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ABSTRACT Cardiovascular autonomic neuropathy (CAN) is one of the most overlooked complications
associated with diabetes. It is characterized by damage in the autonomic nerves regulating heart rate and
vascular compliance. Ewing battery is currently the diagnostic tool of choice but is unable to detect sub-
clinical CAN and requires patient cooperation. In addition, appropriate timing (day/night) of CAN diagnostic
test was not explored in the past. Therefore, a novel approach is proposed herein to investigate the feasibility
of using heart rate variability (HRV) features over 24 hours embedded within machine learning algorithms
to provide a complete screening for patients suffering from CAN. 24-hour Holter ECG data were acquired
from a Bangladeshi cohort (n = 95 patients [75 Diabetic and 25 healthy]). HRV features were extracted
from every 5-minute segment of the HRV signal and used as input to four machine learning algorithms
for hourly training and testing. A complete hierarchical step by step diagnosis procedure (4 tests) was
developed; namely test 1 to check for being healthy or diabetic; test 2 to check for any microvascular
complications (including neuropathy such as CAN, peripheral neuropathy (DPN), nephropathy (NEP), and
retinopathy (RET)) or not; test 3 to check for presence of only CAN; test 4 to check for combined or multiple
complications along with CAN. The highest levels of performance were achieved with accuracy measures
of 85.5% (test 1 - convolutional neural network (CNN)), 98.5% (test 2 - CNN), 98.3% (test 3 - one-class
support vector machines (SVM)), and 90.9% (test 4 - random forest). Hours 7:00 AM and 7:00 PM were
found to be most significant in the diagnosis of CAN in diabetic patients (test 1, 3, and 4). Early screening
of CAN by our proposed models could help primary healthcare centers stratify the risk leading to early
treatment in preventing sudden cardiac death due to silent myocardial infarction. The approach is considered
to be simple and effective, especially for under-resourced clinical settings.

INDEX TERMS Diabetes, cardiovascular autonomic neuropathy (CAN), 24-hour electrocardiography
(ECG), heart rate variability (HRV), machine learning, one-class support vector machine (SVM).
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I. INTRODUCTION
Diabetes is a chronic disease that occurs when high levels
of glucose are accumulated in the blood. It consists of two

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119171

https://orcid.org/0000-0002-5248-6327
https://orcid.org/0000-0002-1434-2728
https://orcid.org/0000-0002-0636-1646
https://orcid.org/0000-0002-4948-3870


M. Alkhodari et al.: Screening CAN in Diabetic Patients With Microvascular Complications Using Machine Learning

types; type 1 and type 2. In type 1, the pancreas does not
efficiently produce enough insulin hormone to the body to
regulate blood sugar levels. On the other hand, in type 2,
the body cannot effectively use the produced insulin to move
sugar from the blood into cells and subsequently, use it for
energy [1], [2]. This interruption in the secretion and transport
of this hormone in the body raises glucose levels in the blood
causing serious damage to nerves and blood vessels. Accord-
ing to the world health organization (WHO) [3], diabetes is
the major cause of heart attacks, kidney failure, stroke, lower
limb amputation, and blindness in people worldwide. It was
estimated that more than 422 million people are suffering
from diabetes in 2014, reaching a total of 1.5 million deaths
directly caused by this disease in 2019.

Most diabetic patients experience additional metabolic
events and comorbidities such as hyperlipidemia, hyper-
tension, metabolic syndrome, and obesity. In addition, the
existence of microvascular complications of all types is con-
sidered to be the major cause of morbidity and mortality
in these patients [4]. A neuropathy including cardiovascu-
lar autonomic neuropathy (CAN), diabetic peripheral neu-
ropathy (DPN), nephropathy (NEP), and retinopathy (RET)
affects all major organs in the body. In particular, autonomic
neuropathy (AN), when it involves the cardiac system as
in CAN, results in substantial cardiovascular dysfunction,
cardiac death, arrhythmias, and myocardial infarctions (MI)
[5], [6], In CAN, neuropathy is characterized by changes in
heart rate variability (HRV) as a result of damage in the nerves
regulating the heart rate. It is prevalent in around 20%-60%
of patients suffering from diabetes worldwide with five times
higher mortality rate than other AN types [7], [8].

In many cases, the occurrence of neuropathy in diabetic
patients goes under-diagnosed, especially for CAN cases,
where the cardiovascular dysfunction is accompanied by a
progression of myocardial ischemia that is usually painless
and silent [9], [10]. The early diagnosis usually reduces the
risks associated with CAN including myocardial infarcts and
sudden cardiac death [11], thus, routine CAN screening is
recommended for patients with diabetes. The current gold
standard approach to diagnose and assess CAN patients is
to perform five Ewing cardiac reflex tests [12]. However,
these tests are considered cumbersome especially for patients
with cardiorespiratory dysfunction, frailty, and severe obe-
sity [13]. In addition, since CAN onset is usually occult,
screening it through these tests at the time of the onset is
less efficient [14]. Therefore, recent research works have sug-
gested electrocardiography (ECG) attributes, including heart
rate and HRV information, to address the drawbacks of the
Ewing tests, as CAN is mostly characterized by differences
in the time and frequency domains of HRV extracted from
ECG signals [7], [8]. Furthermore, the recent development
in artificial intelligence (AI) algorithms has achieved higher
levels of accuracy when diagnosing patients with such cases.

In the literature, a number of previous studies focused on
the use of HRV for the analysis of cardiovascular patholo-
gies [15]–[18]. Furthermore, several studies highlighted the

association between HRV and diabetes using data anal-
ysis tools [19]–[21] and machine or deep learning algo-
rithms [22]–[25]. In [26]–[29], researchers utilized Ewing
tests to predict and diagnose patients with mild and mod-
erate stages of CAN. On the other hand, very few studies
investigated HRV as a diagnostic tool to evaluate diabetic
patients suffering from CAN [30]–[32]. Despite the promis-
ing performance in these studies, there still exists a gap in
the knowledge about how HRV impacts the screening of the
presence of cardiac neuropathy in 24-hour duration of a day,
especially when combined with AI algorithms to provide a
complete approach for diagnosing CAN cases [14] in the
probable presence of other diabetes-induced microvascular
complications such as DPN, NEP, and RET.

