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ABSTRACT Post-marketing surveillance of antineoplastic agents is performed to evaluate the efficacy
and safety in patients aiming at expanding drug indications and discovering potential adverse events. The
real-world data is fraught with missing values. Literature addressing different strategies for dealing with
missing data in such a situation is scarce. Using machine learning (ML) algorithms for predicting therapeutic
outcomes of PD-1/PD-L1 Inhibitors has attracted attention. However, training a predictive model usually
requires imaging or biomarker information, which is rarely available in the post-marketing surveillance
data. To address these challenges, we propose anML-aided framework to predict the outcomes of Anti-PD-1
therapy for gynecological malignancy on a dataset with 117 patient samples, treated by Camrelizumab (with
50 patient samples), Sintilimab (44), and Toripalimab (23). Four therapeutic outcomes, including Response
Evaluation Criteria in Solid Tumours (RECIST), organ adverse effect (AE), general AE, and death, are
predicted. The proposed framework feeds the dataset into a learning pipeline consisting of imputation, feature
engineering, model training, ensemble learning, and model selection to generate the final predictive model.
We conduct experiments to justify several critical design choices, such as the specific feature engineering
strategies and the SMOTE over-sampling technique. The final model for each learning task is selected from
a large pool of model candidates based on a joint consideration of accuracy and F1. Moreover, we conduct
thorough and visualized model analysis and gain a deeper understanding of model behavior and feature
importance. The results, analysis, and findings demonstrate the superiority of the proposed learning-aided
framework.

INDEX TERMS Post-marketing surveillance, machine learning, gynecological cancer.

I. INTRODUCTION
Conducting a post-marketing surveillance study is significant
for evaluating the efficacy and safety of a drug in clinical
practice [1]. Recent years have witnessed the development
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and application of PD-1/PD-L1 inhibitors in cancer therapy
[2], [3]. The PD-1/PD-L1 inhibitors work by blocking the
interaction of PD-L1 on a tumor cell with PD-1 on a T-cell,
allowing the immune system to start functioning and attack
tumor cells [4]. Understanding the human body response
to the PD-1/PD-L1 therapy via post-marketing surveillance
is critical to improving treatment programs and boosting
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research and development of PD-1/PD-L1 inhibitors in the
long run.

Worldwide, around 1.5 million women are diagnosed
yearly with a gynecological malignancy [5]. In the UK and
USA, ovarian cancer is the fifth most common cause of
cancer death amongst women; endometrial cancer is the
fourth most common cancer for women and the most com-
mon gynecological cancer in developed countries; another
common cancer type, cervical cancer, has become mostly
preventable in the developed world due to effective screening
and vaccination [6]. The efficacy of PD-1/PD-L1 inhibitors
has been demonstrated in the treatment of gynecological
cancer, with a high response rate and a tolerable side effect
profile [7]. In a study by Meng et al. [8], PD-L1 expression
was found in 60.82% (59/97) of the patients with cervical
cancer. In another study [9], 123 patients with high-grade
serous ovarian carcinoma were treated with PD-L1 inhibitor
and chemotherapy, and 87 (71%) and 29 (24%) were evalu-
ated as a complete and partial response, respectively. Mean-
while, side effects caused by upregulation of the immune
system have shown on several organ systems, including the
skin, the gastrointestinal tract, the liver, and the endocrine
system [6] for patients receiving anti-PD-1 therapy. Fatigue
was reported by 16–37% of patients [10]. 30–40% of patients
presented dermatologic toxicities [11], most commonly a
maculopapular rash. Diarrhea and colitis have also been
reported but not common, occurring in 1–3% of patients [12].
Less than 5% of patients reported immune-related hepatitis
with an asymptomatic elevation of liver transaminases [10].
Compared to CTLA-4 inhibitors, Hypophysitis is less com-
mon with PD-1/PD-L1 inhibitors, only observed in 1–6% of
patients; thyroiditis, on the other hand, is more common, seen
in 6–20% of patients [10].

Numerous prior studies have employed conventional statis-
tical methods to analyze the efficacy and safety of anti-PD-1
therapy of gynecological malignancy [7], [13]–[16]. These
methods allow clinical practitioners to uncover the basic
statistical facts in the data gathered through post-marketing
surveillance. Recent advances in artificial intelligence and
machine learning (ML) have seen great success in various
industries. In the sub-field of PD-1 inhibitor application,
recent studies have employed ML techniques to mine infor-
mative patterns hidden in the surveillance records and build
models to predict the anti-PD-1 therapy outcomes with statis-
tically validated confidence. Existing cases include non-small
cell lung cancer (NSCLC) [17]–[19], metastatic melanoma
[20], and intrahepatic cholangiocarcinoma (ICC) [21] . How-
ever, ML-based analytical methods have not been seen in the
area of anti-PD-1 therapy for gynecological malignancy.

Training an accurate and robust predictive model requires
a high-quality dataset [27]–[29]. By high quality, we mean
a large data volume, accurate labels, and high integrity.
However, the dataset used in this study is small, with
only 117 samples, and there are missing values. The only
high-quality criterion met is the data labels, which are the
therapy outcomes gathered from patients in the real world.

The small and incomplete dataset brings a unique challenge
for predictive learning. Thus, a crucial question we need to
answer is that whether our models can learn meaningful pat-
terns to produce accurate results in this challenging scenario.
Similar challenges have been faced by prior studies. Various
imputation methods have been developed to deal with the
missing values [30], [31]. The cases of the small dataset
have been seen in the studies of brain disorders [31] and
Alzheimer’s Disease [28]. When obtaining more data is not
viable, a common strategy is data augmentation [32], [33],
which can be used to create synthetic samples to increase the
training data size and rebalance class distribution [34].

