time
classification is the key element for automated threat
detection (ATD).

• Second, a CNN classifier is developed and integrated
in the signal processing layer of the CI system. To the
best of our knowledge, this is the first time that the
mmW CI technique leverages the classification con-
cept and achieves it in real-time. CI facilitated by
compressive sensing has recently received significant
traction, including the author’s pioneering works in this
field [26], [29]–[35]. However, all of these works have
relied on interpreting the reconstructed images, quali-
tatively, by means of a visual inspection. In security-
screening applications, this is not a viable option for
threat detection. Different from the previous mmW CI
imaging works, we successfully integrate the developed
CI physical model with a k-fold cross-validated clas-
sifier. The presented technique not only achieves high
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accuracy classification from the CI radar reconstructed
mmW images, it also achieves this in real-time, generat-
ing the first proven classification model for ATD in CI
radars.

• Third, and finally, we provide a systematic, quantita-
tive analysis of the robustness of CI based radars to
system noise and its effect to the classification accu-
racy - both numerically and experimentally. In order
for CI based radars to be considered a realistic tech-
nology for security-screening applications, they must
be able to achieve classification under various signal-
to-noise ratio (SNR) conditions. Currently, the robust-
ness of CI based radars to system noise for classifica-
tion is unknown. As well as answering this question
(Section VI), we prove that the capability to generate our
own mmW imaging dataset is vital to ensure optimum
classification performance under various system noise
levels. This is of significant importance in radar imag-
ing because the developed physical model gives us the
ability to alter the system noise level within the practical
imaging environment. It also enables us to optimize the
training data to match with the desired system parame-
ters and improve the accuracy of the classification step
(Section VI).

The main motivation of this work is to develop a
coded-aperture based mmW imaging system that facilitates
compressive sensing by leveraging physical layer compres-
sion and its integration with a CNN-based classifier as an
enabling technology for ATD in real-time. Specifically, this
work aims to be the first to achieve all of the following
tasks simultaneously: (i) a coded-aperture based mmW CI
radar is developed as an enabling physical model for clas-
sification, (ii) the mmW CI physical model is integrated
with a CNN-classifier, (iii) the integrated model is ver-
ified both numerically and experimentally under various
SNR conditions, and (iv) real-time ATD at mmW frequen-
cies is achieved. The physical layer compression enables
the reconstruction of mmW images from a reduced num-
ber of back-scattered measurements of the imaged scene - a
concept that is achieved using single pixel compressive
coded-apertures in this work. The integration of the CNN
classifier into the developed CI model is vital to ensure that
training of the classifier system can be achieved using the
developed CI numerical model generated synthetic mmW
images, eliminating the need for experimental data. In other
words, the classification algorithm used by the system is
trained using only the synthesized data from the developed
numerical CI model alone and not with data acquired by
any experimental measures. This approach is advantageous
in security-screening applications for three reasons:
• First, getting access to real-life threat objects for data
collection can be extremely difficult. The proposed
approach makes the data generation for training easier
in the sense that any CAD model of real threat objects
can be used as a target and the developed CI model can
be used to generate its image.

• Second, for an accurate classification of mmW images,
wherein a large set of mmW images are required for
training, the presented approach is feasible because,
instead of using an experimental system for data col-
lection, the developed CI model, which relies solely
on fast data acquisition CI techniques instead of slow
and expensive SAR or phased-array based conventional
imaging techniques, can be used to generate as much
data as required.

• Third, and finally, synthesizing the training data through
the developed physical model enables us to consider the
effect of system metrics, such as SNR level, on classi-
fication performance. This advantage makes it possible
to systematically optimize the training data and improve
the classification accuracy.

The outline of this paper is as follows: Section II provides
a brief insight into mmW image classification to reflect on
the current state-of-the-art in this field. Section III provides
an overview of the system designed. In Section IV, we present
the synthesized CI system. Section V gives the detailed infor-
mation about the CNN model design whereas Section VI
provides a discussion on the results obtained. Finally, Sec-
tions VII and VIII present the future work and the concluding
remarks, respectively.