A. MAJOR CONTRIBUTION
In this paper, a study is conducted to investigate the ability
of 5-minute HRV features, extracted over the span of 24 hours
of a day, in screening diabetic patients suffering from CAN
with and without other co-morbid microvascular complica-
tions such as DPN, NEP, and RET. The importance of this
work lies in developing a tool capable of identifying those
diabetic patients with only CAN, which is usually under-
diagnosed due to the silent nature of this complication, and
discriminate them from other patients suffering from addi-
tional complications along with CAN that makes it even
harder to diagnose CAN properly. In addition, the study pro-
vides a complete hierarchical machine learning approach to
enhance the step by step clinical evaluation of patients start-
ing from screening their diabetic status down to microvas-
cular complications associated with it, with the focus on
presence of CAN. (Fig. 1).

To the best of the authors’ knowledge, the decision on an
optimal time for clinical diagnosis of CAN patients was not
estimated in the past. Only a single research work [8] tried to
use machine learning algorithms to detect severe CAN cases
using HRV features spanned over only 20 minutes. However,
it did not reflect the detection ability of HRV throughout
the day/night circadian cardiac cycle. Thus, the proposed
study presented herein targets analyzing the dynamics of the
cardiovascular system in diabetic patients, particularly CAN
subjects, on an hour-by-hour basis throughout the 24-hour
duration of a day. In addition, it highlights the 24-hour cir-
cadian functionality of the heart (correlated within HRV fea-
tures) to suggest the most suitable hours for a better diagnosis
of CAN cases, thus, providing a suitable screening strategy
with an optimal time window to prevent further development
of diabetic neuropathies.

Furthermore, this study provides a complete hierarchical
diagnostic procedure through four sequential clinical testing
schemes to successfully diagnose neuropathy complications
for diabetic patients. This can serve as a guide for clinicians
to enhance the ability and significance of HRV features in
diabetes analysis and complications detection. In addition,
it paves the way towards transforming the proposed proce-
dure from a testing scenario to direct clinical implementation.
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FIGURE 1. A graphical abstract of the complete procedure followed in the study. (a) 95 Patient enrollment at Bangladesh Institute of Health
Sciences (BIHS) Hospital. (b) heart rate variability (HRV) acquisition from 24-hour Holter electrocardiography (ECG) recordings. (c) 5-minute HRV features
extraction from time-domain, frequency-domain, non-linear, and fragmentation metrics for each hour of a day. (d) Hierarchical clinical testing schemes
including four tests to deeply diagnose diabetic neuropathies cases, with the focus on cardiovascular autonomic neuropathy (CAN). (e) The proposed
machine learning algorithms including support vector machine (SVM), random forest (RF), random under-sampling boosting (RUSBOOST), and
convolutional neural network (CNN) with initial pre-processing steps. (f) Per-hour performance evaluation of each clinical test scheme using each
machine learning model.

Therefore, in clinical practice, the ability to follow a sequen-
tial testing approach at certain hours of a day is considered of
high importance in successfully diagnosing diabetic patients
and thus, providing them with timely medication. The pro-
posed approach reduces the demand on clinics, especially
for under-resourced clinical settings, due to the simplicity of
ECG based approach presented herein and due to targeting
only specific hours in the circadian cardiac cycle. Further-
more, the developed screening tool presented herein allows
clinicians to perform a complete check-up on the overall
health condition of the diabetic patient enrolled, with a focus
on discriminating between the existence of only CANorCAN
with additional microvascular complications.

Additionally, a thorough investigation on the use of mul-
tiple AI algorithms is provided in this study to evaluate
the impact of using several machine learning techniques
in enhancing the diagnostic ability of HRV in neuropathy
screening for diabetes patients. The reason behind utilizing
multiple machine learning algorithms is to provide a wider
artificial inspection of HRV features by training models that
use higher-order feature space, random sets of decision trees,
or neural networks. Thus, it ensures the recommendation of
which model to be followed for predicting diabetic patients
with different autonomic neuropathy conditions for every
clinical testing scheme.

II. MATERIALS AND METHODS
A. DATA SET AND PATIENT ENROLLMENT
The study included a total of 95 participants (Male: 45,
Female: 50) enrolled during routine visits to Bangladesh

Institute of Health Sciences (BIHS) Hospital between
December, 18th 2017, and April, 26th 2018. Out of these
participants, 70 were suffering from type 2 diabetes for more
than 10 years, and 25 were healthy and considered as the
control patients’ group. Among the 70 diabetic patients,
66 had complications, i.e., neuropathies, while 4 only did not
suffer from any diabetic complications. All participants were
Bangladeshi citizens above 40 years of age. The study was
approved by the ethical review committee of Bangladesh uni-
versity of health sciences (BUHS/BIO/EA/17/01) and con-
forms to the ethical principles outlined in the declaration
of Helsinki and the Ministry of Health and Family Welfare
of Bangladesh. In addition, a consent form was taken from
every participant to be eligible for enrollment in the study.
No patients were allowed to participate in the study (exclu-
sion criteria) if they had one of the following conditions;
stroke history, heart diseases, diabetes duration of less than
10 years, and the presence of any other pathophysiology
that may lead to one or more complications associated with
diabetes such as the ones caused by cancer.

All participants undertook a 24-hour Holter ECG record-
ing using Shimmer3 ECG Unit. The device was attached to
every patient with 4 ECG leads (5 wires/electrodes). Out of
the four leads of the device, namely LARA, LLLA, LLRA,
VxRL, the third channel (LLRA) was selected as the refer-
ence lead for R-peak calculations as it is the lead connected
closely to the chest. First, Consensys Pro application was
used to convert the recorded data into a usable computer
format (.dat). All recorded ECG signals were sampled at
200 Hz and filtered using low-pass and high-pass filters
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TABLE 1. Brief definitions of all heart rate variability (HRV) features [35].

of 45 Hz and 0.5 Hz cutoff frequencies, respectively. Then,
the corresponding R-peak locations were annotated care-
fully on the ECG signal using LabChart 7 Pro application
through cyclic measurements. In this application, the ECG
signal wasmanually cleaned andmarked for time information
including sleeping, resting, exercising, and hour-indexing
segments. Then, it was exported into MATLAB with all the
marking information (R-peak and time frames) for further
analysis.

Initially, the exported signal was converted into an inter-
beat interval (IBI) signal from the R-peak information to
form the HRV data for every hour starting with hour
00:00-01:00 (1:00 PM). Then, the IBI-HRV signal was fil-
tered twice to remove outliers using MATLAB function
(filloutliers()). Furthermore, it was further denoised
from any artifacts, noise, or wrong labeling using the signal-
dependent rank order mean (SD-ROM) [33] and adaptive
filtering [34] techniques to ensure no abnormalities in the
HRV data. For 7 patients, the Holter recording was not fully
completed (full 24-hour), thus, they had missing ECG and
HRV data. This has caused a reduction of hours-count for
these patients out of 24 hours of a day. Therefore, at certain
hours, the total number of patients included in the study was
reduced.

