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ABSTRACT Discrete orthogonal matrices have applications in information coding and cryptography.
It is often challenging to generate discrete orthogonal matrices. A common approach widely in use is
to discretize continuous orthogonal functions that have been discovered. The need of such continuous
functions is restrictive. Polynomials, as the simplest class of continuous functions, are widely studied
for their orthogonality, to serve the purpose of generating orthogonal matrices. However, beginning with
continuous orthogonal polynomials still takes much work. To overcome this complexity while improving the
efficiency and flexibility, we present a general method for generating orthogonal matrices directly through
the construction of certain even and odd polynomials from a set of distinct positive values, bypassing the
need of continuous orthogonal functions. We present a constructive proof by induction that not only asserts
the existence of such polynomials, but also tells how to iteratively construct them. Besides the derivation of
the method as simple as a few nested loops, we discuss two well-known discrete transforms, the Discrete
Cosine Transform and the Discrete Tchebichef Transform, about how they can be achieved using our method
with the specific values, and how to embed them into the transform module of video coding. By the same
token, we also give the examples for generating new orthogonal matrices from arbitrarily chosen values. The
demonstrative experiments indicate that our method is not only simpler to implement, but also more efficient
and flexible. It can generate orthogonal matrices of larger sizes, compared with those existing methods.

INDEX TERMS Discrete orthogonal matrices, discrete cosine transform, discrete tchebichef transform,
orthogonal polynomials, invertible transformers.

I. INTRODUCTION
Orthogonal transformations have very useful properties in
solving science and engineering problems. Just like the
Fourier and Chebyshev series which are effective methods to
project a periodic function into a series of linearly indepen-
dent terms, orthogonal polynomials provide a natural way to
solve the related problems, such as compression and protec-
tion in image processing [1]–[3], pattern recognition [4], [5]
and feature capturing [6], [7]. It can also be applied in tem-
poral video segmentation [8], face recognition [9], and char-
acter recognition [10]. Among various types of transformers,
matrix transformers are most widely used due essentially to
their simplicity and explicitness, especially for the transfor-
mations on real intervals (R → R). Even more important,
orthogonal matrices are of a special type of transformers, for
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they are always invertible. As a result, the source information
can be recovered from the data that are transformed by an
orthogonal matrix.

The invertibility of orthogonal matrices finds them away in
the applications of information coding, such as image com-
pression. As in the above mentioned applications and tech-
niques, image compression deals with a lot of bulky source
data, for example video sequences, which often have real-
time requirement. Hence, compression plays a major role in
the storage and transmission. Techniques such as the Discrete
Cosine Transform (DCT) [19] are typically used in video
encoding for transformations from the spatial domain to the
frequency domain [20], followed by coding methods such
as Huffman coding. In recent years, the Discrete Tchebichef
Transform (DTT) provides another transformation method
using the Chebyshev moments [11], [21], which has as good
energy compression properties as the DCT and works better
for a certain class of images [22]. Both of the above example
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TABLE 1. Application summary of some polynomial series.

transformations are defined upon orthogonal polynomials.
The orthogonality is established over a continuous domain
and approximated discretely over a certain amount of sample
points. Discrete orthogonal transformations have witnessed
the interplay of signal processing, semiconductor circuits,
wireless networks and embedded systems to provide viable
and cutting-edge technologies that are truly the state-of-the-
art. The challenge lies in delivering practically realizable and
economic solutions, while retaining the quality.

It is well-known that the orthogonality of two polynomials
Pi(x) and P′j(x), respectively having degrees i and j, is defined
by extending the dot product of two vectors, the sum of the
products of the corresponding components, to the integral
of product Pi(x)P′j(x) over a continuous domain. Formally,
when the integral becomes zero, the two polynomials are
orthogonal to each other, i.e.,∫

Pi(x)P′j(x)dx = 0, i 6= j. (1)

In practical applications, this definition is often approxi-
mated over a set of discrete samples x0, . . . , xn−1,

n−1∑
k=0

[
Pi(xk )P′j(xk )

]
= 0, i 6= j. (2)

Those satisfying this property are called discrete orthog-
onal polynomials [23]. Therefore, together with the degrees
of polynomials ranging from 0 to n − 1, an n × n discrete
orthogonal matrix

[
Pi(xk )

]
can be constructed, where any

two different row vectors are orthogonal. Discrete orthogo-
nal matrices are commonly used in a number of orthogonal
transformations over real intervals, such as the Chebyshev
polynomials [24], [25], the Legendre polynomials [26], the
Meixner polynomials [27], the Charlier polynomials [14],
the Krawtchouk polynomials [28], the Discrete Hartley
Transform [29] and the well-known Discrete Cosine Trans-
form [19]. A comprehensive overview of these orthogonal
polynomials, along with the development of their discrete
matrices, is also detailed in [30]. We summarize the appli-
cations and limitations of some polynomial series in Table 1.
Once we have a set of discrete orthogonal polynomials, we

are able to further obtain the orthogonal matrix by a series
of substitutions. For instance, let Pn(x) = cos (n arccos (x))

be the n-degree Chebyshev polynomial. We can derive the
discrete Chebyshevmatrix by substituting inPi(x) the Cheby-
shev roots xj = cos π(2j+1)2n , for 0 ≤ i, j ≤ n − 1. It can be
found that for any j, the substitution of xj in the higher degree
Pn(xj) always gets zero. However, it is very hard to obtain
the roots from other series of orthogonal polynomials. Our
idea is to deduce the orthogonal polynomials by the given
roots.