II. RELATED WORK
Object detection or classification of images using machine
learning techniques has received substantial interest in the
literature, particularly at optical frequencies [36]–[43]. How-
ever, mmW image classification, including data acquisi-
tion, to facilitate real-time ATD for security-screening is
vastly understudied. In [44], classification was carried out
based on a spectral analysis of mmW images using support
vector machine (SVM). Despite encouraging results, it is
important to emphasize that SVM is a more suitable tech-
nique for binary classification problems. As a result, using
SVM for multi-class classification requires an additional
pre-processing of dividing the problem into several binary
classification problems. Also, when the size of the dataset
is large, as is the case in this paper, research suggest that
deep learning networks are known to perform better in image
classification problems. [45], [46]. Works related to deep
learning networks [47]–[50] have also been carried out in
recent past. Although most of the work has shown that CNN
is a very useful approach in mmW object detection, almost
all of the work available in the literature focuses solely on the
learning algorithm and not on the data collection for training.
For instance, in [51], CNN was used for object detection in
human-scaled targets. To achieve this, an experimental radar
system consisting of an array of antennas and operating at
27 GHz with a bandwidth of 5 GHz was leveraged to col-
lect approximately 3000 multi-angle mmW human images.
Generating necessary training data via such a system can be
extremely time consuming and not a feasible solution, par-
ticularly when the number of classes to detect is significant.
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In [52] and [53], the use of CNN was shown for target detec-
tion in airborne SAR images. In these works, instead of fully
connected layers at the end, sparsely connected layers were
used. However, the classification was shown on an already
available dataset that is a collection of thousands of SAR
images. This approach is not ideal for classification studies
because such datasets do not necessarily exhibit relevant
system metrics in terms of operating frequency, bandwidth,
aperture size, SNR, imaging distance and resolution. It is
therefore vital to generate the training data using the actual
physical model of a radar system under its relevant system
parameters. An interesting work was presented in [54] where
deep learning was facilitated as an enabling technique to
solve the image reconstruction problem at terahertz (THz)
frequencies. It should be mentioned that this is a fundamen-
tally different concept from the classification problem studied
in this paper. Moreover, because the work presented in [54]
was not experimentally tested, it is not possible assess the
accuracy and applicability of [54] for practical applications.
For the security-screening application we consider, this poses
a significant disadvantage.

From the available research on classification of mmW
images, it can be concluded that most of the works were
carried out on already available datasets consisting of SAR
images or depend upon approaches that heavily rely on an
experimental set-up to generate the images. Our system has
an advantage over such approaches in the sense that we
propose an end-to-end mmW CI model for ATD in real-time.

III. SYSTEM OVERVIEW
The developed system is a mmW CI system designed for
classification of threat objects, which has the potential to
be used in security-screening applications. It classifies an
image to its appropriate class, namely Class ‘0’, ‘1’, ‘2’ or ‘3’
(details about the classes are given in Section V. A.). In order
to do so, the system uses three modules: a simulator, a CNN
layer and lastly a classifier. The overview of the whole system
is given in Fig. 1.

FIGURE 1. CI classifier system overview.

The simulator is used before the training phase whereas
the CNN layer and the classifier are used during training and
testing phases. Each module can be summarized as follows:

1) Simulator (Section IV): A physical model of a near-
field coded-aperture CI system operating in a bi-static
mode (one transmitter and one receiver aperture) and
facilitated with a hardware layer of an FPGA architec-
ture to reconstruct the mmW images in real-time.

2) CNN Layer (Section V): A CNN layer is designed
having five convolutional layers, two fully connected
layers and one output layer to extract the features
from the input images and classify them accordingly to
their respective classes. The CNN layer is trained with
images generated by the simulator.

3) Classifier (Section VI): This is the testing phase where
the trainedCNNmodel is testedwith a new set ofmmW
images numerically synthesized using the CI simulator
and experimentally reconstructed mmW images of real
targets. The classifier uses the trained CNN layer to
decide on the class of each input test image. The pre-
dicted class for each image is compared with its true
class to determine the accuracy of the model.