From the perspective of learning strategy, numerous meth-
ods have been developed from both the data and model
aspects. It is crucial for a learning algorithm to mine infor-
mative patterns from a given set of features. Common strate-
gies for feature handling include normalization [35], feature
enhancement [36], and feature selection [37]. From themodel
side, ensemble learning has shown superior predictive per-
formance in a wide spectrum of ML systems [38], [39] due
to its ability to strategically aggregate a collection of single
learning models and achieve performance gains. However,
our investigation shows that these common learning strategies
are rarely seen in the literature that adopts ML to predict
outcomes of anti-PD-1 treatment.

Table 1 displays a list of nine relevant studies of ML-based
outcome prediction for anti-PD-1 therapy, sorted by the year
of publication.We compare these efforts in seven dimensions,
including cancer type, dataset size, the number of predicted
outcomes, the usage of imputation, feature enhancement, data
augmentation, feature selection, and ensemble learning. It is
noted that NSCLC and melanoma are the common cancer
types for this kind of study, appearing in seven papers. Also,
the datasets adopted by most studies (seven out of nine) are
small, with a size from 56 to 250. There is a large dataset with
over 95k samples, an aggregated one downloaded from the
US Food and Drug Administration Adverse Event Reporting
System [24]. All nine studies only predict one or two out-
comes of the anti-PD-1 therapy. None consider imputation,
although missing values did present [22], [24], [26]. In [26],
lack of handling missing values was listed as a study limi-
tation. In [24], samples with missing values were not used.
Paper [22] claims that missing data were minimal due to
robust documentation and follow-up information. It is also
observed that feature enhancement, a technique to create
new features based on existing ones, is rarely used [23],
while feature selection is more commonly considered [17],
[18], [21], [22], [24]–[26]. In addition, despite working on a
small dataset, none of the reviewed studied considered data
augmentation, and none employed ensemble learning. Our
investigation indicates that, for the task of outcome prediction
of anti-PD-1 therapy, methods to handle missing values and
more learning strategies remain to be explored. Our study
aims to fill this methodological gap.

In this paper, we propose an ML-based framework to
perform predictive analysis on the outcomes of anti-PD-1
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TABLE 1. A comparative review of literature. Acronyms in table include predicted outcomes (P.O.), imputation (Imp.), feature enhancement (F.E.), data
augmentation (D.A.), feature selection (F.S.), ensemble learning (E.L.), non-small cell lung cancer (NSCLC), and intrahepatic cholangiocarcinoma (ICC).

therapy for patients with gynecological cancers, using a
post-marketing surveillance dataset with 117 patient profiles
collected between Sep 2019 and Feb 2021. We focus on
four therapeutic outcomes as the prediction targets, including
Response Evaluation Criteria in Solid Tumours (RECIST),
organ adverse effect (AE), general AE (namely side effect),
and death. The learning tasks considered in this study con-
sist of both multi-class and binary classification problems,
which can be processed through a custom learning pipeline.
To handle missing values in the dataset, we employ six candi-
date imputation methods to fill the blanks. After imputation,
the dataset undergoes a series of feature engineering oper-
ations, including encoding, normalization, and interaction.
The last operation, namely feature interaction, is a feature
enhancementmethod that creates new features based on exist-
ing ones. The enhanced dataset is then divided into training
and test sets. For training, a total of fifteen candidate mod-
els are considered. For each learning task, each candidate
model is trained with the Synthetic Minority Over-sampling
Technique (SMOTE) [40] for data augmentation, and the
recursive feature elimination (RFE) [41] for feature selection.
Each trained model is then tuned to find the optimal set of
hyperparameters within the pre-defined search space. The top
N tuned models are sent to an ensemble learning module to
produce ensemble models. Finally, both ensemble and base
models are evaluated on the test set to identify the best model
for the task.

We conducted extensive experiments to validate the effec-
tiveness of the proposed learning pipeline. Results can justify
several crucial design choices, such as the feature engineering
and selection strategies and the data augmentation method.
Furthermore, through a thorough model analysis, we gain a
deeper understanding of the learning process and how the
features can jointly affect the performance of our models.

The rest of this paper is organized as follows. Section II
describes the dataset details. Section III discusses the techni-
cal details of the proposed analytical framework. Section IV
presents the evaluation results and model analysis. We pro-
vide an extensive discussion of this work in Section V.

II. DATASET
A. BASIC INFORMATION
The study investigated a gynecological cancer post-marketing
surveillance dataset with 117 patient samples collected from

Sep 2019 to Feb 2021. The study also compares three PD-1
inhibitors, including Camrelizumab [42] (with 50 patient
samples), Sintilimab [43] (44 samples), and Toripalimab [44]
(23 samples). Table 2 shows the columns of the dataset.
The columns are referred to as features in ML tasks, and
we use the term feature in the rest of this paper. A total
of 15 features were collected from the patients, including age,
history of hepatitis, tumor type, PD-1/PD-L1 inhibitor, lines
of therapy, chemotherapy, radiotherapy, targeted therapy, start
time, medication cycle, white blood cells (WBCs), aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
thyroid-stimulating hormone (TSH), and tubercle bacillus
(TB). Based on the data type, the features can be divided
into binary, nominal, ordinal, time, and continuous data. Also,
the dataset is incomplete due to missing data. Specifically,
three features, including age, lines of therapy, start time,
and medication cycle, suffer mild missing, i.e., the missing
rate is less than 10%. Six features, including the history of
hepatitis, WBCs, AST, ALT, TSH, and TB, suffer severe
missing, i.e., the missing rate is more than 50%.