The purpose of this paper is to derive discrete orthogonal
matrices directly by solving systems of linear equations,
rather than to discretize existing continuous orthogonal poly-
nomials. Our method has several advantages. It has virtually
no precondition to use. Orthogonal matrices of arbitrary sizes
can be generated to the need of an application. It directly
follows the definition of discrete orthogonality, eliminating
the need to discuss the orthogonal property over a continuous
domain, such as the interval [−1,+1] of the Chebyshev
polynomials [25]. The method focuses on how to derive
the coefficients of the polynomials that must be discretely
orthogonal to each other over a set of given sample values,
for example, xk = cos π (2k+1)2n , for k = 0, . . . , n − 1, are
the values of the n × n orthogonal matrix for the Discrete
Cosine Transform (DCT) [19]. The errors in the discretization
of continuous functions can also be avoided.

Generating orthogonal matrices directly from a set of val-
ues gives engineers a new way of obtaining such matrices
with unlimited variations, without the need to discover and
prove the properties of orthogonal polynomials mathemat-
ically in the first place. Although, by jumping to the con-
struction directly, we sacrifice some mathematical insights
and certainties, we provide a way to significantly broaden the
base of discrete orthogonal matrices for engineering analy-
ses. Our method is also simple and intuitive. It starts with
the definition of discrete orthogonality, makes use of even
and odd functions, inspired by the DCT and DTT, to sim-
plify the problems, constructs the linear equation system for
deriving the coefficients of the polynomials, proves that a
unique solution exists, and finally inductively obtains the
solution. Through the practicing of this method, we easily and
effectively reproduce the orthogonal matrices for DCT and
DTT in only a few simple steps. We also generate a couple of
others to show the potential and flexibility.
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Our contributions in this work can be summarized below.
• We propose a method for generating discrete orthogonal
polynomials at a given 2m dimensional point specified
by m arbitrary positive values.

• We inductively prove that this set of polynomial exists,
and constructively determine all the coefficients by
using the even and odd parity property.

• We obtain an efficient algorithm from the inductive
proof to generate the orthogonal polynomials and the
eventual discrete orthogonal matrix.

• We show that not only well-known discrete orthogonal
matrices can be generated by our method, but also more
arbitrary orthogonal matrices with larger sizes. Hence,
our method is more general and flexible.

The rest of the paper is organized as follows.
• Section II goes through the related work in generating
orthogonal matrices by various means.

• Section III presents the technical details and justifica-
tions, including the design, the proof by induction and
the algorithm, for orthogonal matrix generation.

• Section IV reproduces a few well-known orthogonal
matrices to show the simplicity and effectiveness of the
method.

• Finally, we conclude the paper in Section V.

II. RELATED WORK
In the past three decades, many researchers aimed to
generalize the theory of how to construct orthogonal poly-
nomials, from the ones of a single discrete variable, as the
solution of hypergeometric type differential equations, to that
of multiple variables. In early days, a method was designed
in [31] that began with the three-term recurrence relation
for symmetric orthogonal polynomial systems to set up a
partial differential equation for the orthogonal polynomials,
in case of the connection problem, or for the product of two
orthogonal polynomials, in case of the linearization problem.
This equation had to be solved in terms of the initial data
to expand the coefficients. In [32], to make the relevant
orthogonality measures continuous, the parameter domain
was carefully chosen. This method focuses on a different
way to obtain parameters, where the orthogonality measure
becomes merely discrete that it is finitely supported on the
grid points with given weights. Other discrete multi-variable
extensions of hypergeometric orthogonal polynomials were
considered in [33].

Later, a novel set of discrete and continuous orthogonal
matrices based on orthogonal polynomials was introduced
into the field of orthogonal polynomial generation [34].
In [35], several relations linking the differences between
bivariate discrete orthogonal polynomials and general poly-
nomials were given. They presented a multi-variable gener-
alization for all the discrete families, that gave each family
a hypergeometric representation and a orthogonality weight
function, proving that these polynomials were orthogonal
with respect to the subspace of lower degrees and biorthogo-
nal within a given subspace [36].

Next, a systematic study of the orthogonal polynomial
solutions to a second order partial differential equation with
two variables of hypergeometric type was made in [37]. In the
bivariate discrete case, a hypergeometric formula was also
given in [38]. For an infinitely differentiable function, the
formula for the expansion coefficients of a general order
derivative was available for the expansions in Chebyshev
polynomials [39]. Thus the generation of recurrence rela-
tions to expand the coefficients of multi-variable orthog-
onal polynomials is similar to that in the single variable
case [40], both continuous and discrete. These results moti-
vated the researchers interested in multidimensional math-
ematical physics problems to use expansions in terms of
orthogonal polynomials of multiple discrete variables.

Meanwhile, there were attempts in order to expand the
coefficients of an arbitrary polynomial with a discrete vari-
able and evaluate the expanded coefficients of an orthogonal
matrix. Few advantages were achieved in these problems until
the recent recursive approach was presented [41], and [42]
gave an alternative way to the approaches for producing clas-
sical orthogonal polynomials. [43] used recurrent equations
to prove the positivity of the connection coefficients between
certain instances of orthogonal polynomials. They designed
a constructive algorithm which allowed us to calculate recur-
rently the expansion coefficients of the evaluation problem.
However, this approach requires the knowledge of the differ-
ential equation of the polynomial to expand, and the recursion
relation as well as the differential-difference relation must
be prepared for the polynomials conforming the orthogonal
set. A few years later, the approach in [44] presented a very
similar algorithm for finding the recurrence relation for both
the connection and linearization coefficients. Also, another
algorithm was developed for solving the connection problem
between the four families of classical orthogonal polynomi-
als [45].