B. HRV FEATURES EXTRACTION
HRV is a series of R-peaks of normal beats (N-N inter-
vals) representing heart rate values. Each ECG signal was
annotated to obtained a complete HRV data. Each patient’s
data was initially arranged to start from hour 00:00-01:00
(1:00 AM) and complete the full 24-hour circadian rhythm
recording by hour 23:00-00:00 (12:00 AM). For each hourly
HRV data, 25 HRV features as shown in Table 1 were
extracted for every 5-minute segment from time-domain,
frequency-domain, non-linear, and fragmentation metrics
using PhysioNet toolbox [35] andMATLAB R2021a. In time
and frequency domains, feature were extracted accord-
ing to the task force of the European society of cardi-
ology [36]. In addition, non-linear indices were extracted
based on the Poincare plot, de-trended fluctuation analysis
(DFA), and multi-scale entropy (MSE) [37], [38]. Further-
more, the newly introduced HRV fragmentation metrics were
included in the study and were extracted with regards to
Costa et al. [39]. A brief description of each HRV feature is
provided in Table 1. A total of 300 values per HRV feature
were collected for every hourly segment, that is 25 HRV
features in each of the 12 5-minute segments in an hour,
yielding a total of 7,200 feature values in 24-hour data for
every patient.

C. HIERARCHICAL CLINICAL TESTING SCHEMES
To provide a complete diagnosis for patients with CAN, four
tests were applied sequentially on patients’ HRV data on an
hourly basis (Fig. 2). These tests allow for better screening
of diabetic patients, especially those who are suffering from
cardiovascular neuropathy, thus, providing them the suitable
medication at the optimal time. Each test is described briefly
in the following subsections.

1) FIRST TEST: DIAGNOSING DIABETIC PATIENTS
This test targets discriminating between diabetic patients and
those participants at the healthy (control) group. Under clin-
ical settings, it is essential to initially identify if a patient
is suffering from diabetes before proceeding with additional
testing phases. In this test, the whole data set was used as
input to the proposed machine learning models for training
and testing (more details in Section II-D). The data set used
herein consisted of 70 diabetic patients and 25 participants
from the control patients group.

2) SECOND TEST: IDENTIFYING PATIENTS WITH
COMPLICATIONS
After identifying patients who are diabetic according to their
extracted HRV features, this test ensures the detection of
patients whether being suffering from further complications,
i.e., AN, or not. To train the models, a total of 66 dia-
betic patients with diabetic complications and 4 patients
with no complications were used in this test. Although
this test included less number of diabetic patients with no
complications, it was considered a challenge to carefully
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FIGURE 2. The proposed procedure for diagnosing patients based on their diabetic status. (a) The clinical diagnosis flowchart where each patient goes
initially through data acquisition (acquiring 24-Hour Holter electrocardiography (ECG) recording at specific time-stamps and extracting the corresponding
heart rate variability (HRV) features). Four tests are then applied sequentially to check for: being healthy or diabetic, having complications or not,
suffering from cardiovascular autonomic neuropathy (CAN) only, or having multiple complications along with CAN including diabetic peripheral
neuropathy (DPN), nephropathy (NEP), and retinopathy (RET). The correct treatment after each test can be suggested to the patient based on his diabetic
status. (b) Detailed representation of each test for the proposed machine learning approach. Each test shows the number of patients’ 24-hour data
included to train the models. For the third test (CAN screening), the model was trained using CAN patients’ data only and used to give a
probability (score) for a patient as suffering from CAN. More details on the dataset and the machine learning approach are given in Section II.

train and test the machine learning models. Furthermore,
we hypothesize that patients suffering from different AN
types should be easier for the models to discriminate from
other normal diabetic patients. It is to be noted that all the
subjects considered in this study are above 40 years of age
with 10 years of history of diabetes. Thus, it is hard to
get someone who has a record of diabetes for 10 years but
does not have any AN complications. To compensate for this
class bias, i.e., the presence of a less number of train and
test samples, feature augmentation is used in the machine
learning model for the second test. The details are explained
in Section II-D.

3) THIRD TEST: CAN-ONLY SCREENING TOOL
Patients who are detected as suffering from additional dia-
betic neuropathies were subjected to this test. The third test is
considered as a CAN-only screening tool, where it is focusing
on the evaluation of patients based on their degree (score)
of being suffering only from cardiovascular complications
associated with diabetes. In this test, a one-class machine
learning model based on SVM was used for training using
CAN patients’ data only (more details in Section II-D2). The
outcomes of the trained model are scores defining a probabil-
ity for every input data as being diagnosed as CAN-only. The
higher the probability (more than 0.70), the more it resembles
HRV data coming from a CAN-only diabetic patient. In this
test, a total of 21 patients with CAN-only were included
in the trained model, and the trained models were further
used to predict 40 CAN patients’ data with additional neu-
ropathies consisting of 16 CAN + DPN, 6 CAN + NEP, and

18 CAN+ DPN+ Others, where ‘Others’ includes NEP and
RET.

4) FOURTH TEST: DETECTING ADDITIONAL COMPLICATIONS
The fourth test provides a thorough view of the patients who
are suffering from additional diabetic neuropathies alongside
CAN. It is split into two parts; simple and deep scenarios.
In the simple scenario, a total of 34 patients were used as
inputs to machine learning models for training and testing,
out of which 16 were suffering from CAN + DPN and
18 were suffering from CAN + DPN + Others, where ‘Oth-
ers’ includes NEP and RET. On the other hand, the deep
scenario included the same number of patients, however,
they were split deeply as 16 CAN + DPN, 6 CAN + NEP,
and 12 CAN + Both, where ‘Both’ includes DPN and NEP
complications at the same time.

D. MACHINE LEARNING AND TRAINING SETTINGS
The ability to use machine learning algorithms for the train-
ing and prediction of diabetic patients is essential to pro-
vide an efficient diagnosis process. Here, 4 models were
used, including support vector machine (SVM) and one-class
SVM, Random forest (RF), random under-sampling boosting
(RUSBOOST), and convolutional neural network (CNN),
to evaluate the performance of several machine learning algo-
rithms. Before starting the training and testing phases for
each of the aforementioned tests, HRV data pre-processing
and preparation steps were performed to maximize the per-
formance. These steps include best HRV features selection
as well as HRV data augmentation. A complete description
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of the whole machine learning approach is provided in the
following subsections.