B. FEATURE STATS
We uncover the statistical information of individual features
as follows:

• The age data can be divided into six bins from the
20-year-old age group through the 70-year-old age
group, as shown in Figure 1 (a). The age data points fol-
low a slightly left-skewed distribution, with 49 samples
(the most) in the 50-year-old group and five samples (the
least) in the 20-year-old group. The mean and median of
all data points are 55.49 and 56, respectively.

• Table 3 presents the stats information of the gyneco-
logical tumor type in the dataset, where the three most
common types are cervical cancer (63 cases), ovarian
cancer (20 cases), and endometrial cancer (20 cases).
The total count of the rest of the cancer cases is
only 14.

• The gathered values for the lines of therapy are either
one or two, with three missing data points, as shown in
Figure 1 (b). Among the samples, most patients (74%)
were in their second line of therapy, meaning that an ear-
lier treatment has been conducted, and tumor recurrence
has occurred.
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TABLE 2. PD-1/PD-L1 Inhibitor application in gynecological cancer dataset.

TABLE 3. Gynecological cancer type in the dataset.

• Regarding the therapy program, 40 patients received sin-
gle anti-PD-1 therapy, and the rest 77 patients received
a joint therapy program with PD-1 and chemother-
apy/radiotherapy/targeted therapy. Figure 1 (c) shows
the stats of the therapy type grouped by PD-1. It is
noted that the three therapy types are not mutually exclu-
sive. In other words, patients could receive one or more
types of therapy. For example, one patient in the dataset
received all three therapy combined with Sintilimab.

• Figure 1 (d) shows the histogram of medication cycle
grouped by PD-1. It can be observed that most patients
(71%) have taken the medication for one through four
cycles. Also, we observe that the twelve patients with
over ten medication cycles were all given Camrelizuma.

C. OUTCOME
The therapy outcome is evaluated in four dimensions, includ-
ing the RECIST, death, organ AE, and general AE. A break-
down of the four aspects is as follows:
• RECIST is a guideline used to evaluate the response of
therapy on lesions. There are four levels of response,
including complete response (CR), partial response
(PR), stable disease (SD), and progressive disease (PD).
Table 4 displays the stats of the RECIST grouped by
PD-1. The combined percentages of CR and PR for the
three PD-1 inhibitors are 52% (Camrelizuma), 65.91%
(Sintilimab), and 82.61% (Toripalimab), respectively,
indicating an increment of efficacy.

• A total of 15 death cases are counted in the dataset,
as shown in Table 5. The death rates for Camrelizuma,
Sintilimab, and Toripalimab are 18%, 13.64%, and 0%,
respectively.

• Table 5 also shows that the percentages of organ
AE occurrences for Camrelizuma, Sintilimab, and
Toripalimab are 64%, 50%, and 43.48%, respectively,
and the percentages of general AE for Camrelizuma,
Sintilimab, and Toripalimab are 18%, 47.73%, and
17.39%.

D. THE LEARNING TASKS
There are four learning tasks, which are to predict the four
types of outcomes, including RECIST, death, organ, and
general AE, using the data points in the dataset. Specifically,
the latter three belong to binary classification, as the targets
are binary. The first task, RECIST prediction, contains four
classes, making it a multi-class classification problem. Since
dividing the dataset into four classes would further reduce
the sample size for each class, it is harder to train an accu-
rate model [37]. Thus, in addition to the original multi-class
classification task, we add an auxiliary task by merging CR
and PR to make a C&P R class and merging SD and PD to
create an S&P D class. The four-class classification problem
is then reduced to a binary classification problem (referred
to as binary RECIST). A major challenge we face is the
imbalanced sample distribution across the dataset. Figure 3
shows the class distributions for the five learning tasks.
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FIGURE 1. Stats of individual features: (a) age, (b) lines of therapy, (c) therapy type, and (d) medication cycle.

FIGURE 2. Laboratory results of WBCs, AST, ALT, TSH, and TB (left to right). The number in braces under the PD-1 inhibitor is the sample size.

For the binary learning tasks, the percentages of the major
classes of binary RECIST, general AE, organ AE, and death

are 62.71% (C&P R), 70.34% (general AE not present),
54.24% (organ AE present), and 87.29% (alive), respectively.
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TABLE 4. RECIST stats.

TABLE 5. Death and AE stats.

FIGURE 3. Sample distribution for each learning task.

For the RECIST task, samples in the four classes are also not
equally distributed. Since our dataset is tiny, the imbalanced
data distribution leads to insufficient training samples for
minority classes, affecting the learning performance.

Before training, it is necessary to obtain a general sense
of the potential impact of each individual feature on the
learning outcomes. We provide a correlation heatmap in
Figure 4 for all columns of the dataset, including features
and outcomes. Specifically, we employed Pearson’s r [28]
as a measure of linear correlation between two columns of
data to generate a matrix, where each element is between
-1 and 1. In other words, the higher the Pearson’s r,
the stronger positive correlation presented by two sets of
data, and vice versa. It is noted that before the calcula-
tion of the correlation matrix, we applied a scheme called
one-hot encoding to binarize the two nominal categorical
features, namely PD-1 and tumor type. This way, each value
of these two features is transformed into an additional binary
feature based on its occurrence in the original feature. For
example, the original feature PD-1 becomes three binary
features named PD-1_Camrelizuma, PD-1_Sintilimab, and
PD-1_Toripalimab. The reason for one-hot encoding is that it
allows the correlation calculation and the following learning
algorithms to better understand the relationship between each
individual value of the categorical feature and the outcome.
The key observations of Figure 4 are as follows:

• The death outcome has a relatively high positive
correlation with Tumor type_Ovarian cancer (with a
Pearson’s r 0.18), Age (0.15), and PD-1_Camrelizumab
(0.13). The top three negatively correlated features
are PD-1_Sintilimab (-0.19), radiotherapy (-0.18), and

therapy lines (-0.17). Also, death is highly correlated
with another outcome, RECIST (-0.4).