Recently, [46] provided a series rearrangement technique
combining a connection relation with a generating function,
resulting in a series with multiple sums. Then, [47] extended
this technique to many generating functions to derive a gen-
eralized generating function whose coefficients were given
in hypergeometric functions. To the best of our knowledge,
the coefficients of polynomials are always related to the
polynomials of lower degrees when they are in a series of
orthogonal polynomials of the same type. It leads to that the
coefficients of a higher degree polynomial can be determined
by some recursion or iteration relation of the corresponding
linearization. The order of summations is then rearranged,
and it is often simplified to the production of a generating
function whose coefficients are given in terms of general or
fundamental hypergeometric functions.

III. DISCRETE ORTHOGONAL POLYNOMIALS AND
MATRICES
An n × n matrix M is an orthogonal matrix if the transpose
MT equals to the inverse M−1. Thus, an orthogonal matrix
is always invertible. By the definition MMT

= I , where I is
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the identity matrix, the rows of an orthogonal matrix form
an orthonormal basis that each row vector has length one,
and is perpendicular to each other rows. Formally speaking,
the dot product of two row vectors Eai · Eaj is 1 when i = j, or 0
otherwise, that is,

n−1∑
k=0

(aik × ajk ) =

{
0, i 6= j
1, i = j

(3)

for 0 ≤ i, j ≤ n− 1.
We consider the construction of a type of orthogonal

matrices from a set of values x0, x1, . . . , xn−1, and a set of
polynomials P0(x), . . . ,Pn−1(x) respectively of degrees from
0 to n − 1. We denote the coefficients of the polynomial
expansions by c(i,k), such that

Pi(x) =
i∑

k=0

c(i,k)x i−k ,

for 0 ≤ i ≤ n − 1. We then construct the orthogonal matrix
of the form

M =
[
Pi(xk )

]
, (4)

for 0 ≤ i, k ≤ n − 1, by deriving the polynomials
P0(x), . . . ,Pn−1(x) [48]. These polynomials are called the
orthonormal basis of the orthogonal matrixM [23], [49], [50].

Together with the condition of orthogonal matrices in (3),
we require

n−1∑
k=0

[
Pi(xk )Pj(xk )

]
=

{
0, i 6= j
1, i = j

(5)

for 0 ≤ i, j ≤ n− 1. An easy way to make a summation zero
is to set half of the items the opposite values of the other half,
for example, when n = 2m, we should have

Pi(xk )Pj(xk ) = −Pi(xk+m)Pj(xk+m),

for 0 ≤ i, j ≤ 2m − 1 and 0 ≤ k ≤ m − 1. We can further
refine this condition to

Pi(xk ) = −Pi(xk+m) and Pj(xk ) = Pj(xk+m). (6)

It’s clear that when xk = −xk+m, the condition in (6) can be
fulfilled ifPi(x) is an odd function andPj(x) an even function.

Based on the analysis, we narrow the range of the poly-
nomials down to only even and odd functions, together with
a set of opposite values to make use of the parity as above.
Given m distinct values y0, . . . , ym−1 > 0, we choose
±y0, . . . ,±ym−1 as the set of values for the matrix construc-
tion. Thus, the matrix in (4) is formulated as[

Pi(+y0) · · · Pi(+ym−1) Pi(−y0) · · · Pi(−ym−1)
]
, (7)

for 0 ≤ i ≤ 2m − 1. We are going to derive the orthogonal
matrix in (7) by resolving the coefficients of polynomials
P0, . . . ,P2m−1 based on the set of values ±y0, . . . ,±ym−1.

A. EVEN AND ODD POLYNOMIALS
Consider the expansion of an i-degree polynomial. When
i = 2t , an even polynomial can be constructed by removing
all the odd-degree terms. Thus, the expansion of such an even
polynomial can be written as

P2t (x) =
t∑

p=0

[
c(2t,2p)x2(t−p)

]
. (8)

Similarly, when i = 2t + 1, an odd polynomial can be
obtained by multiplying an x to every and each term in (8),
where all the even-degree terms are removed,

P2t+1(x) =
t∑

p=0

[
c(2t+1,2p+1)x2(t−p)+1

]
. (9)

For the parity properties of even and odd polynomials,
we have

P2t (−x) = P2t (x) and P2t+1(−x) = −P2t+1(x). (10)

Now, we limit the choice of the Pi(x) polynomials to those
of the forms in (8) and (9). The number of the unknown
coefficients is reduced to t + 1 for each of the (2t)- and
(2t + 1)-degree polynomials. We are going to derive these
unknown coefficients based on the condition of orthogonal
matrices in (5). We substitute the rows of the matrix in (7) for
the rows Pi and Pj in condition (5),

2m−1∑
k=0

[
Pi(xk )Pj(xk )

]
=

m−1∑
k=0

[
Pi(−yk )Pj(−yk )

+Pi(+yk )Pj(+yk )

]
=

{
0, i 6= j
1, i = j

for 0 ≤ i, j ≤ 2m−1, and consider the parity property in (10),
we have

2m−1∑
k=0

[
Pi(xk )Pj(xk )

]

=


0, i 6≡ j (mod 2)

2×
m−1∑
k=0

[
Pi(yk )Pj(yk )

]
, i ≡ j (mod 2).

(11)

To derive the coefficients for the orthogonal matrix,
we focus on the case of i ≡ j (mod 2), where the sum is
required to be 1 when i = j, or 0 otherwise.