1) PRE-PROCESSING AND DATA PREPARATION
The pre-processing and data preparation steps were applied
for each and every test to ensure a maximized performance
within each machine learning model.

First, a feature selection approach was followed based on
a univariate chi-square (χ2) test to select the most significant
HRV features on an hourly basis. In this test, a statisti-
cal hypothesis analysis is performed for every HRV feature
to test whether the observed calculations match with the
expected ones, i.e., patient group label. Furthermore, it pro-
vides a significant difference p-value measure (p-value <
0.05) between categories based on the statistical calculations
and expectation [40]. A low p-value for a feature denotes
that this feature is most likely dependent on the group label,
therefore, it is important for predicting the group. Thus,
a score of importance is returned for every HRV feature used
in the test as score = −log(p). This test was performed
in MATLAB R2021a using function fscchi2(). It is worth
to be mentioned that for the third test, the feature selection
approachwas based on Laplacian scores [41] that relies on the
nearest neighbor similarity graph. This approachwas selected
due to have only a single class (CAN) used for training,
thus, feature selection was considered as an unsupervised
clustering problem to identify most significant features and
eliminate outliers [42].

Second, HRV data augmentation was essential in prevent-
ing each machine learning model from over-fitting. If the
model tends to over-fit, it does not allow for optimal training
parameters as the model trains to learn exactly the input data.
In other words, the model does not generalize well the trained
parameters for the training data to the new unseen data [43].
To prevent such phenomena, we provide each model with
500 additional variations of HRV data per category. These
variations include only slight changes in the amplitude of
every feature, as it was preferred not to over-augment the orig-
inal data and thus lose important information in the HRV data.
Additionally, data augmentation allows the model to face var-
ious changes in the data during training. These slight changes
enhance the ability of the model to generalize the parameters
and maximize the performance on predicting unseen data,
as the model becomes exposed to extra information that was
not available in the original HRV data.

It is worth noting that data imbalance, which is a common
issue occurring in most medical data, was handled carefully
in each machine learning model prior to training and testing
to prevent biased predictions. First, HRV data augmentation,
as mentioned previously, was used to create 500 additional
variations for each class, therefore, the training was allowed
to run on a more evenly distributed data and classes. Second,
each machine learning model allows for the utilization of
prior probabilities, i.e., initial weights, for every class. There-
fore, the training parameters in each model were optimized
according to these prior probabilities for each class to prevent

it from learning on biased parameters in favor of one class
over the other. More information on the optimization of each
model’s weights are provided in details in the following sub-
sections. In addition, extra information about data imbalance
handling in machine learning can be found in [44]–[46].

2) SUPPORT VECTOR MACHINE (SVM)
Support vector machine (SVM) is a commonly used machine
learning and data mining algorithm for its robustness in clas-
sification and regression problems. It has the ability to find an
optimal hyper-plane (kernel) in a high N th dimension, where
N is the number of features, that separates data from two
categories with a maximum gap of margin [47].

In terms of mathematical formulation, given a set of fea-
tures vectors X = {x1, x2, . . . , xN } and their associated labels
Y = {y1, y2, . . . , yN }, where N is the total number of fea-
tures, SVM goal is to minimize a regularized risk function R
given by,

min
w,b,ζ,ζ ∗

R(w, b, ζ, ζ ∗) =
1
2
w2
+ C

N∑
i=1

ζi + ζ
∗
i (1)

where w and b describe the selected hyperplane parameters,
C is used to control the trade-off between risk minimization
and potential over-fitting, and ζi and ζ ∗i are slack variables
used to measure the degree of misclassification of the ith data
point x and to cope with infeasible constraints.

In addition to multi-class classification problems, SVM
allows for one-class classification, which is considered as
part of unsupervised learning. It is commonly used as an
outlier detector, where the model is trained to distinguish
training data from any other unrelated data [48]. The selected
class for training is recognized as the positive class, and
therefore, the model tends to detect which new objects are
closely representing this positive class or are distinguished
as an outlier with no close relation [49]. The model returns
scores (probabilities) to show the degree of matching between
samples and the positive class. Similar to multi-class SVM,
a hyperplane is used tomaximize themargin between samples
and the origin.

In this work, a multi-class SVM was used for training
models in the first, second, and fourth tests. On the other
hand, a one-class SVM was used for training the model in
the third test by considering CAN class as the positive class
(CAN screening). The kernel function was selected to be a
non-linear radial basis function (RBF) with fine-tuned hyper-
parameters to ensure a maximized performance. To prevent
the model from training on biased parameters due to data
imbalance in the clinical testing schemes, a prior probability
was utilized to initialize the initial training weights per class.
In this model, the prior probability (Pi) was calculated empir-
ically based on the number of samples within every class (Ni)
relative to the total number of samples (N ) as follows,

Pi = 1−
Ni
N

(2)

where i refers to the index of the selected class.
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It is worth noting that for one-class SVM, no prior prob-
abilities were incorporated, as the model tends to train only
using a single class with no possibility of data imbalance.

3) RANDOM FOREST (RF)
Random forest (RF) is a form of decision tree, also known
as classification and regression tree (CART), where a set of
tree-like attribute nodes is connected by a set of sub-trees of
decision nodes [50], [51]. This algorithm is considered as
a bootstrap aggregation technique that uses the concept of
bagging. Given a set of feature values X = {x1, x2, . . . , xN }
and a set of responses (labels) Y = {y1, y2, . . . , yN }, whereN
is the total number of samples, the model trains by repeatedly
(B times) selecting random features to fit trees.

To provide a prediction, each decision node is calcu-
lated based on the corresponding prediction consequences
including the resource cost, outcomes chances, and utility.
At each tree, the prediction process starts by assigning an
instance to its root node. Then, for each of the following sub-
nodes, the outcomes are calculated sequentially. Once a leaf
is encountered, the tree-like nodes stop and an instance is
assigned with a prediction. The sum of all instances and pre-
dictions (voting mechanism) forms the final decision made
by the tree model [52]. Using the trained model (G), the pre-
diction of an unseen data (X ′) is given by,

Y ′ =
1
B

B∑
b=1

G(X ′) (3)

In this work, a range of 10-100 decision trees was used
to build the model. The decision on the number of trees
for every test mentioned in Section II-C was fine-tuned to
ensure the maximum possible performance. In RF, handling
the imbalance in the data at every clinical testing scheme
was handled similarly to SVM (mentioned in the previous
subsection). The prior probability was calculated empirically
for every class as shown in Equation 2.