• The RECIST and bin RECIST are highly corre-
lated since bin RECIST is a looser setting of
RECIST. In addition, the top three positively cor-
related features are Tumor type_Cervical cancer
(0.22), Tumor type_Choriocarcinoma (0.22), and Tumor
type_Trophoblastoma (0.19), and the top three neg-
atively correlated features are Tumor type_Ovarian
cancer (-0.47), Age (-0.35), and Therapy lines (-0.27).
It is noted that the four classes CR, PR, SD, and PD
are encoded as 4, 3, 2, 1, respectively. Therefore, a high
Pearson’s r indicates that the feature has a positive effect
on the treatment.

• The top three positively correlated features with organ
AE are Medication cycle (0.27), Chemotherapy (0.21),
and PD-1_Camrelizumab (0.21), and the top three nega-
tively correlated features are Starting time (-0.17), TSH
(-0.15), and Tumor type_Cervical cancer (-0.14).

• The top three positively correlated features with general
AE are PD-1_Sintilimab (0.3), Tumor type_Endometrial
cancer (0.17), and History of hepatitis (0.16), and
the top three negatively correlated features are
PD-1_Camrelizumab (-0.22), Medication cycle (-0.16),
and TSH (-0.12).

III. A MACHINE LEARNING-BASED
ANALYTICAL FRAMEWORK
A. OVERVIEW OF FRAMEWORK
Figure 5 shows an overall learning framework of this study.
First, the original dataset is imputed to fill the missing values.
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FIGURE 4. Correlation heatmap.

We evaluate six imputation methods with different designs.
The completed dataset then undergoes a feature engineering
module that consists of encoding, normalization, and feature
interaction. After feature engineering, we obtain an expanded
feature set from the 15 raw features. The dataset is then
divided into a training and test set. For each learning task,
we train each candidate model on the training set, using
SMOTE to generate synthetic samples and RFE for feature
selection. The trained models (referred to as base models)
then undergo a process of hyperparameter tuning. The top
models are sent to an ensemble learning module to create
ensemble models. Finally, the tuned base models and the
ensemble models are evaluated on the test set to determine
the best model for the learning task.

B. DATA IMPUTATION
Since the raw dataset is incomplete, we employ data imputa-
tion to fill themissing values. The following seven imputation
methods are adopted in this study.
• A simple imputer applies a pre-defined strategy to fill
the missing values. Common strategies include filling
with mean, median, constant, and most frequent. In this
study, we chose the median-filling strategy since it out-
performed other strategies in the learning tasks. The
simple imputer has been widely used as a baseline in
prior studies [45], [46].

• An iterative imputer fills the missing values by treating
each feature as a target and using all other features

to train a regression model. The process operates
round-robin fashion until all features with missing val-
ues are imputed. In this study, we chose the Bayesian
ridge model [47] for regression. It is noted that the
iterative imputer relies on the simple imputer to initial-
ize the dataset, and the missing values are filled with
placeholders that go through an iterative procedure for
refinement.

• The K-Nearest Neighbors (KNN) [48] imputer first
identifies the K-nearest neighbors for each data point of
the dataset; then, a missing value is imputed with the
mean value belonging to the K-nearest neighbors.

• The Multiple Imputation by Chained Equations (MICE)
[49] is similar to the iterative imputation but imple-
mented differently. MICE creates multiple copies of the
dataset and applies the MICE procedure to each dataset
copy. Lastly, the filled values in all copies are pooled to
form the final completed dataset.

• The MissForest imputation [50] fits a random forest
for each feature with missing values using the observed
part to predict the missing part. This process operates
iteratively until a stop condition is satisfied.

• The Generative Adversarial Imputation Nets (GAIN)
[51] trains two networks, including a generator to
impute the missing values based on the observed
ones and a discriminator to distinguish observed and
imputed data. The two networks are trained and opti-
mized alternatively to improve the imputation quality
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FIGURE 5. The overall learning framework. We experiment with six
imputation methods, including simple, iterative, K-Nearest Neighbors
(KNN), Multiple Imputation by Chained Equations (MICE), MissForest, and
Generative Adversarial Imputation Nets (GAIN). Also, the set of candidate
models adopted in this study includes Random Forest (RF), Extra Trees
(ET), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine
(LGBM), CatBoost (CB), Decision Tree (DT), Gradient Boosting Classifier
(GBC), Ada Boost (ADA), K-Nearest Neighbors (KNN), Quadratic
Discriminant Analysis (QDA), Naive Bayes(NB), Logistic Regression(LR),
Linear Discriminant Analysis (LDA), Ridge, and Support vector
machine (SVM).

until convergence.When the training is done, the genera-
tor has learned the distribution of the data points and can
generate realistic samples that are difficult to be detected
by the discrminator as generated ones.

C. FEATURE ENGINEERING
We adopted three techniques to engineer the raw features.
First, as mentioned in Section II-D, we applied one-hot
encoding [52] which can binarize the categorical features
so that each feature value can be treated individually during
training and make a dedicated impact on the prediction target.
Also, binarized categorical features are easier to interpret in
model analysis. Second, we normalized the continuous fea-
tures using the z-score [35], which is computed as z = x−µ

σ
,

where x is the raw feature value, andµ and σ refer to themean

and standard deviation of the population, respectively. Lastly,
we employed feature interaction [53], which creates new fea-
tures with pairwise multiplication between the raw features.
A broader design choice would be to generate polynomial
features [54] that consist of all polynomial combinations of
the raw features. However, we found that the pairwise mul-
tiplication consistently outperformed the polynomial feature
generation by 2-6% in our experiments. Thus, we only kept
pairwise multiplication for feature interaction, which reduces
the model complexity, shortens training time, and boosts the
model performance.