B. POLYNOMIAL COEFFICIENT INDUCTION
The dot product of a row in an orthogonal matrix with itself
is 1, or 0 with another row. An even polynomial P2t (x) in (8)
has only t + 1 coefficients to resolve. If we take the highest
coefficient (with p = 0) out and resolve it later by the unit
length condition, there are only t coefficients left,

d(2t,2p) =
c(2t,2p)
c(2t,0)

and d(2t+1,2p+1) =
c(2t+1,2p+1)
c(2t+1,1)

,
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for 1 ≤ p ≤ t , and we have d(2t,0) = d(2t+1,1) = 1.We denote
this form of P(x) as P̂(x), i.e.,

P̂2t (x) =
P2t (x)
c(2t,0)

and P̂2t+1(x) =
P2t+1(x)
c(2t+1,1)

.

Obviously, we can safely replace those P(x) with
P̂(x) in the discussion of obtaining the perpendicular-
ity between two rows in the matrix, since there is only
a scalar difference. There are exactly t even polynomi-
als, P̂0(x), P̂2(x), . . . , P̂2(t−1)(x) with smaller degrees in the
matrix. By the condition that the t rows constructed by these
smaller polynomials are perpendicular to the row from poly-
nomial P̂2t (x), it establishes a system of t equations. If there
are solutions to the equation system, andwe can find a general
way to solve the coefficients d(2t,2p), for 1 ≤ p ≤ t , from
these equations, then we are able to obtain the coefficients
of all the polynomials from P̂0(x) to P̂2t (x) inductively. The
base case is trivial, that is, P̂0(x) = 1.

For such a matrix of size 2m×2m, the equation system for
the coefficients of P̂2t (x) is straightforward, by letting the dot
products with those smaller even polynomials be 0,

m−1∑
k=0

[
P̂2i(yk )P̂2t (yk )

]

=

m−1∑
k=0

P̂2i(yk )
y2tk + t∑

p=1

(
d(2t,2p)y

2(t−p)
k

) = 0,

for 0 ≤ i ≤ t − 1. Then, we examine the terms containing a
certain coefficient d(2t,2p), for 1 ≤ p ≤ t . The above equation
system can be written as

m−1∑
k=0

[
P̂2i(yk )y2tk

]
+

t∑
p=1

m−1∑
k=0

[
d(2t,2p)

(
P̂2i(yk )y

2(t−p)
k

)]
= 0,

for 0 ≤ i ≤ t − 1. Thus, we have a linear equation system for
the unknown coefficients as

AtDt = −Bt , (12)

where

At =
[
m−1∑
k=0

(
P̂2i(yk )y

2(t−p)
k

)]
0≤i≤t−1,1≤p≤t

,

Dt =
[
d(2t,2p)

]
1≤p≤t

,

Bt =
[
m−1∑
k=0

(
P̂2i(yk )y2tk

)]
0≤i≤t−1

.

We induct on t to prove that the determinant det (At) 6= 0,
thus (12) has a unique solution to Dt .
Proposition 1: For 1 ≤ t ≤ m− 1, det (At) 6= 0.

Proof: The base case is trivial that A1 =
[
m
]
, thus

det (A1) = m 6= 0.
When 2 ≤ t ≤ m− 1, we have

P̂2(t−1)(yk ) =
[
y2(t−p)k

]T
1≤p≤t

[
1

Dt−1

]
,

for 0 ≤ k ≤ m − 1. By induction hypothesis, Dt−1 has a
unique solution, also by the Cramer’s rule,

Dt−1 =
[
det

(
At−1 [Bt−1

/
p]
)

det (At−1)

]
1≤p≤t−1

,

where A[B/p] is the matrix formed by replacing the p-th
column of A by the column vector B. Consider the matrix

Ct (x) =

Bt−1 At−1[
x2(t−p)

]T
1≤p≤t

 ,
and the cofactor expansion of det (Ct (yk )) along the bottom
row, we establish the following identity,

det (Ct (yk )) = det (At−1)× P̂2(t−1)(yk ),

for 0 ≤ k ≤ m− 1. Furthermore, if we partition At similarly,
then we get

At =


Bt−1 At−1[
m−1∑
k=0

(
P̂2(t−1)(yk )× y

2(t−p)
k

)]T
1≤p≤t

 . (13)

Thus, by comparing At with Ct , we have the following
conclusion,

det (At) =
m−1∑
k=0

[
P̂2(t−1)(yk )× det (Ct (yk ))

]
= det (At−1)×

m−1∑
k=0

[
P̂2(t−1)(yk )

]2
6= 0.

Notice that P̂2(t−1) is an even function, thus it has at most
t − 1 positive roots. On the other hand, we have m distinct
positive yk values and t ≤ m − 1, therefore the sum of the
squares above cannot be zero. �
For those odd polynomials P̂2t+1(x) (0 ≤ t ≤ m − 1),

the base case is P̂1(x) = x. We can obtain an equation system
similar to (12) to solve the coefficients inductively.We denote
this equation system as

Át D́t = −B́t , (14)

where

Át =
[
m−1∑
k=0

(
P̂2i+1(yk )y

2(t−p)+1
k

)]
0≤i≤t−1,1≤p≤t

,

D́t =
[
d(2t+1,2p+1)

]
1≤p≤t

,
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B́t =
[
m−1∑
k=0

(
P̂2i+1(yk )y

2t+1
k

)]
0≤i≤t−1

.

We can also prove that (14) has a unique solution to D́t .
Proposition 2: For 1 ≤ t ≤ m− 1, det

(
Át
)
6= 0.