IV. CODED-APERTURE CI SYSTEM
CI techniques can be employed to synthesize quasi-random
bases and relax the raster scanning requirements of SAR
and phased array modalities. One such technique is the
coded-aperture technique, which uses a set of masks
with spatio-temporarily varying complex weights [55]–[58],
through which the transmitted wavefronts probing the
imaged scene and the received wavefronts collecting the
back-scattered information are passed. This spatio-temporal
mapping aperture concept can be thought of as a large
aperture that can radiate complex, quasi-random radiation
patterns. This enables the collection of the scene informa-
tion in an indirect manner, by illuminating the scene with
spatio-temporally incoherent field patterns and encoding the
back-scattered information into a few set of measurements
or modes. This indirect mapping of the scene information
eliminates the need for a point-by-point raster scan, a sig-
nificant advantage of CI based imaging modalities. Fig. 2
shows the setup for such a CI system. It consists of two
dynamic apertures, operating in a bi-static mode (one as a
transmitter, Tx, and other as a receiver, Rx). In this depiction,
the radiated fields from the coded-apertures are shown for two
different measurement mask configurations. In this paper, for
a single imaging scenario, the synthesized CI system uses a
total of 500 different mask configurations, suggesting that
the back-scattered information from the imaging scene is
encoded into 500 measurements. The size of the transmit and
receive CI apertures is 0.5 m x 0.5 m each, hence the effective
aperture size is of 1 m x 1 m. It should be noted here that
synthesizing the same effective aperture using the conven-
tional Nyquist SAR techniques would require 1600 sampling
points across the aperture plane whereas the synthesized CI
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system depicted in Fig. 2 uses only two channels to capture
the scene information. The synthesized coded-aperture CI
imaging scenario constitutes a near-field imaging problem
where the imaging scene is placed at a distance of 0.5 m
and has a cross-range size of 0.3 m x 0.3 m. Because the
coded-aperture technique can synthesize spatio-temporally
varying radiation patterns simply by means of modulating
the aperture masks without the need for a frequency-sweep,
we consider a single frequency operation of 12 GHz. How-
ever, it is worth mentioning that the operation of the CI
system is not restricted to this particular frequency and can be
extended to other frequency ranges as well. In the depiction
of Fig. 2, the system is shown to be imaging a CAD model of
a gun phantom as the threat object.

FIGURE 2. CI setup depicting a synthesized aperture consisting of
transmit (Tx) and receive (Rx) coded-apertures operating in bi-static
mode and imaging a gun target. Spatio-temporal variation in the radiated
field patterns is shown for two masks as an example. Not drawn to scale.

From the radar imaging layout in Fig. 2, under the first
Born approximation, the back-scattered radar measurements,
given by g, can be correlated to the imaged scene through the
forward model, which is given as:

gM×1 = HM×NfN×1 + nM×1 (1)

In Eq. (1), f signifies the reflectivity distribution of the
discretized pixels in the imaged scene,H is the sensingmatrix
and n is the measurement noise, modelled as a Gaussian
distribution with zero mean [33]. In this work, to ensure a
realistic model, the back-scattered measurements, g, exhibit
a finite SNR of 20 dB [33], [34]. Subscripts M and N denote
the number of measurement modes and the number of pixels
used to define the scene, respectively. From the first Born
approximation, the sensing matrix columns are formed by
the dot product of the transmitter and receiver fields, ETx
and ERx respectively, for every pixel of the scene as given
in Eq. (2). Hence, the total number of columns is N whereas
the number of rows is the number of measurement modes
used, M. Therefore, the size of H isM × N .

H = ETxERx (2)

FIGURE 3. Images of two classes of threat objects (a) 2D CAD model of a
grenade and CI reconstructed mmW image shown as inset (b) 2D CAD
model of a gun phantom and CI reconstructed mmW image shown as
inset.

From Eq. (1), it is evident that the retrieval of the scene
information from the back-scattered measurements is an
inverse problem and involves the adjoint operation of a large
sensing matrix. In a typical CI setup, which uses multiple
apertures and usually involves imaging a large scene, it has
been shown in the past that processing of sensing matrices
as large as 90 GB can be required [35]. Such a calculation
tend to be intensive computationally, hence an FPGA archi-
tecture is employed in the reconstruction process to share the
computational load with the CPU, as presented in [34]. This
hardware architecture makes use of the FPGA logic blocks to
carry out the calculation of the sensing matrix in quasi real-
time. Such a calculation needs to be carried out only once
as the sensing matrix is dependent only on the aperture and
scene parameters, and exhibits no dependence on the imaged
target. Once the sensing matrix is calculated, an estimate of
the imaged scene (fest) can be retrieved by means of a single
phase compensation, which is nothing but complex conjugate
of the calculated sensing matrix (H†), applied to the back-
scattered measurements, g, as given by:

fest = H†g (3)

V. CNN CLASSIFIER
Once the sensingmatrix is calculated, the CImodel is ready to
generate mmW images of any target within the defined scene
to be imaged.