4) RANDOM UNDER-SAMPLING BOOSTING (RUSBOOST)
A hybrid ensemble algorithm that uses decision trees but with
data sampling and boosting techniques is known as Random
under-sampling boosting (RUSBOOST) [53]. This algorithm
is most suitable whenever there is a huge unbalance in the
data used for training. In this algorithm, the majority class is
under-sampled by randomly discarding samples during each
iteration. In addition, weak learners are built through linear
combinations in a process called boosting [54].

Initially, RUSBOOST defines the weights of each class as
Dt = 1/m, where t is the iteration number and m is the
total number of samples for every class. After identifying
the class with the majority number of samples, random
under-sampling is performed to generate a set of tempo-
rary training data (S ′t ) that includes an equal number of
samples per class after random removal of samples from
the majority class. Then, a weak hypothesis (ht ) is created
based on the learning process in each iteration and used

to update the weights Dt as,

αt =
εt

1− εt
(4)

Dt+1 =
Dtα

1
2 (1+ht (xi,yi)−ht (xi,y:y6=yi))
t

Zt
(5)

where αt is the weight update parameter, xi is a point in the
feature space, yi is a class label, and Zt is the summation of
all weights.

After updating all weights, the final hypothesis (Ht ) is
created as,

Ht (x) = argmax
y∈Y

T∑
t=1

ht (x, y) log
1
α

(6)

where Y is the set of class labels, and T is the maximum
number of iterations.

In this work, the learning rate (shrinkage) was selected
to be 0.001 as it was shown that the lower the learning
rate, the better the convergence and performance of boost-
ing models [55], [56]. In RUSBOOST, data imbalance was
handled through incorporating prior probabilities for every
class. The prior probability was calculated as an under-
sampling proportion ratio relative to the lowest-represented
class. The algorithm uses this ratio to randomly under-sample
the majority classes to match with the minority class on every
iteration, thus, the training can be performed without any bias
within the learned parameters. The prior probability (under-
sampling proportion ratio) was calculated as,

Pi =
Ni

Nminority
(7)

where Pi is the ratio, Ni is the number of samples in the
selected ith class, and Nminority is the number of samples in
the minority class.

5) CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural network (CNN) is considered as part of
deep learning algorithms that utilizes a feed-forward network
that is capable of applying various transnational and rota-
tional invariance analysis on input data [57]–[60]. In CNN,
a set of convolutions (dot products) are applied to input data
(signals or images) to obtain corresponding deep features
contaminated within its nodes or pixels. For an input data
X = {x1, x2, . . . , xN }, where N is the total number of points,
the convolutions are done as follows,

cujn = ha(bj +
M∑
m=1

wjmx
j
n+m−1) (8)

where u is the layer index, ha is the activation function, bj is
the bias of the jth feature map,M is the kernel size, wjm is the
weight of the feature map and filter index mth.

In this work, a one-dimensional (1D) CNN was used to
train themodel using 1D signal inputs (HRV data). Themodel
was selected to be simple with one convolutional layer of
kernel size equalling half of the input data vector size, which
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varies from hour to hour based on the number of features
selected. Furthermore, a total of 96 filters were used for
feature extraction with a stride of 1 and padding of 0. The
network was followed by a softmax layer prior to the final
classification layer. For CNN, the imbalance in the data at
every clinical testing scheme was handled through adjusting
the initial weights and corresponding losses for every class.
The initial weights were calculated empirically as shown in
Equation 2. In addition, these weights were utilized within the
final classification layer to calculate a weighted cross-entropy
loss (L) as follows,

L = −
1
N

N∑
n=1

K∑
i=1

wiln(yni) (9)

where N is the total number of samples, K is the total number
of classes,wi is the initial weight for the ith class, and yni is the
output of the softmax function during training on extracted
features.

6) TRAINING AND TESTING CONFIGURATION
For training and testing, a leave-one-out schemewas followed
in all tests to ensure the inclusion of the maximum possible
number of samples within the trained models. Furthermore,
it was essential to provide a prediction for each and every
patient, thus, it allows for mimicking clinical testing situa-
tions, where an already developed/trained model can be in
hand, while a new testing sample (patient) is completely
hidden to the model and used to provide a prediction. In this
scheme, an iterative process is applied by selecting 1 subject
as the testing subject, while the remaining subjects are used
for training. The process repeats on every iteration until a
prediction is given for every patient. During training, data
imbalance was handled by the incorporation of prior prob-
abilities as discussed in the aforementioned subsections.

The performance of machine learning models was evalu-
ated for every hour using accurate measurements. In addition,
the analysis of the area under the receiver operating char-
acteristic (AUROC) was provided for each model in every
test to show the true positive rate (TPR) versus the false
positive rate (FPR). In the third test, where a one-class SVM
was used, the evaluation was based on the observed scores
(positive: ≥ 0.7).

III. RESULTS
The performance of each model was evaluated separately
for each clinical test. The training of each model required
several minutes (around 1-5 minutes) based on the optimized
parameters on an Intel processor (i7-9700) with 32 GBs of
RAM and NVIDIA GeForce GTX 1070 graphics processing
unit (GPU) of 8 GBs display memory (VRAM). The whole
training and testing phases took 5-10 minutes per model due
to following a leave-one-out scheme as well as testing the
performance on an hourly basis. More information on the
results of every clinical test is provided in the following
subsections.

A. FIRST TEST
The performance (accuracy) of each machine learning model
in the first test is illustrated in Fig. 3. From the figures,
the highest performance was observed at hour 18:0-19:00
(7:00 PM) using the CNN model. The discrimination accu-
racy between diabetic and control patients for the CNNmodel
reached 85.5% compared to 80.0%, 82.2%, and 80.0% for
SVM, RF, and RUSBOOST, respectively. It is worth men-
tioning that hour 09:00-10:00 (10:00 AM) had a good level of
accuracy (83.0%) for the CNN model. To analyze deeply the
performance of the CNN model at the best hour (7:00 PM),
the confusion matrix of predictions is shown in Fig. 3(c). Out
of the 68 diabetic patients, 60 were correctly identified as dia-
betic while the remaining 8 were miss-classified as normal.
On the other hand, the majority of control patients (22) were
identified correctly with only 5wrongly classified as diabetic.
It is to be noted that the reduced number of the overall
patients in each category was due to having missing data
for some patients at this specific hour (more information in
Section. II-A). Relatively, the analysis of the ROC curves for
each category using the CNN model is depicted in Fig. 3(e).
The overall area under ROC (AUROC) curves at the best
performing hour (7:00 PM) was 0.80 for diabetic and control
patients.