Proof: This proof is almost identical to the proof of
Proposition 1, with a different base case Á1, where

Á1 =
[
m−1∑
k=0

(
P̂1(yk )yk

)]
=

[
m−1∑
k=0

y2k

]
.

Notice that P̂1(x) = x. Since all yk > 0, certainly we have
det

(
Á1
)
6= 0. For the induction step, we substitute in the Á,

D́ and B́ counterparts, together with

Ćt (x) =

 B́t−1 Át−1[
x2(t−p)+1

]T
1≤p≤t

 .
Also, for the number of positive roots of an odd polynomial

P̂2(t−1)+1, we still have at most t − 1, because zero is a root
for any odd polynomial. �
The proofs also give us a method to derive the polynomials

P̂2t (x) and P̂2t+1(x) inductively. We have

P̂2t (x) =
[
x2(t−p)

]T
0≤p≤t

[
1
Dt

]
and

P̂2t+1(x) =
[
x2(t−p)+1

]T
0≤p≤t

[
1
D́t

]
, (15)

for 0 ≤ t ≤ m − 1, where Dt = A−1t Bt and D́t = Á−1t B́t
respectively.

C. OBTAINING UNIT VECTORS
To make each row vector of (7) having the unit length,
we refer to the condition in (11),

2×
m−1∑
k=0

[Pi(yk )]2 = 1.

Thus, together with the fact c(i,0)P̂i(x) = Pi(x), we have

2× c2(i,0)

m−1∑
k=0

[
P̂i(yk )

]2
= 1,

hence,

c(i,0) = ±

(
2×

m−1∑
k=0

[
P̂i(yk )

]2)− 1
2

. (16)

As a result, we have derived the method to obtain a 2m ×
2m orthogonal matrix based on any set of m distinct positive
values. Algorithm 1 presents the overall procedure.

The procedure strictly follows the inductive proofs in
Section III-B. The first loop, #1–4, initializes P̂0 and P̂1,
corresponding to the base cases of the induction. According
to (6), half of the 2m polynomial evaluations can be derived

Algorithm 1 Orthogonal Matrix Generation
Input: m distinct positive values y0, . . . , ym−1
Output: a 2m× 2m orthogonal matrixM
1: for k ← 0, . . . ,m− 1 do
2: P̂0,k ← 1
3: P̂1,k ← yk
4: end for
5: for t ← 1, . . . ,m− 1 do
6: for i← 0, . . . , t − 1 do
7: for p← 1, . . . , t do
8: Ai,p−1←

∑m−1
k=0

[
P̂2i,k × y

2(t−p)
k

]
9: Ái,p−1←

∑m−1
k=0

[
P̂2i+1,k × y

2(t−p)+1
k

]
10: end for
11: Bi←

∑m−1
k=0

[
P̂2i,k × y2tk

]
12: B́i←

∑m−1
k=0

[
P̂2i+1,k × y

2t+1
k

]
13: end for
14: D← A−1 (−B)
15: D́← Á−1

(
−B́

)
16: for k ← 0, . . . ,m− 1 do
17: P̂2t,k ← y2tk +

∑t
p=1

[
y2(t−p)k × Dp−1

]
18: P̂2t+1,k ← y2t+1k +

∑t
p=1

[
y2(t−p)+1k × D́p−1

]
19: end for
20: end for
21: for t ← 0, . . . ,m− 1 do

22: c←±
(
2
∑m−1

k=0 P̂
2
2t,k

)− 1
2

23: ć←±
(
2
∑m−1

k=0 P̂
2
2t+1,k

)− 1
2

24: for k ← 0, . . . ,m− 1 do
25: M2t,k ← c× P̂2t,k
26: M2t+1,k ←−ć× P̂2t+1,k
27: M2t,k+m← c× P̂2t,k
28: M2t+1,k+m← ć× P̂2t+1,k
29: end for
30: end for

from the other half because of the parity property, we thus
only need to set the first m values for each polynomial.
The second loop, #5–20, computes the higher degree poly-
nomials iteratively by constructing and solving the equa-
tion systems (12) and (14). We use 2t and 2t + 1 to step
over the even and odd degrees pair by pair, ranging over
2, 3, . . . , 2m−2, 2m−1. According to (13), we use i to range
over the rows and p over the columns to build A, Á,B, B́ pro-
gressively, from lower to higher dimensions. Then, we solve
the equation systems and obtain the polnomials by (15). In the
final loop, #21–30, we compute P from P̂ by the unit length
normalization in (16), and fill-in the orthogonal matrix as the
result.

IV. GENERATING SAMPLE ORTHOGONAL MATRICES
In order to practice our method in real world scenarios, we
apply the procedure to the solutions found in the classical
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FIGURE 1. The first 8 polynomials of the DCT matrix in domain x ∈
(
−1,+1

)
, the corresponding 8 roots as{

± cos
(
π
16

)
,± cos

(
3π
16

)
,± cos

(
5π
16

)
,± cos

(
7π
16

)}
.

expansions and reproduce those orthogonal matrices cur-
rently in wide use, as samples. As described in Section III,
to generate an n × n orthogonal matrix, n = 2m must be
an even number. This requirement is in fact less restrictive
than that of most other generating methods, where n must
be a power of 2. Therefore, all the sample matrices can
be generated by our method without any problem in their
dimensions.