A. IMAGE DATASET
In this work, we make use of CAD models of several threat
objects such as guns, grenades, knives and scissors to form
the dataset for training. Fig. 3 shows CAD models of a gun
and a grenade and their respective mmW images generated
by the developed CI model outlined in Section III.

Since the dataset comprises of four types of threat objects,
this classification problemwill be a multi-class one, compris-
ing of four classes:

• Class ‘0’ or Grenade,
• Class ‘1’ or Gun,
• Class ‘2’ or Knife,
• Class ‘3’ or Scissor.
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FIGURE 4. CNN architecture.

Initially, a total of 531 total images of four classes are
generated. To further increase the size of the dataset for
training the CNN model and achieve an accurate classifier,
the concept of data augmentation is used. This process adds
slightly modified copies of the existing data in which the
CI reconstructed original image dataset are passed through
a series of transformations, such as right or left shifting,
rotation, cropping or flipping. Each transformation of an
individual image creates a new version of it, and these newly
created images are treated as separate images to increase the
size of the dataset for training. In this case, each image is
subjected to four transformations:
• Right shifting by 20%,
• Down shifting by 10%,
• Zooming by 30%,
• Horizontal flipping.
Using this method, four transformed copies of a single

image are generated and this process is repeated for every
image in the existing dataset, and used for training. Hence,
the size of the dataset is increased from 531 to 2655 images.

B. CNN ARCHITECTURE
The developed CNN architecture is shown in Fig. 4.

As mentioned in Section V-A, the training dataset com-
prises of images reconstructed from the developed CI model.
The properties of these images, such as colour space or pixel
dimensions, are similar to the ones shown in Fig. 3 insets.
Each input image for the network is of dimension 150× 150.
The CNN layer comprises of five convolution layers, layer
1 through layer 5. Each convolutional layer uses multiple
filters to extract the useful features from the images. The
size of each convolutional layer is specified in Fig. 4. For
example, for the first convolution layer (layer 1), the size
specified is 150 × 150 × 32. It means that the width and
height of this particular 2D convolutional window is 150 and
150, respectively, whereas the number 32 signifies the num-
ber of filters that the convolutional layer will learn.The first
convolutional layers will filter the 150 × 150 × 3 image
with 32 kernels of size 3 × 3 × 3. The second layer takes

FIGURE 5. The convolutional filter output for the first two layers. Layer
1 has an output size of 32 filters each of 150 × 150 whereas layer 2 has an
output size of 64 filters each of 75 × 75.

as input the output of first convolutional layers and filters
it with 64 kernels of size 3 × 3 × 32. This is followed for
the rest of the convolutional layers. The filter outputs for the
first two convolutional layers on the input 150 × 150 are
given in Fig. 5. It should be mentioned here that whereas
the input image example for the depictions in Fig. 4 and
Fig. 5 is centralized, as indicated in Section V.A, the syn-
thesized imaging dataset also includes non-centered mmW
reconstructions. As a result, the presented technique does not
require centralizing the objects to achieve classification. The
important criterion is that the objects must be placed within
the field-of-view (FoV) of the synthesized radar aperture.
This is to ensure that the object can be seen by the radar
aperture. However, this is not a fundamental limitation of the
CI technique specifically. Rather, it is a physical phenomenon
that applies to all imaging radars.

No spatial zero padding is used in the convolutional layer
and the convolutional stride is fixed at 1 pixel. Each layer
is equipped with an activation layer ‘ReLU’, which makes
sure that the negative values are not activated onto the
next layer. It is widely used in CNN and does not satu-
rate whilst also not suffering from the Vanishing Gradient
problem [59]–[61]. It is worth mentioning that deep neural
networks with ReLU units train much faster than other acti-
vation units [62]. The selection is also justified with a study
wherein training of the dataset has been carried out with two
different activation units: ReLU and tanh for a fixed number
of epochs and the training error for both the activation units
have been recorded. As can be seen in Fig. 6, the networkwith
ReLU units reaches the error rate of 11% faster, i.e. in less
number of epochs as compared to the same network with
tanh activation units. For this analysis, we choose the 11%
error rate as baseline for comparison and note that a similar
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FIGURE 6. The neural network with ReLU units reaches 11% error rate
much quicker than an equivalent network with tanh units.

outcome can be observed for other error rates without loss of
generality.