D. LEARNING FROM DATA
Once the dataset is complete, we can start the process of
model training. This subsection describes the major steps of
the learning pipeline.

1) MODEL TRAINING
We chose fifteen base models that commonly appear in both
literature and industrial applications. A brief description of
each model is provided as follows.
• The Decision Tree Classifier (DT) [55] is a model that
predicts the value of a target variable by learning simple
decision rules inferred from the data features. A tree can
be seen as a piecewise constant approximation.

• TheRandomForestClassifier (RF) [56] is an ensemble
learning method that operates by combining a multitude
of DTs during training and outputting a class via voting.
Combining a group of weak learners to form stronger
learners is the main improvement in Random Forest
comparedwith conventional DT structure after introduc-
ing an ensemble approach [57]. A divide and conquer
approach is utilized in ensemble methods to achieve
an improvement in algorithm performance. The average
of these uncorrelated trees can be obtained in order to
achieve a variance reduction [58] which can make the
final results less variable and more reliable [59].

• The Extra Trees Classifier (ET) [60] fits a num-
ber of randomized DTs (a.k.a. extra-trees) on various
sub-samples of the dataset.

• The Light Gradient Boosting Machine (LightGBM)
[61] grows trees leaf-wise (best-first), which is more
efficient than other tree-based boosting methods.

• The Extreme Gradient Boosting (XGB) introduced as
a tree-based method, is proposed by Chen in 2014 [62].
As a scalable and accurate implementation of gradi-
ent boosted trees, optimized computational speed and
model performance can be achieved. Reduction in the
overfitting effect can be realized by XGB utilizing a
regularization term compared to gradient boost, which
is contributed to better prediction and much faster com-
putational run times [63].

• TheCatBoostClassifier [64] is aML algorithm that uses
gradient boosting on DTs.

• The Gradient Boosting Classifier (GBC) [65] is an
ML framework that treats boosting as an optimization
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problem that aims to minimize a loss function of the
model by adding weak learners via a procedure similar
to gradient descent. DTs are usually adopted as the weak
learners, which are built in a greedy manner by splitting
nodes with the highest purity score. The algorithm is a
stage-wise additive process, meaning that a weak DT
leaner is added one at a time, and the existing DTs
in the model remain unchanged. The prediction of the
new tree added to the predictions of the existing mod-
els attempting to improve the model performance. The
training stops when a pre-defined number of trees are
added, or the loss reaches an acceptable level.

• The Adaptive Boosting Classifier (ADA) [66] takes the
output of other learning algorithms (’weak learners’) to
obtain a weighted sum that represents the final output of
the boosted classifier. AdaBoost is adaptive in the sense
that subsequent weak learners are tweaked in favor of
those instances misclassified by previous classifiers.

• The K Nearest Neighbors Classifier (KNN) [67] uses
a plurality vote of its neighbors, with the object being
assigned to the class most common among its k nearest
neighbors.

• TheQuadratic Discriminant Analysis (QDA) [68] is a
statistical classifier that uses a quadratic decision surface
to separate measurements of two or more classes of
objects or events.

• The Naive Bayes (NB) [69] model is a set of supervised
learning algorithms based on the Bayes’ theorem with
the assumption of conditional independence between
every pair of features given the value of the class
variable.

• The Logistic Regression (LR) Originally proposed by
Cox in 1958 [70], linear discriminants is commonly
involved in Logistics Regression as a traditional classi-
fication algorithm. The given input can obtain a prob-
ability as a primary output belonging to a certain class.
Then a linear boundary can be established to separate the
input space into two regions by the model based on the
value of probability. Linearly separable classes can be
solved easily by logistics regression as one of the most
extensively used classifiers. This logistic function is a
common ‘‘S’’ shape (sigmoid curve).

• The Linear Discriminant Analysis (LDA) [68] is a
classifier with a linear decision boundary, generated by
fitting class conditional densities to the data and using
the Bayes’ rule. The model fits a Gaussian density to
each class, assuming that all classes share the same
covariance matrix. The fitted model can also be used to
reduce the dimensionality of the input by projecting it to
the most discriminative directions.

• The Ridge Classifier [71] first converts binary targets
to -1, 1 and then treats the problem as a regression
task, optimizing the same objective as above. The pre-
dicted class corresponds to the sign of the regressor’s
prediction.

• The Linear Kernel Support vector machine (SVM),
a commonly used discriminative classifier, is designed
to assign new data samples to one of two possible cate-
gories and was initially proposed in 1995 by Vapnik and
Cortes [72]. A hyperplane separating the n-dimension
data into two classed is the basic idea of SVM, and
the maximized geometric distance to the nearest data
points can be obtained by the hyperplane, that is, support
vector. Notably, similar results can often be yielded
by practical linear SVM and logistics regression [73].
Apart from linear classification, a kernel method that
can perform efficiently in non-linear classification is
introduced by SVM. The attributes can be transferred
into a new feature space where the data is separable by
kernel, a feature mapping methodology.