The experiments are carried out as follows. We first
determine n = 2m distinct values for the targeted
sample matrix. In fact, among the 2m values, half of
them are the opposites of the other half, thus only m
distinct positive values are required. As discussed in
Section III-B–III-C, the entire procedure can be separated
into two batches, that are, (i) the even-numbered polynomials
P0(x),P2(x), . . . ,Pn−2(x), and (ii) the odd-numbered poly-
nomials P1(x),P3(x), . . . ,Pn−1(x), iteratively and respec-
tively from the base cases P0(x) and P1(x). In particular,
we choose only the arithmetic square roots in Algorithm 1
to simplify the results. At the end of the section, we illustrate
that, by using arbitrary distinct values, we are also able to
produce new and unique orthogonal matrices, not just the
special values of those discovered matrices.1

A. 8×8 DISCRETE COSINE TRANSFORM MATRIX
To generate the n × n (n = 8) DCT matrix, we must
first confirm the n distinct values. Since the DCTs are also
closely related to the Chebyshev polynomials [19], where
the coefficients of P1(x) are the roots of the n-th Chebyshev

1We have implemented the procedures to generate the
sample orthogonal matrices in: github.com/ChanKaHou/
DiscreteOrthogonalMatrices

polynomial Pn(cos(x)) = cos(nx), that is,

Pn(x) = cos(n arccos(x)) = 0. (17)

Solving (17), we have the n roots to be

xi = cos

(
i+ 1

2

n
π

)
i = 0, 1, . . . , n− 1.

Also by Algorithm 1, #3, we notice that the coeffi-
cients of P1(x) are also the set of n distinct values we are
using to generate the matrix. Thus for the 8 × 8 orthog-
onal matrix, we have the 8 values as the roots of (17),
± cos

(
π
16

)
,± cos

(
3π
16

)
,± cos

(
5π
16

)
,± cos

(
7π
16

)
. By tak-

ing these values, Algorithm 1 produces an 8× 8 DCT matrix
as shown in Appendix A-A. In fact, the Appendix A-A can be
multiplied by 64

√
8 and rounded to Appendix A-B, which is

the widely used DCT-II matrix [51] that has been employed
in the video coding standard. Various sizes of DCT-II have
also been embedded in the next generation video coding
standard, Versatile Video Coding [52], where those DCT
matrics were called DEFINE_DCT2_PX_MATRIX that can
be found in the reference software VVC Test Model (VTM).
In the transform module, all transform matrices are also pro-
jected into the integer domain to increase the computational
performance. Depending on the size n of the coding block,
the n2 matrix elements are up-scaled by 64

√
n, and then be

approximated and rounded to integers, where 64 is the max-
imum Quantization Parameter (QP) values. Figure 1 gives
the corresponding plot of the first 8 Chebyshev polynomials.
The plot of the polynomials shows some features of cosine
functions. The roots are also in the range of [−1,+1], and all
of them are the cosine values of the radians in an arithmetic
sequence.
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FIGURE 2. The first 8 polynomials of the DTT matrix in domain x ∈
(
−1,+1

)
, the corresponding 8 roots as{

±
1
8 ,±

3
8 ,±

5
8 ,±

7
8

}
.

B. 8×8 DISCRETE TCHEBICHEF TRANSFORM MATRIX
The Discrete Tchebichef Transform (DTT) is another widely
used transform method by using the Chebyshev polynomi-
als [11], which has as good energy compaction properties
as those of the DCT, and works better for a certain class
of 2D information. Because the Chebyshev polynomials are
too complex, unlike in the DCT case, the roots of the n-th
polynomial Pn(x) = 0 are difficult to obtain for setting
the values to generate the matrix. However, as discussed in
the DCT case, the discovered orthogonal matrices can help
us determine the coefficients of polynomial P1(x), thus the
values for our generation method. For example, a 4× 4 DTT
matrix has been discussed in [53] where the coefficients of
P1(x) are

−
3
√
5

10
, −

√
5

10
, +

√
5

10
, +

3
√
5

10
,

which form an arithmetic sequence. We can use these values
to generate the orthogonal matrix. Furthermore, consider the
loop of Algorithm 1, #21–30 to normalize each row to a unit
vector, the values for generating the matrix can be scaled arbi-
trarily. Therefore, we can use a better distributed arithmetic
sequence

−
3
4
, −

1
4
, +

1
4
, +

3
4

in the range of [−1, 1] as the generating values. As a result,
we obtain the same matrix as in Appendix B-A by using

Algorithm 1 with these values. Similarly, in order to generate
an 8 × 8 DTT matrix, we must determine the 8 generating
values first. Following the same principle, we use the evenly
distributed arithmetic sequence of 8 values in the range of
[−1, 1],

±
1
8
, ±

3
8
, ±

5
8
, ±

7
8
.

We are able to obtain the 8 × 8 DTT matrix as in
Appendix B-C, which is identical to the one describe in [11].
Similar to Appendix A-B, Appendix B-A and B-C can also be
scaled and rounded to an integer matrix like Appendix B-B
and B-D, which can be used in coding applications. Figure 2
shows the corresponding plot of the first 8 DTT polynomials.
Different from the DCT case, the values to generate a DTT
matrix themselves form an arithmetic sequence. Thus, for the
generation of a general 2m × 2m DTT matrix we should set
the arithmetic sequence

±
1
2m
, ±

3
2m
, . . . ,±

2m− 1
2m

as the generating values in our method. This enables us to
generate DTT matrices of arbitrarily large sizes.