Pooling is used to reduce the dimension of the output,
hence decreasing the amount of computations and weights.
The CNN architecture uses 2× 2 MaxPooling which reduces
the convolutional layer dimensions by half. As in Fig. 4, after
applying MaxPooling to the output of the first convolution
layer, the dimensions of the second layer are reduced to
75×75. After the creation of the convolutional base, in order
to generate a prediction, the output of the convolutional base
has to be flattened and helps to map the relationship between
the input and the output. Two fully connected layers are used
for this purpose. The first fully connected layer has 1024 neu-
rons whereas the second one has 512 neurons. Each neuron
in the first layer is connected to each neuron in the second
layer.The last layer consists of four neurons as there are four
classes to predict from. Since this particular problem is a case
of multi-class classification, multinomial probability is used.
In other words, a multinomial probability distribution for the
four output nodes at the output layer needs to be calculated
to predict class for a particular input image. This is carried
out by the network by using the softmax activation function
at the output layer. The probability distribution for the input
gun image in Fig. 4 is shown in Fig. 7. As seen in the figure,
the score at the output nodes are converted to probabilities
by the formula given in the figure. It can be observed that
the maximum probability is seen in the second node, which
belongs to Class 1 or Gun. Hence, the model is correctly
predicting that the input image is of a gun.

The ‘categorical cross-entropy loss’ is set as the loss func-
tion as it being a case of multi-class classification.

Loss = −

total
classes∑
i=1

yi · log p̂i (4)

where p̂i is the i-th probability value in the model output, yi
and ‘total classes’ is the number of classes in themodel output
(in this case, it is four).

FIGURE 7. The probability distribution at the output layer is shown in
detail for the input gun image in Fig. 4. Maximum probability is observed
in the second node which belongs to Class 1, i.e. ‘Gun’.

The model is optimized with the ‘adam’ optimizer [63].
As per studies in [64], for neural networks with ReLU acti-
vation functions, weights are initialized by zero-mean of

Gaussian distribution with standard deviation of
√

2
n , where n

is the number of inputs to each input node. A constant value
of 0.1 is used as biases [65]. The learning rate is selected to be
0.001 initially. A common practice is to observe the validation
accuracy during the training process and to scale down the
learning rate by a factor of 0.1 or 0.5 if the validation accuracy
stops improving [66]. A similar approach is followed wherein
the learning rate is reduced by a factor of 0.1 after 50 epochs.

C. CNN TRAINING
Since the CNN uses synthesized mmW images from the
CI physical model for training, an assurance on the accu-
racy of predictions is needed. In other words, we need to
validate the model, i.e. check whether the model is under-
fitting/over-fitting/well generalised based upon its perfor-
mances on unseen data. One such technique that can be used
for this purpose is the k-folds cross-validation [67]–[70].
The k-folds cross-validation results in a less biased model
compared to other validation methods such as the train-test
split [71], [72] because, in this method, it is ensured that
every observation from the original dataset has a chance of
appearing in the training and validation set. This is extremely
helpful in our particular case of limited dataset. For this work,
the value of k is chosen to be 5 and the entire dataset is split
into k=5 folds. The selection of k=5 ensures that there are
sufficient samples in the training set to efficiently train the
model as well as there are sufficient samples in the validation
set to accurately evaluate the model. Choosing a higher value
of k will result in a reduced validation set, hence affecting
the evaluation process. On the other hand, choosing a lower
value will result in a reduced training set, hence affecting the
learning process of the model. The model is trained using the
k-1 folds and the kth fold is kept aside for validating the model
and the accuracy is noted. This step is repeated until every k
fold serves as validation set and accuracies are recorded. Each
fold is run for 100 epochs. The average of all the accuracies
serve as the performance metric of the model. The validation
accuracies for each of the fold are recorded and tabulated
in Table 1.
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TABLE 1. Cross-validation accuracies of the model.

The average accuracy of 0.8348 in Table 1 shows that the
model has the ability to predict with the desired high precision
in an actual testing environment on test images. It should be
noted that the variation in the validation accuracies across
different number of iterations in Table 1 is the consequence of
how the dataset (which is random) is split in each iteration.
In this context, every iteration will have a different training
and validation set. The validation accuracies are a measure
of what the model has learned from the training set at each
iteration and the prediction by the model for the validation
set chosen. Therefore, the accuracy varies for each iteration
step and the variation pattern is random.