2) DATA AUGMENTATION
To alleviate the negative effect of the imbalanced dataset,
we adopted the SMOTE [40] to synthesize new data points
from the minority class. Essentially, SMOTE is a data aug-
mentation method aiming to re-balance the dataset by creat-
ing equally distributed classes. At a high level, SMOTEworks
by choosing a pair of samples that are close in the feature
space and drawing a line on the two samples, and then a
new data point can be drawn along the line. This way, more
samples in the minority class can be synthesized to balance
the dataset. Compared to other oversampling methods, such
as Edited Nearest Neighbours, SMOTE is efficient and easy
to implement [74], [75].

3) RECURSIVE FEATURE ELIMINATION
The RFE [41] aims to find a subset of features among all
available features to train the final model. It works by training
a full model with all features and ranking these features by
importance. The training process repeats with the insignif-
icant features gradually removed. Cross-validation (CV) is
adopted to evaluate a model’s performance given a set of
selected features, and the optimal feature set is kept when
RFE finishes. Compared with other feature selection methods
such as InfoGain [76] and ReliefF [77], RFE is suitable for
dataset with small size and high input noise [78]. For our
case, we have a small dataset with input noise introduced by
missing values, making RFE a decent choice.

4) HYPERPARAMETER TUNING
We conduct a randomized search on hyperparameters. The
random parameter optimization scheme works by randomly
searching over the pre-defined parameter space, where each
parameter setting is sampled from a distribution over pos-
sible parameter values [79]. Compared to the exhaustive
grid search, randomized search has two strengths [80].
First, a budget can be reserved to control the computational
resource and load. Second, adding new parameters has little
influence on the training efficiency.
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5) ENSEMBLE LEARNING
Ensemble learning is a technique that strategically aggregates
a set of predictive models to boost predictive performance
[38], [39]. In this study, we consider two ensemble meth-
ods, blending and stacking. The idea of blending [81] is to
combine different ML algorithms and use a majority vote or
the average predicted probabilities in case of classification to
predict the outcome. On the other hand, the stacking method
[81], [82] treats the outputs of the base estimators as input
to train a second-level model on top of a selected meta esti-
mator. Ensemble learning usually demonstrates superior per-
formance than single models because the strategy of model
aggregation has the potential of finding more distinguishable
patterns, which may not be seen by a single model. However,
the performance of an ensemble could be affected if the final
prediction is controlled by some weak models that are the
majority and too weak to give correct predictions, leading to
an accuracy degradation even if a strong model is correct all
the time.

E. MODEL EVALUATION
Four metrics are evaluated for each learning task in this study,
including accuracy, precision, recall, and the F1 score. Given
the imbalanced dataset, F1 is a better metric than accuracy
in binary classification where positive samples make the
minority class [83]. Precision and recall are also crucial.
The former reflects the number of false alarms; the higher the
precision, the fewer false alarms. The latter tells the number
of missed positive samples; the higher the recall, the fewer
positive samples missed. A large precision-recall gap should
be avoided since it indicates that a model focuses on a single
metric, while a model should really focus on optimizing F1,
the harmonic mean of precision and recall. Let TP, FN, TN,
and FP denote the number of true positives, false negatives,
true negatives, and false positives, respectively, we can then
calculate accuracy, precision, recall, and F1 as follows.

accuracy =
TP+ FN

TP+ FN + TN + FP
(1)

precision =
TP

TP+ FP
(2)

recall =
TP

TP+ FN
(3)

F1 = 2×
precision× recall
precision+ recall

(4)

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETTING
All experiments of this study were implemented using Python
3.7.0. The learning algorithms were provided by Scikit-learn
0.24 [84]. The charts were plotted usingMicrosoft 365 Excel,
Matplotlib 3.4.2, and Seaborn 0.11. The 112 samples were
divided into a training (78) and test (34) set in the ratio of 7:3.
A five-fold CV was conducted for RFE and hyperparameter
tuning to determine the optimal set of features and hyperpa-
rameters, respectively.

B. RECURSIVE FEATURE ELIMINATION
We adopt RFE to perform feature selection for each model.
As shown in Figure 6, the horizontal axis is the number of
features selected, and the vertical axis is the CV F1. For this
specific model, the optimal feature set contains 28 features,
achieving an F1 of 0.694. In our study, RFE is used to
determine the set of features used to train a model.

FIGURE 6. An example of using RFE for feature selection.

C. HYPERPARAMETER TUNING
We adopt the randomized hyperparameter search algo-
rithm implemented by Scikit-learn [84]. For each model,
a pre-defined set of parameters is provided by Scikit-learn,
and the search algorithm randomly and repeatedly sample
a parameter setting for evaluation until a stop condition is
met. For each model, we set a maximum iteration num-
ber of 500 and choose the parameter setting that yields the
best CV F1.

D. RESULTS
The main results are reported in Tables 6 through 10. For
each learning task, we evaluated fifteen models for each
imputation method and only showed the performance of the
top-performing model per imputation method, making six
rows of results, displayed in the top section of each table. The
bottom section of each table, on the other hand, shows the per-
formance of the two ensemble models built with the top five
models imputed by the best imputer. For example, in Table 6,
the best imputer was the simple imputer, since the top model
imputed by the simple imputer presented the highest F1 than
the topmodels imputed by other imputers. Therefore, we took
the top five models imputed by the simple imputer (the other
four not showing in the table) to build the ensemble models,
as shown in the last two rows of Table 6. For the conve-
nience of presentation, we use a format of imputation-model
to denote a model imputed by an imputation method, e.g.,
simple-XGB. In addition to the main results, we also report
1) an ablation study that presents the results of each predic-
tion task under different training settings, 2) the confusion
matrix, and 3) the feature importance chart. The latter two
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are obtained from the best models. We present a breakdown
of these results in the following subsections.