C. FURTHER DISCUSSION
It may not always be possible to come up with natural dis-
cretizations as in these examples. Switching to our method,
we need only to determine the generating values, then the
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corresponding matrix can be produced accordingly. As indi-
cated in the DCT and DTT cases, their generating values have
certain patterns, of which we can make use to produce larger
orthogonal matrices of the same class. In fact, our method has
the advantage to accept any real numbers as the generating
values, the DCT and DTT are only two well-known cases
serving as the evidence of success in our practice. There
are other potential sequences such as triangular numbers
±1,±3,±6,±10, . . . , prime numbers ±2,±3,±5,±7, . . .
and Fibonacci numbers ±1,±2,±3,±5, . . . that can be
examined further for application. The respective 8 × 8
orthogonal matrices from these sequences are shown in
Appendix C, D and E. In the same way like Appendix A-B,
all of them can be multiplied by 64

√
8 and rounded to inte-

ger matrices for applicable applications. It is worth noting
that for polynomials of high degrees, some definitions near
[−1, 1] classify a large percentage of the determined values as
potential polynomial roots. We can scale the polynomials for
optimal root arrangement. However, significantly decreasing
the scaling factor will increase the energy of polynomials,
always resulting in very large c(k,0). Although this in turn
affects the weight function when dealt with in the continuous
form, it is out of the scope of this work.

On the other hand, there is a weak point of our method that
we only present these polynomials in the form of approximate
coefficients. Although all the polynomials for the orthog-
onal matrices can be formulated in the accurate form like
those 0 and 1-degree polynomials, it will be too complex
to read and implement for the higher degree polynomials.
When we have to approximate the coefficients iteratively,
rounding errors must be taken into consideration. Further, our
methodmay not support the class of discrete polynomials that
are orthogonal on non-uniform lattice, such as the rotation
matrix in a 3D transformer. Because a rotation matrix is
not limited to 2m × 2m in size and its determinant must
meet an additional condition, i.e., equal to ±1. In real world
applications, the DCT and DTT have been widely use in
image compression. Also, our method has the potential to
apply to cryptography. For example, the user can arbitrary
determine a set of values as the encryption key, and go
through our algorithm to generate a unique orthogonal matrix
to map the plain text into the cipher text. Using the inverse
matrix will be able to decrypt the cipher text back to the
original.

As we can see, with our generating method, the result poly-
nomials and matrix are determined by the initial given values.
An intuitive question is how the properties of the generated
polynomials and matrix are related to the distribution of the
given values. These properties can be further divided into
whether they are general or application oriented. For exam-
ple, when the generated orthogonal matrix is used in image
compression, the property of coding efficiency is of interest.
It can be found in the experiments that the distribution of
the initial given values has impact on the applicability of the
generated transform matrix to signals of certain frequency
distribution, such as DCT fitting better for lower frequency

areas. A thorough study of the relation between initial given
values and the properties of outcome is a research direction
of future studies, both with and without the contexts of appli-
cations.

V. CONCLUSION
In this paper, we present a general method for generating dis-
crete orthogonal matrices of arbitrary even numbered sizes,
from user determined sets of distinct positive real numbers.
We give the complete induction procedure which also leads to
the formal justification and the algorithm. Our method is able
to generate a class of discrete polynomials that are orthogonal
on uniform lattices. We have reproduced the well-known
DCT and DTT matrices in terms of the corresponding pos-
itive values without using the continuous polynomials. Our
method provides a shortcut to the development of undiscov-
ered orthogonal transforms for potential applications. Invert-
ible transformers can be generated more efficiently that are
effective for sample data testing and evaluation of new ideas.
The application of this method can help eliminating the need
of heavy mathematics for using certain class of orthogonal
matrices. The result of our practice shows the power and
flexibility of this generating method compared with other
methods for discrete orthogonal transformers. In addition,
we show that the generated matrices have the potential to
facilitate other applications and analysis.

APPENDIX A
DCT MATRIX
A. 8×8 DCT MATRIX
See (A.1), as shown at the bottom of the next page.

B. 8×8 DCT MATRIX IN INTEGER, NAMELY
DEFINE_DCT2_P8_MATRIX

ROUND
(
Appendix A− A× 64

√
8
)

=



64 64 64 64 64 64 64 64
89 75 50 18 − 18 − 50 − 75 − 89
84 35 − 35 − 84 − 84 − 35 35 84
75 − 18 − 89 − 50 50 89 18 − 75
64 − 64 − 64 64 64 − 64 − 64 64
50 − 89 18 75 − 75 − 18 89 − 50
35 − 84 84 − 35 − 35 84 − 84 35
18 − 50 75 − 89 89 − 75 50 − 18


(A.2)

APPENDIX B
DTT MATRIX
A. 4×4 DTT MATRIX
0.5000000 0.5000000 0.5000000 0.5000000
0.6708204 0.2236068 − 0.2236068 − 0.6708204
0.5000000 − 0.5000000 − 0.5000000 0.5000000
0.2236068 − 0.6708204 0.6708204 − 0.2236068


(B.1)
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B. 4×4 DTT MATRIX IN INTEGER

ROUND
(
Appendix B− A× 64

√
4
)

=


64 64 64 64
86 29 −29 −86
64 −64 −64 64
29 −86 86 −29


(B.2)

C. 8×8 DTT MATRIX
See (B.3), as shown at the bottom of the page.

D. 8×8 DTT MATRIX IN INTEGER

ROUND
(
Appendix B− C × 64

√
8
)

=



64 64 64 64 64 64 64 64
98 70 42 14 − 14 − 42 − 70 − 98
98 14 − 42 − 70 − 70 − 42 14 98
78 − 56 − 78 − 33 33 78 56 − 78
51 − 95 − 22 66 66 − 22 − 95 51
27 − 89 66 58 − 58 − 66 89 − 27
11 − 56 100 − 56 − 56 100 − 56 11
3 − 22 65 − 108 108 − 65 22 − 3