VI. RESULTS AND DISCUSSION
A. CLASSIFICATION RESULTS
Following the training of the classifier-enabled CI model, two
studies are conducted to test the classification performance:
numerical and experimental.

For the numerical study, different set of CADmodels of the
classes used for training (grenades, guns, knives and scissors)
are imported into the developed CI model to reconstruct the
mmW images. Leveraging data augmentation on the gener-
ated mmW dataset, a sufficient number of data are obtained
for numerically testing the classification accuracy. A total
of 520 mmW images from all the four classes were generated
for testing the model.

In addition to the numerical testing to characterize the
classification accuracy, in order to demonstrate that the
trained classifier model performs accurately with experimen-
tal mmW data, mmW images of real threat data are also
considered and used as test samples. For this experimen-
tal demonstration, a millimeter-wave handheld imager [73]
based on a multistatic sparse array [74], [75] is used to image
a scissor and a knife, the setup of which is shown in Fig. 8(a).
These two images are also geometrically transformed

leveraging the data augmentation process highlighted in
Section IV. In addition to increasing the size of the dataset
for experimental verification of the classification process,
this step also enables us to test whether the model is able to
accurately predict the class of an image if it is geometrically
altered. Hence, after a series of transformations on the two
images from Fig. 8(b) and 8(c), the test dataset is created with
these transformed images.

It takes the model approximately 2.05 seconds to predict
the classes of all 520 simulated and 22 experimental images,

FIGURE 8. The experimental setup involving a handheld scanner imaging
a (a) knife (left) and scissor (right) (b) reconstructed mmW image of the
knife target (c) reconstructed mmW image of the scissor target.

resulting in a classification speed of 264 images per second.
Based on the predictions by the system on the test images,
performance metrics of the model is determined. Since this
being a case of multi-class classification, confusion matrices
are generated first for both the studies, numerical and experi-
mental, to record all the predicted labels of the model against
the true labels for all the test images. The two generated
matrices are shown in Fig. 9.
Analyzing the numerical and experimental confusion

matrices in Fig. 9, it is evident that a strong diagonal on
both the matrices is obtained. This reflects that the trained
CI model has achieved high accuracy on both these studies
using synthetic and experimental data.

The system is designed so as to have the following abilities:

• The system should have a high accuracy of positive
predictions, i.e. the ability of the model not to label an
instance positive that is actually negative. In other words,
the model should not have the tendency to give any false
alarms. To measure this, we look into the ‘precision’
metric of the model based upon its performance on the
test images.

• The system should also identify all the positive cases
correctly, i.e. the ability of the model to find all the
positive instances. In other words, the model should
be able to correctly identify all the threat objects it is
detecting. To measure this, we look into the ‘recall’
metric of the model based upon its performance on the
test images.

To record the ‘precision’ and ‘recall’ metrics of the system,
a classification report is generated. It gives the classification
scores of the system for predictions on each of the classes and
calculates an average of all the scores. Based on the above
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FIGURE 9. Confusion matrices for (a) 520 synthesized test images
(b) 22 experimental test images.

TABLE 2. Classification report for synthesized test images.

listed objectives, the system is expected to be a balanced
one, i.e., a system that has a balanced precision and recall
measures. The f1 score is helpful in this case, since it gives
a harmonic mean of the precision and recall scores. The
generated classification reports for both the studies are given
in Table 2 and 3.

From the classification reports, it can be concluded that the
CI-integrated classifier model has classified the test images
consisting of both synthesized and experimental data with
accuracies of 89% and 95%, respectively. It should be noted
here that a major advantage of the developed classifier inte-
grated CI model is that it can synthesize a large number
of reconstructed mmW images, and unlike the numerical
model, creating a large number of data samples, i.e. mmW

TABLE 3. Classification report for experimental test images.

images, using the experimental scenario is not a feasible
option. Therefore, whereas the synthetic mmW images recon-
structed using the developed CI model constitutes the main
approach to characterize the classification accuracy in this
paper, the main reason behind the presented experimental
study is to show that the classifier model performs well with
experimental data.