1) PREDICTION OF DEATH
a: ABLATION STUDY
Figure 7 presents the box plots of the five-fold CV F1 scores
of all fifteen models for the death prediction task under
different training settings. Specifically, we started with a base
setting with only one-hot encoding to transform categori-
cal features and incrementally applied normalization, feature
interaction, SMOTE, RFE, and hyperparameter tuning to the
base setting, resulting in six settings. We observe a clear
and consistent rising trend of the F1 scores from left to
right. In theory, normalization allows the learning algorithm
to converge quickly; feature interaction uncovers a set of
new features that may be more indicative of the prediction
target; SMOTE can sufficiently address the imbalanced class
issue by feeding generated samples to the learning algorithm;
RFE can identify the best set of features; hyperparameter
tuning can help determine a better set of hyperparameters.
These strategies jointly lead to a remarkable performance
gain, elevating the best CV F1 from 0.41 (base setting)
to 0.89 (with all strategies, referred to as the full setting).
The results of this experiment validate these hypothetical
pros.

FIGURE 7. Results of death prediction under different training settings.
Acronyms in the chart include base setting (B.S.), normalization (Norm.),
feature interaction (F.I.), and hyperparameter tuning (H.T.)

b: OVERALL PERFORMANCE
The results of death prediction on the test set are reported
in Table 6. This task is challenging due to the imbalanced
class issue. A model can easily obtain an accuracy of 87%
by predicting every sample as negative; however, this would
lead to an F1 of 0% since no TP is counted. It can be
seen that the simple-XGB model was the best one, with the
highest accuracy (0.9706), recall (1), precision (0.75), and
F1 (0.8571).

c: CONFUSION MATRIX
Figure 8 shows the confusion matrix of the best model,
namely Simple-XGB, for death prediction on the test set,
which consists of 31 negative cases and three positive cases.
The Simple-XGB model was able to correctly classify 33 out
of 34 samples, with only one negative case misclassified.

TABLE 6. Result of death prediction on the test set. The highest score of
each metric is marked in bold-face.

FIGURE 8. Confusion matrix of the best model (i.e., Simple-XGB) for
death prediction.

FIGURE 9. Feature importance of the best model (i.e., Simple-XGB) for
death prediction.

d: FEATURE IMPORTANCE
Figure 9 shows the feature importance of Simple-XGB for
death prediction. The importance scores are calculated by
the random forest algorithm. Briefly, each DT in a random
forest selects a feature to perform a split, and the feature that
causes the most impurity decrease is selected and regarded as
the most important one. It is observed that seven out of the
top ten features are synthetic ones created by feature interac-
tion, meaning that the interaction of features uncovers more
informative patterns. The most important feature, Tumor
type_Vaginal cancer_multiply_RECIST, indicates that a mul-
tiplication of vaginal cancer and RECIST score plays an
important role in the prediction of death.

2) PREDICTION OF GENERAL AE
a: ABLATION STUDY
Figure 10 presents the box plots of the five-fold CV F1 scores
of all fifteen models for the general AE prediction task
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FIGURE 10. Results of general AE prediction under different training
settings.

TABLE 7. Result of general AE prediction on the test set.

FIGURE 11. Confusion matrix of the best model (i.e., GAIN-Blender) for
general AE prediction.

under different training settings. As more learning strategies
applied, we can observe a consistent uptrend, with the best
F1 rising from 0.5 in the base setting to 0.7 in the setting with
all strategies applied.

b: OVERALL PERFORMANCE
As shown in Table 7, the best model for general AE prediction
is GAIN-Blender, posting an accuracy of 0.7353, a recall
of 0.7273, a precision of 0.5714, and an F1 of 0.64 (highest
of all). Another model, MissForest-NB, presented the highest
recall (0.9091) and the lowest precision (0.3704), indicating
an unacceptable amount of false alarms, which makes the
model useless.

c: CONFUSION MATRIX
Figure 11 shows the confusion matrix of the GAIN-Blender
model for general AE prediction. The test set contains 23
negative cases and 11 positive cases, and our model misclas-
sified six negative cases and missed three positive cases.

FIGURE 12. Feature importance of the best model (i.e., GAIN-Blender) for
general AE prediction.

FIGURE 13. Results of organ AE prediction under different training
settings.

d: FEATURE IMPORTANCE
Figure 12 shows the feature importance of GAIN-Blender for
general AE prediction. It is observed that the top nine critical
features are generated from feature interaction. A multipli-
cation of therapy lines and age tops other features. The only
non-synthetic feature is medication cycle, which is ranked the
10th place.

3) PREDICTION OF ORGAN AE
a: ABLATION STUDY
Figure 13 presents the box plots of the five-fold CV F1 scores
of all fifteen models for the organ AE prediction task under
different training settings. We can find similar effects on the
model performance as more learning strategies are added
to the base setting. The best model’s F1 is elevated from
0.62 under the base setting to 0.73 when all strategies are
adopted.

b: OVERALL PERFORMANCE
For the organ AE prediction task (Table 8), the best model is
KNN-CB, which posted the highest accuracy (0.6176), recall
(0.7222), and F1 (0.6667), with its precision (0.619) being the
fourth highest of all models.

c: CONFUSION MATRIX
Figure 14 shows the confusion matrix of the KNN-CB model
for organ AE prediction. The test set contains 16 negative
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TABLE 8. Result of organ AE prediction on the test set.

FIGURE 14. Confusion matrix of the best model (i.e., KNN-CB) for organ
AE prediction.