(B.4)



0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339
0.49039264 0.41573481 0.27778512 0.09754516 − 0.09754516 − 0.27778512 − 0.41573481 − 0.49039264
0.46193977 0.19134172 − 0.19134172 − 0.46193977 − 0.46193977 − 0.19134172 0.19134172 0.46193977
0.41573481 − 0.09754516 − 0.49039264 − 0.27778512 0.27778512 0.49039264 0.09754516 − 0.41573481
0.35355339 − 0.35355339 − 0.35355339 0.35355339 0.35355339 − 0.35355339 − 0.35355339 0.35355339
0.27778512 − 0.49039264 0.09754516 0.41573481 − 0.41573481 − 0.09754516 0.49039264 − 0.27778512
0.19134172 − 0.46193977 0.46193977 − 0.19134172 − 0.19134172 0.46193977 − 0.46193977 0.19134172
0.09754516 − 0.27778512 0.41573481 − 0.49039264 0.49039264 − 0.41573481 0.27778512 − 0.09754516


(A.1)



0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339
0.54006172 0.38575837 0.23145502 0.07715167 − 0.07715167 − 0.23145502 − 0.38575837 − 0.54006172
0.54006172 0.07715167 − 0.23145502 − 0.38575837 − 0.38575837 − 0.23145502 0.07715167 0.54006172
0.43082022 − 0.30772873 − 0.43082022 − 0.18463724 0.18463724 0.43082022 0.30772873 − 0.43082022
0.28203804 − 0.52378493 − 0.12087344 0.36262033 0.36262033 − 0.12087344 − 0.52378493 0.28203804
0.14978617 − 0.49215457 0.36376642 0.32097037 − 0.32097037 − 0.36376642 0.49215457 − 0.14978617
0.06154575 − 0.30772873 0.55391171 − 0.30772873 − 0.30772873 0.55391171 − 0.30772873 0.06154575
0.01706972 − 0.11948803 0.35846409 − 0.59744015 0.59744015 − 0.35846409 0.11948803 − 0.01706972


(B.3)



0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339
0.58520574 0.35112344 0.17556172 0.05852057 − 0.05852057 − 0.17556172 − 0.35112344 − 0.58520574
0.57732044 − 0.00454583 − 0.25002066 − 0.32275395 − 0.32275395 − 0.25002066 − 0.00454583 0.57732044
0.38929157 − 0.44380688 − 0.36478867 − 0.13570834 0.13570834 0.36478867 0.44380688 − 0.38929157
0.20332262 − 0.58495156 0.04304563 0.33858331 0.33858331 0.04304563 − 0.58495156 0.20332262
0.07731044 − 0.42115272 0.49603067 0.26571989 − 0.26571989 − 0.49603067 0.42115272 − 0.07731044
0.01900050 − 0.18113808 0.55734795 − 0.39521037 − 0.39521037 0.55734795 − 0.18113808 0.01900050
0.00306922 − 0.04876649 0.30010145 − 0.63839763 0.63839763 − 0.30010145 0.04876649 − 0.00306922


(C.1)



0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339
0.53066863 0.37904902 0.22742941 0.15161961 − 0.15161961 − 0.22742941 − 0.37904902 − 0.53066863
0.54924560 0.06550636 − 0.25698647 − 0.35776548 − 0.35776548 − 0.25698647 0.06550636 0.54924560
0.43765512 − 0.25996056 − 0.38500488 − 0.3043842 0.3043842 0.38500488 0.25996056 − 0.43765512
0.26765175 − 0.56758752 − 0.02499814 0.32493391 0.32493391 − 0.02499814 − 0.56758752 0.26765175
0.16311855 − 0.52457442 0.24653144 0.37072397 − 0.37072397 − 0.24653144 0.52457442 − 0.16311855
0.04113166 − 0.22034819 0.55527745 − 0.37606092 − 0.37606092 0.55527745 − 0.22034819 0.04113166
0.01552862 − 0.11646468 0.48915166 − 0.49691598 0.49691598 − 0.48915166 0.11646468 − 0.01552862


(D.1)
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

0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339 0.35355339
0.56613852 0.33968311 0.22645541 0.1132277 − 0.1132277 − 0.22645541 − 0.33968311 − 0.56613852
0.58246001 − 0.02864557 − 0.21961607 − 0.33419837 − 0.33419837 − 0.21961607 − 0.02864557 0.58246001
0.41600392 − 0.36846062 − 0.37440353 − 0.2258307 0.2258307 0.37440353 0.36846062 − 0.41600392
0.18773874 − 0.54375769 − 0.0518894 0.40790836 0.40790836 − 0.0518894 − 0.54375769 0.18773874
0.07984321 − 0.47485699 0.30256374 0.42022742 − 0.42022742 − 0.30256374 0.47485699 − 0.07984321
0.02223738 − 0.28019101 0.56927697 − 0.31132334 − 0.31132334 0.56927697 − 0.28019101 0.02223738
0.00727855 − 0.1528496 0.46582736 − 0.50949867 0.50949867 − 0.46582736 0.1528496 − 0.00727855


(E.1)

APPENDIX C
8×8 DISCRETE TRIANGULAR MATRIX
See (C.1), as shown at the bottom of the previous page.

APPENDIX D
8×8 DISCRETE PRIME MATRIX
See (D.1), as shown at the bottom of the previous page.

APPENDIX E
8×8 DISCRETE FIBONACCI MATRIX
See (E.1), as shown at the top of the page.
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