At this point, a particular comment can be made regarding
the selection of the CNN technique as the enabling method
to be integrated with the CI physical model to achieve classi-
fication. In this context, other algorithms, such as K-Nearest
Neighbors (kNN) [76], [77] and Random Forest [78], [79]
techniques, can also be considered ideal for the multi-class
classification problem. To this end, the mmW CI classifica-
tion problem in this paper was also solved using these two
algorithms, and the overall classification f1-score accuracies
are reported to be 0.86 for the Random Forest algorithm and
0.83 for the kNN algorithm. It is evident that these values
are lower than what we obtained using CNN. Moreover,
a major reason for performing classification using CNN is
because our problem is an image classification one and CNN
specializes in processing data in a grid-like topology such
as in images. Algorithms such as Random Forest only work
on data that are in tabular form, whereas CNN can handle
any type of data, regardless of being in a tabular form or
as a collection of images. Also, such traditional machine
learning algorithms are more suitable for smaller datasets.
In our case, we have 2655 images with labels associated with
them. Therefore, it is advisable to use neural networks for
such a size of dataset. In addition, algorithms such as Random
Forest are generally slow in generating predictions because
they use multiple decision trees. When making a prediction,
all the trees have to make a decision for the same given input
and then perform voting. As a result, the more the number of
trees used, the slower the prediction process becomes. Hence,
real-time decision making is difficult to achieve with such
algorithms.

B. PRESENCE OF NOISE AND CLASSIFICATION ACCURACY
As mentioned earlier, to model a realistic system, the recon-
struction of the images were carried out by considering a
SNR level of 20 dB. In this section, a new study is carried
out to observe the effect of system SNR level, i.e., with an
increase in noise level in the input images, on the classifi-
cation accuracy. This an important study when it comes to
the practical implications of the system, because the final
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FIGURE 10. The effect of different SNR levels on a synthesized image. For
this depiction, the reconstructed image of a grenade CAD model is used.

FIGURE 11. Confusion matrices for predictions on test dataset with
(a) 15 dB and (b) 10 dB SNR level.

goal of the system is to work with real mmW images and
real world mmW images are susceptible to degradation such
as motion-blur or speckle noise. Therefore apart from the
previous study on 20 dB SNR level, the reconstructions were
also carried out with two different SNR levels, 15 dB and
10 dB. The effect of different SNR levels on the input images
can be seen in Fig. 10.

Two different test datasets were constructed out of the
previous test dataset by considering the two SNR levels. The
classification was carried out on both the datasets separately
and the performances were recorded.

From the confusion matrices in Fig. 11, the weighted
average f1-scores for all the predictions were compared.
In case of images with 15 dB SNR level, an accuracy of 81%
was observed, whereas for images with 10 dB SNR level,
73% was recorded. From these results, we can conclude that
accuracy of image classification is highly affected by noise.

FIGURE 12. The SNR v/s accuracy curve for the classifier.

FIGURE 13. The output of the first convolutional layer for the same input
image as in Fig. 5 but with 10 dB SNR level. The presence of noise in the
outputs makes it difficult for the model to extract high frequency details
such as shape of the image.

FIGURE 14. Experimental images with speckle noise (a) knife target
(b) scissor target.

The variation of the classification accuracy with the change
in SNR level is shown in Fig. 12.

Analyzing the SNR v/s accuracy curve in Fig. 12, it can be
concluded that the classification accuracy drops substantially
as the system SNR is reduced. Underlying reason behind
this behaviour can be seen in Fig. 13, where the output of
the first layer is shown in case of an input image, similar to
one in Fig. 5, but with 10 dB SNR level. By comparing the
qualities of the filter outputs in these two figures, it is evident
that the input image in Fig. 13 is distorted, posing a challenge
for the model to extract meaningful features from it.

A similar study was conducted on the experimental images
as well. These images were introduced to speckle noises as a
function of varying the SNR level. The noise effect is shown
in Fig. 14.

The same test dataset was used as in the case of the experi-
mental study (Section VI.A.). But in this case, a noise element
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FIGURE 15. Confusion matrices for predictions on experimental test
dataset with (a) 15 dB and (b) 10 dB SNR level.

was introduced to each image. The predictions were carried
out by the model on those images and the confusion matrix is
generated as shown in Fig. 15.

Comparing Fig. 9 (b) and Fig. 15, it is evident that the
presence of noise has affected the model’s ability to predict
accurately the classes of input images on multiple occasions.
The measured accuracies were recorded to be 85% and 78%,
for the two SNR levels, 15 dB and 10 dB, respectively, which
is a significant decrease as compared to the previous case.
Same conclusion can be drawn that the presence of noise has
significantly reduced the classification accuracy.