B. SECOND TEST
The overall accuracy for the second test throughout the
24-hour HRV segments is shown in Fig. 3(b). From the
figure, the best performance was achieved using the CNN
model at hour 12:00-13:00 (1:00 PM) with a discrimination
accuracy of 98.5% between diabetic patients with complica-
tions (W/ Comp.) and without complications (Wo Comp.).
Relatively, the SVM, RF, and RUSBOOST models yielded
slightly lower accuracy levels of 93.8%, 93.8%, and 90.6%,
respectively. The corresponding confusion matrix (Fig. 3(d))
at this hour and using the CNN model (best performance)
shows that almost all patients were correctly identified in
their corresponding category. Out of the 66 patients with
complications, only 2weremiss-classified as patients without
complications. On the other hand, all 4 non-complications
patients were correctly identified by the model. In addition,
the ROC curves for both categories are shown in Fig. 3(f). The
overall AUROC curves reached 0.99, suggesting it as a strong
machine learning model for testing diabetic patients with or
without complications during the afternoon (1:00 PM) time
period.

C. THIRD TEST
Using one-class SVM, the third test performance is illustrated
in Fig. 4. The 24-hour accuracy measurements are shown
in Fig. 4(a) for the CAN-only set, CAN + Others set,
as well as the average value when both sets are considered.
The CAN + Others set includes additional neuropathies
described in Section II-C3. The highest average accuracy
level (98.3%) was achieved at hour 06:00-07:00 (7:00 AM)
with a 95.2% accuracy for the CAN-only set and 100.0%

119178 VOLUME 9, 2021



M. Alkhodari et al.: Screening CAN in Diabetic Patients With Microvascular Complications Using Machine Learning

FIGURE 3. The performance of machine learning models in the first and second clinical testing schemes. (a,c,e) First test: the 24-hour accuracy
measurements using support vector machine (SVM), random forest (RF), random under-sampling boosting (RUSBOOST), and convolutional neural
network (CNN) machine learning models, the confusion matrix at the best performing hour (18:00-19:00 (7:00 PM)) and using the best performing model
(CNN), and the receiver operating characteristic (ROC) curves at the best performing hour (18:00-19:00 (7:00 PM)), respectively. (b,d,f) Second test:
the 24-hour accuracy measurements using SVM, RF, RUSBOOST, and CNN machine learning models, the confusion matrix at the best performing hour
(12:00-13:00 (1:00 PM)) and using the best performing model (CNN), and the ROC curves at the best performing hour (12:00-13:00 (1:00 PM)), respectively.

accuracy for the CAN + Others set. Fig. 4(b) shows the pre-
diction performance at this hour within a confusion matrix.
Almost all patients were correctly identified according to
their original category. However, only a single CAN-only
patient was miss-classified as suffering from additional com-
plications. To investigate the scores returned by the one-
class SVM model, Fig. 4(c) shows per-patient scores for a
positive CAN-only categorization. Most CAN-only patients
were correctly identified with a score of 1.00. Only a single
patient had a CAN-only score of 0.32, which was wrongly
classified as suffering from additional neuropathies attached
with CAN. It is worth mentioning that two patients had
scores of 0.89 and 0.96, however, they were above the deci-
sion boundary set for correctly predicting positive CAN-only

patients (0.70). On the other hand, during the best performing
hour (06:00-07:00 (7:00 AM)), all CAN + Others patients
were correctly scored below the decision boundary (0.70).
It can be noted that due to having the characteristics of CAN
within their HRV data, many patients had scores ranging
between 0.6-0.7.

D. FOURTH TEST
To investigate further the complications attached with CAN
diagnosed patients, the fourth test has included simple and
deep classifications scenarios for these additional compli-
cations (more details in Section II-C4). The performance
of both scenarios is shown in Fig. 5 over the 24-hour
time interval. The simple classification scenario (Fig. 5(a))

VOLUME 9, 2021 119179



M. Alkhodari et al.: Screening CAN in Diabetic Patients With Microvascular Complications Using Machine Learning

FIGURE 4. The performance of the one-class support vector machine (SVM) model trained using CAN-only diabetic patients. (a) 24-hour accuracy
measurements for testing on CAN-only set and CAN+Others set. (b) The confusion matrix at the best performing hour (06:00-07:00 (7:00 AM)). (c) CAN-only
scores for every patient in the overall testing set at the best performing hour (06:00-07:00 (7:00 AM)). Positive CAN-only is indicted if the score is ≥0.7.

had a maximum accuracy of 90.9% at hour 18:00-19:00
(7:00 PM) using the RF machine learning model. Further-
more, the RUSBOOST model has returned a very close
accuracy level of 87.9%. Similarly, the deep classification
scenario (Fig. 5(b)) gave the maximum performance (accu-
racy= 84.4%) at the same 7:00 PM hour. However, the high-
est performance was achieved through the CNN trained
model. Nevertheless, RF and RUSBOOST models had very
close accuracy levels of 79.4% and 81.3%, respectively. It is
worth noting that models based on decision trees, i.e., RF
and RUSBOOST, have performed efficiently in these tests.
Both of the tests’ confusion matrices show that the best
performing models (RF and CNN) predicted almost every
patient in his correct category (Figs. 5(c),(d)). Furthermore,
the ROC curves for both tests shown in Figs. 5(e),(f) had an
area of more than 0.90 for all groups. In the simple scenario,
the AUROC reach up to 0.91 for predicting CANDPN and
CANDPN+ Others. On the other hand, in the deep scenario,
the model predicted CANDPN, CANNEP, and CANBoth
with AUROC levels of 0.93, 0.93, and 0.95, respectively.

E. MOST SIGNIFICANT HRV FEATURES
As previously mentioned in Section II-D1, the high perfor-
mance observed in the four clinical testing schemeswas based
on the selection of most significant 5-minute HRV features
at every hour using chi-square and Laplacian score tests.
Table 2 shows these features for each testing scheme during
the best performing hour. Each feature included originally
12 5-minute segments in every hour, and the feature selection
approach selected only best segments (most significant).