FIGURE 15. Feature importance of the best model (i.e., KNN-CB) for
organ AE prediction.

cases and 18 positive cases, which is rather balanced. The
KNN-CB model misclassified seven negative cases and
missed six positive cases.

d: FEATURE IMPORTANCE
Figure 15 shows the feature importance of KNN-CB for organ
AE prediction. We observe that most highly ranked features
are synthetic via feature interaction. The starting time seems
to take a crucial position for this task, since its interactionwith
PD-1 Sintilimab, WBCs, and TSH appear in the first three
places among the features. The only non-synthetic feature in
the top ten is Chemotherapy, ranked 9th place.

4) PREDICTION OF RECIST
a: ABLATION STUDY
We report the results of RECIST and binary RECIST predic-
tion under different training settings in Figures 16 and 17.
A consistent uptrend can be identified in both figures. For

FIGURE 16. Results of RECIST prediction under different training settings.

FIGURE 17. Results of binary RECIST prediction under different training
settings.

TABLE 9. Result of RECIST prediction on the test set.

RECIST prediction, a 7-point gain on the best model is posted
when moving from the base setting to the full setting. For
binary RECIST, a 12-point gain on the best model is observed
by switching from the base to full setting.

b: OVERALL PERFORMANCE
For the RECIST prediction task (Table 9), the best model
was MICE-LR, which achieved the top performance for all
four metrics. However, the performance scores were only
in the range of 0.45 and 0.55, indicating a relatively low
prediction ability. This is partly due to the hardness brought
bymulti-class classification, which would require more train-
ing data to build an accurate model. The best model for the
binary RECIST prediction task (Table 10) was KNN-Stacker,
which posted top performance in accuracy (0.7059), precision
(0.8947), and F1 (0.7727).
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TABLE 10. Result of binary RECIST prediction on the test set.

FIGURE 18. Confusion matrix of the best model (i.e., KNN-Stacker) for
binary RECIST prediction.

FIGURE 19. Feature importance of the best model (i.e., KNN-Stacker) for
binary RECIST prediction.

c: CONFUSION MATRIX
Figure 14 shows the confusion matrix of the KNN-Stacker
model for binary RECIST prediction. The test set contains
nine negative cases and 25 positive cases. The KNN-Stacker
model misclassified two negative cases and missed eight
positive cases.

d: FEATURE IMPORTANCE
Figure 19 shows the feature importance of KNN-Stacker for
binary RECIST prediction. Different from the other tasks,
there are only three synthetic features among the top ten
ranked ones. However, the top two features are synthetic.
Also, feature TB plays a crucial role in this task as it appears
in the top four features, either as a component in a synthetic
feature or individually. Its role and function in the prediction
of binary RECIST is worth further investigation.

V. DISCUSSION
ML has been a revolutionary technology that creates an
explosive impact on all industries. Recent advances have
explored the potential of ML models on outcome prediction
of the anti-PD-1 therapy [7], [13]–[19]. Wiesweg et al. [18]
adopt learning models to predict the response to anti-PD-1
therapy of non-small cell lung cancer (NSCLC). Arbour et al.
develop a deep-learning model trained on radiology text
reports to predict the gold-standard RECIST category [19].
Lewinson et al. train an artificial neural network model to
estimate cutaneous adverse events for patients withmetastatic
melanoma or NSCLC [20]. Similar studies in the field of
gynecological cancer have not been seen in the literature.

Inspired by the prior studies, we developed an analytical
framework powered by ML to perform predictive analysis on
the outcomes of anti-PD-1 therapy for patients with gyneco-
logical cancers. The study was challenged by the quality of
a self-gathered post-marketing surveillance dataset, which is
small, incomplete, and highly imbalanced.We employed data
imputation methods to complete the data and the SMOTE
technique to fix the imbalance problem. We investigated four
therapeutic outcomes: RECIST, organ AE, general AE, and
death, which were the four prediction targets. The dataset
went through a learning pipeline consisting of imputation,
feature engineering, base model training, ensemble learn-
ing, and model selection. The systematic process allows us
to identify the most accurate and robust predictive model.
In addition, we conducted extensive experiments to validate
the proposed approach. The results can justify the design
choices, such as the fold of cross-validation, the specific
feature engineering strategies, and the SMOTE imbalance
fixing technique. Our final model was selected from a large
pool of model candidates, based on a joint consideration of
F1 and accuracy, given the imbalanced nature of the dataset.
Moreover, we conducted thorough and visualizedmodel anal-
ysis and gained a deeper understanding of model behavior
and feature importance.

The proposed analytical framework can be widely applied
in clinical practice. A typical scenario is to assist practitioners
in making therapy plans. Since the prediction result output
by a model is a confidence score between 0 and 1, which
can be interpreted as a probability of the outcome occurrence,
a doctor can adjust the specific feature values that are a part of
a therapy plan to observe the confidence change given by the
model. For example, if switching to a different PD-1 inhibitor
or adding a therapy program could boost the confidence of
the CR outcome of RECIST, the doctor could take those
adjustments into account, combined with the expert opinion,
to generate a better therapy plan.

This study is subject to some limitations that also point to
future directions. First, more patient samples can be added to
the dataset to encourage the learning algorithms to discover
more distinguishable patterns.We plan to continuously gather
more patient data for training to make our model more robust.
Also, more features, such as the metastasis type of cancer
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and the other comorbidity, can be utilized in the dataset.
Second, the study employed the SMOTE for fixing class
imbalance, which worked well. However, we expect to con-
duct a further study on the effect of other data augmentation
methods. Third, another meaningful work is to explore and
quantify the joint effect of features, and to understand the
causal relationship between the outcomes and feature factors,
individually and collectively. A promising methodology that
could benefit this objective would be probabilistic graphical
models.
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