To find a solution for the decrease in accuracy in case of
noisy test images, as a next step, the classification model
was trained with images exhibiting a higher noise content.
To facilitate this, the developed CI numerical model in
Section III was used to generate the synthetic training data
with varying SNR levels by adjusting the noise parameter
in Eq. 1. The same training parameters such as number of
layers in the CNN architecture, learning rate, optimizers, etc.
were used as in the previous case. After training, the model
was tested with the same noisy test dataset. The following
predictions were recorded in both the noisy simulated as well
as the experimental images, as shown in Fig. 16.

From the confusion matrices in Fig. 16, the classification
accuracies on the simulated and experimental images were

FIGURE 16. Confusion matrices for the predictions on (a) simulated, and
(b) experimental noise images. The model was trained with increased
noise presence.

recorded to be 88% and 93%, respectively. This proves that
the performance of the classifier on images with higher noise
content can be improved if the system is trained with images
having a similar noise content. This is also a testament to
the importance of using the physical model which accurately
represents the actual system parameters of a radar rather than
using readily available datasets to generate the training data.

VII. FUTURE WORK
Although demonstrated for security-screening applications,
particularly in the context of threat object classification,
as future work, the proposed system can be adopted across
a wide application spectrum. In the context of security-
screening, the developed system can be readily integrated
with the system developed in [80], wherein a W-band ‘spot-
light’ imager is integrated with a K-band frequency-diverse
imager. The K-band imager gives a low resolution image of
the entire (FOV), revealing any presence of threat objects.
If such an object is detected, its position is introduced to
the W-band spotlight imager which extracts high resolution
image of the present threat object. This system can be inte-
grated with our developed classifier to classify accurately
the threat object detected. As mentioned, our classification
model predicts the classes of all the test images, 542 in
total, in real-time, i.e. 2.05 seconds total (3.8 ms/image,
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including the image reconstruction time per frame in this
metric). This makes it possible for the model to be used in
applications requiring real-time decision making. One such
particular application example for this can be automotive
radars for debris detection [81]. In [81], a frequency-diverse
computational radar system has been developed for detecting
debris on roads. This computational radar system can be
integrated with the classification scheme developed in this
paper. Our developed classification algorithm can be trained
with radar images of objects that are found on roads such as
other vehicles, traffic lights, road-signs, pedestrian, debris,
etc. to achieve classification in the images generated by the
automotive radar.

VIII. CONCLUSION
In this paper, we have presented an image classifier system
by integrating a CNN layer with a physical model of a
mmW CI system. The aperture of the CI system was syn-
thesized using the coded-aperture technique, which illumi-
nates the imaged scene with quasi-random spatio-temporally
independent radiation patterns (or bases) and encodes the
scene information into a set of compressed measurements.
The system uses two channels (transmit and receive) to
compress the back-scattered measurements and reconstruct
the mmW image of the imaged target. The reconstructed
images from the CI model were used to train the inte-
grated CNN-based classifier algorithm. The algorithm was
finally tested with both synthesized images generated using
the developed numerical model as well as with mmW
images of real objects reconstructed using a mmW handheld
imager. The predictions record a high accuracy as shown
in Tables 2 and 3. The obtained results validated that the
integrated CNN algorithm, trained with synthesized images
from the developedCI physicalmodel, can accurately classify
images of threat objects. This system has the potential to
be used in security-screening applications, wherein different
threat objects present in reconstructed mmW images can be
detected and classified into their appropriate classes.

Since it is known that real-world images are susceptible to
noise, the effect of presence of measurement noise in input
images on the classification accuracy was also studied. For
this analysis, no changes were made to the training dataset,
but the test images were subjected to noise. It was observed
that the accuracy decreases as the noise level increases.
Hence, from these findings, it is recommended that in order
to perform classification on noisy mmW images, the model
must be trained with higher noise images. We justified this
outcome by doing another study wherein the model was
trained with images having a higher presence of noise. The
performances of this model on the noisy test dataset clearly
suggest that the accuracy improves when trained with images
of higher noise content. It is worth mentioning that achieving
training using the synthesized mmW images from the devel-
oped CI physical model made it possible to carry out this
systematic analysis and understand the system classification
performance as a function of varying SNR levels.
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