From the table, it can be noticed that the first test had
no significant fragmentation features. Furthermore, besides
frequency-domain and non-linear features, only two time-
domain features were included, namely SDNN and SEM,
mostly during 20 to 50 minutes of Hour 7 pm. In the sec-
ond test, most of the features at different 5-minute seg-
ments were included. However, it is worth noting that only
SD1 and SD2 were included from the non-linear metrics.
The third test included only two features from the frequency-
domain, namely Total Power and VLF Power, with no fea-
tures from the time-domain, non-linear, and fragmentation
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FIGURE 5. The performance of machine learning models in the fourth clinical testing scheme. (a,c,e) Fourth test (simple): the 24-hour accuracy
measurements using support vector machine (SVM), random forest (RF), random under-sampling boosting (RUSBOOST), and convolutional neural
network (CNN) machine learning models for the simple classification scenario, the confusion matrix at the best performing hour (18:00-19:00
(7:00 PM)) and using the best performing model (RF), and the receiver operating characteristic (ROC) curves at the best performing hour (18:00-19:00
(7:00 PM)), respectively. (b,d,f) Fourth test (deep): the 24-hour accuracy measurements using SVM, RF, RUSBOOST, and CNN machine learning models
for the deep classification scenario, the confusion matrix at the best performing hour (18:00-19:00 (7:00 PM)) and using the best performing model
(CNN), and the ROC curves at the best performing hour (18:00-19:00 (7:00 PM)), respectively.

metrics. These features were during the first and last 10 min-
utes for the Total Power and VLF Power and during the
7th and 8th 5-minute segments of Total Power. Finally,
the fourth test (simple and deep scenarios) had features from
all HRV metrics at different 5-minute segments. In addition,
only SD1 and SD2were included from the non-linear metrics.

IV. DISCUSSION
This study demonstrated the significance of using 24-hour
HRV features in diagnosing diabetic patients suffering from
cardiovascular complications. Furthermore, it provided a
complete machine learning-based clinical approach to screen
diabetic patients suffering fromCANand other complications

associated with it. The high performance achieved in each
of the four clinical testing schemes at specific hours in the
heart’s circadian rhythm strongly suggests HRV embedded
within machine learning algorithms as an assistive screening
tool in diabetes diagnosis and treatment.

A. 24-HOUR HRV DATA
The ability to use HRV and its corresponding features over-
comes many of the limitations faced when using the cur-
rent gold standard way to diagnose diabetic patients with
CAN, i.e., Ewing tests. Although these tests provide high
levels of accuracy [27], they are not considered suitable for
patients with respiratory dysfunctions related to the heart or
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TABLE 2. Most significant (p < 0.05) 5-minute heart rate variability (HRV) features during the best performing hours for each clinical testing scheme. Each
HRV feature had 12 5-minute segments during each hour.

for patients with obesity or arthritis. Thus, HRV fills this gap
by being a simple diagnostic approach that requires only a
good quality Holter ECG recording taken from the subject.
Furthermore, for 24-hour clinical evaluation, ECG and its
corresponding HRV features are considered as an easier and
faster method. In addition, it allows for understanding the
heart changes, as a result of diabetic neuropathies, throughout
the circadian cardiac rhythm. This overcomes the currently
followed approach that analyzes only 20-minute portion of
HRV [8], [61] by covering the whole 24-hour time interval.

B. SIGNIFICANCE OF 5-MINUTE HRV FEATURES
Wewould like to underscore the fact that in our study, as HRV
features are collected from each 5-minute interval of ECG

data during 24 hours period, only 5 minutes of ECG data of
the patient within an effective time window will suffice for
his or her screening. S/he does not need to undergo 24-hour
intensive measurement protocol. Observing all the four tests,
6:00 PM - 7:00 PM and 6:00 AM - 7:00 AM time window
can be suggested for the collection of 5-minute data so that
the maximum to close to maximum accuracies are achieved
in those four tests.

HRV features such as those extracted from time and fre-
quency domains usually elaborate on the sympathetic and
parasympathetic activities of the heart. In diabetes, early
CAN cases could be identified through a decrease in the
average normal-to-normal (AVNN) and standard deviation
of normal-to-normal (SDNN) variability in HRV [62], [63].

119182 VOLUME 9, 2021



M. Alkhodari et al.: Screening CAN in Diabetic Patients With Microvascular Complications Using Machine Learning

Furthermore, a parasympathetic dysfunction in patients with
type 2 diabetes was observed associated with a reduction
in the high-frequency power (HF Power) values of HRV,
which could be related directly to measures of vagal nerve
integrity [64], [65]. In addition, an association with carotid
atherosclerosis in diabetic patients was found with a reduced
value in the low-frequency power (LF) [66], [67]. Such
variations in these metrics may be useful when trying to
discriminate between diabetic and healthy subjects, which
have been observed in this study on an hourly basis. It was
interesting to observe that HRV features in time and fre-
quency domains were most likely significant during the last
40 minutes of an hour (7 PM, Table 2). This illustrate more
cardiac activity toward the evening hours over the afternoon
hours. Additionally, we have observed only two features,
namely Total Power and VLF Power, in CAN-only detection.
Both features are biomarkers that imply cardiovascular auto-
nomic dysregulation and impaired parasympathetic reactions
[68], [69], which supports the findings in this study as
features used for discriminating CAN-only from other
microvascular complications. Additionally, the relation
between frequency domain features and CAN in diabetic
patients was evaluated previously in literature observing an
overall reduction in the power of all spectral bands [70], [71].
In [71], researchers have found a significant drop
(p < 0.001) in the Total Power HRV feature, which have
reached its minimum value during the morning time period
(matching with the findings in the current study at 7 AM).
Furthermore, features such as the Total Power and LF Power
had their lowest values during the morning and evening
time periods compared to their values in the afternoon and
night, which elaborates on the high performance achieved
during 7 AM and 7 PM in the current study when diagnosing
CAN-only patients. In [72], a significant difference was
observed in the LF/HF HRV feature between the day and
night time periods, with an overall decrease in values during
the night time. Furthermore, in [73], an overall decrease in
HRV parameters, including time and frequency domains,
with a significant differences was observed relative to control
subjects or between patients with or without complications.
In addition, Total Power and VLF Power were from a set of
the most preferred parameters to measure improvements in
CAN patients during type 1 diabetes treatment [74].

Furthermore, non-linear metrics provide a great indica-
tion for diabetic patients, especially SD1 and SD2 features
that are correlated with parasympathetic and sympathetic
modulation, respectively [75]. Due to diabetes, SD1 usually
decreases in patients due to weaknesses in parasympathetic
regulation (peripheral neuropathy), whereas SD2 usually
increases in patients because of compensatory sympathetic
input [76]. These two features were the most significant
ones across the four clinical testing schemes with 5-minute
segments after the first 20 minutes of the recording (Table 2).
It is worth noting that the sample entropy feature was not
important in any of the four tests, which is usually associ-
ated with an overall reduction in the complexity of glucose

dynamics in diabetic patients [77]. It is also interesting to
utilize HRV fragmentation features in diabetes diagnostics,
as these features are still very recent and usually give an
indication about the importance of the changes in the heart
rate acceleration and deceleration in diabetic patients [78].

C. MACHINE LEARNING AS A SCREENING TOOL
It is considered essential to be able to gain the benefits
of the recent advances in machine learning in the area of
diabetes diagnostics. Although the involvement of a clini-
cian in the diagnosis and treatment of diabetic patients is
a must, machine learning is expected to provide an early-
stage screening that can prevent many complications from
further developments. Compared with the current gold stan-
dard in CAN screening, the Ewing reflex tests, the proposed
approach can overcome issues that these tests may cause such
as being cumbersome especially for patients with cardiorespi-
ratory dysfunction, frailty, and severe obesity. Thus, for early
and continuous diagnosis, the proposed machine learning-
based tool can ease the screening of diabetic patients as well
as providing timely and efficiently medication procedure.
Furthermore, it can reduce the demand for medical doctors,
especially when the data available are infinite, while at the
same time provide a complete diagnosis for every patient
efficiently. Therefore, a pre-trained machine learning model
can make the process faster and less stressful for healthcare
providers and practitioners.

Additionally, many diabetic complications exhibit a silent
and non-symptomatic nature, i.e. CAN subject with silent
myocardial ischemia. Thus, continuous monitoring of dia-
betic patients who are suspected to develop additional dia-
betic neuropathies can be easily performed through machine
learning models. These models can automatically analyze,
diagnose, and predict patients at a very early stage of the
disease without the need for repeated visits by patients to
clinics and hospitals. This becomes very effective especially
for diabetes diagnostics, where most of the patients are from
the elderly category. The high performance achieved by the
RF and 1D CNN models strongly suggests them as suit-
able machine learning algorithms for diabetes analysis. 1D
CNN was found effective in discriminating between diabetic
and control patients (accuracy: 85.5%), between diabetic
patients with and without complications (accuracy: 98.5%),
and in deeply analyzing complications associated with CAN
(accuracy: 90.9%). By analyzing this performance, it can be
observed that although HRV feature extraction is essential
in diabetes diagnosis, it is also important to obtain hidden
and internal characteristics between these features. Utiliz-
ing a CNN model allowed for a better interpretation of
those features within convolutions layers. Thus, the perfor-
mance significantly increases in most of the clinical test-
ing schemes. This was supported by usually having the RF
model as the best performing model in the simple scenario of
CAN and associated complications classification (accuracy:
90.9%) and as the second-best performing model in most
of the other schemes. These findings indicate the need for
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a deeper model, such as decision trees, to be able to better
discriminate between diabetic patients in accordance to their
associated complications. Lastly, it was quite promising to
observe a high performance using a one-class SVM model
for CAN-only screening (accuracy: 98.3%), as the model was
trained over one patients’ group only (focused training on
CAN). This strongly suggests this machine learning model
as an assistive tool for clinicians to provide a quicker diag-
nosis for patients who are only suffering from cardiovascular
complications such as CAN, and thus, providing them with
the needed medications at optimal timing.

D. CLINICAL RELEVANCE
The testing schemes followed in this work provide an impor-
tant clinical diagnosis procedure for medical doctors when
evaluating and diagnosing diabetic patients. As the scenarios
proceed sequentially, models become deeper in analyzing
diabetic patients with simple and complicated combinations
of autonomic neuropathies. The first test was essential, as it
is important to be able of discriminating between healthy
and diabetic patients before proceeding with any further
clinical tests. This could save a lot of time, expenses, and
efforts that may result from performing extra unnecessary
testing on non-diabetic patients. Furthermore, the second
test identifies those who are having additional autonomic
neuropathies, which have shown high levels of performance
using the proposed machine learning algorithms. The third
test sets the core of this work by providing a screening tool
for CAN-only patients. Such clinical test ensures providing a
better diagnosis to the cardiovascular and heart functionality,
as it discriminates between the causes of only CAN and
other complications associated with it. Furthermore, given
the silent nature of this complication, it makes it even harder
to be diagnosed properly, especially when combined with
other microvascular complications. The high performance
achieved in this test through machine learning can prevent
many under-diagnosed CAN-only cases. The schemes end by
additional analysis for these extra complications associated
with CAN, which under clinical circumstances, is considered
very effective when medical treatment is required. As a medi-
cal procedure for only CANmay not return efficient treatment
if the extra complications were not identified correctly.

The tools presented herein not only provide high levels of
accuracy in diagnosing diabetic patients but also sets a base
for medical testing of diabetes using HRV embedded within
a machine learning framework. For example, the observa-
tions found in this work suggests specific hours for a better
diagnosis of the diabetic status. It was repeatedly observed
that the hour of 7:00 PM is crucial for screening CAN
efficiently. Furthermore, the hour 7:00 AM was also found
critical for screening CAN-only patients. These observations
could be related to the changes in the functionality of the
heart during the early morning and evening hours, which have
been previously discussed in many research works on cardio-
vascular chronopharmacology [79], [80]. In addition, these
hours are usually known as times where higher mortality

rates are usually observed due to cardiac infarctions and heart
disturbances [81].

E. STUDY LIMITATIONS
Although this study shows that machine learning-based mod-
els have performed efficiently in diabetes and associated
microvascular complications diagnosis, it has a number of
shortcomings. First, despite of providing a complete and suc-
cessful clinical testing approach, further research on a wider
cohort of patients across different countries is essential to
support the observations found in this study. Second, although
machine learning-based models are automated, fast, and can
be used as an assistive tool in clinical situations, more inves-
tigations are required on the actual design and implementa-
tion of such system after careful consideration of all clinical
resources. Third and last, more validation needs to be made
under a longitudinal follow-up study to investigate further the
efficiency of the proposed approach on diagnosing diabetic
patients, especially those suffering fromCAN. Further, future
works may consider forecasting the existence of CAN in non-
CAN diabetic patients on a long-term.

V. CONCLUSION
This study suggests HRV features constructed from 5-minute
ECG data collected over 24 hours duration of a day as a
good screening tool for cardiovascular complications caused
by diabetes. Furthermore, it elaborates on the use of such
features in a machine learning framework for faster and auto-
mated diagnosis of diabetic patients. The high levels of per-
formance achieved in four clinical testing schemes obtained
at a specific hourly time window of a day paves the way
towards utilizing these tests in clinical practice for diabetes
diagnosis. In addition, it provides a deeper understanding
of the microvascular complications associated with diabetes,
particularly CAN, and the feasibility of efficiently screening
them in a continuous and fast manner.
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