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ABSTRACT In this paper, we optimize code parameters of finite-length spatially coupled low-density parity-
check (SC-LDPC) codes, represented by a set of code parameters (l, r,w,L,M ). Although the finite-length
scaling behavior of SC-LDPC codes was studied in the existing literature, the previous works impose a
constraint such that the coupling width w is equal to the variable node degree l and they do not focus on
optimizing the code parameters for given code and decoder specifications such as the code rate, frame
size, and decoding complexity. In order to optimize the code parameters with the target specifications,
we first extend the scaling law of SC-LDPC codes without the constraint w = l. Using the scaling law
formulated with a new variable w, we show that the coupling width w directly affects the slope of the
performance curve and performance comparisons are given to investigate trade-offs inherent in the code
parameters. It is shown that there are trade-offs for the code parameters in the perspective of the asymptotic
performance limit, code rate, and scaling behaviors. In addition, the scaling law allows us to find the optimal
code parameter set showing the best finite-length performance. Interestingly, the optimal code parameter set
(l, r,w) varies depending on the coupling length L and uncoupled code lengthM that determine the code and
decoder specifications, which means there is no specific code parameter set prevailing over different kinds of
applications. Finally, we illustrate this result using the investigated trade-offs on the code parameters, which
gives us useful insight on how to choose the code parameters.

INDEX TERMS Coupling width, finite-length performance, low-density parity-check (LDPC) code, scaling
law, spatially coupled LDPC (SC-LDPC) code.

I. INTRODUCTION
Spatially coupled low-density parity-check (SC-LDPC)
codes are a special class of low-density parity-check (LDPC)
codes, where L multiple (l, r) regular LDPC codes of vari-
able node degree l and check node degree r are coupled in
a chain form [1]–[3]. SC-LDPC codes have attracted sig-
nificant attention due to their appealing properties as fol-
lows. First, SC-LDPC codes are known to show capacity
approaching decoding performance under low-complexity
belief propagation (BP) decoding over the binary erasure
channel (BEC) as the degrees (l, r) and coupling length L
increase [4], [5]. Second, this capacity approaching prop-
erty is preserved universally over general binary memoryless
channels [6]. While conventional block LDPC codes require
a troublesome optimization for the target channel to achieve
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capacity-approaching performance [7], a single SC-LDPC
ensemble can be applicable to various channels with supe-
rior BP decoding performance [8]–[11]. Third, the minimum
distance growth property of uncoupled codes still maintains
after coupling [12], which means the SC-LDPC codes show
low error floors [13].

In this paper, we consider (l, r,w,L,M ) finite-length SC-
LDPC codes, where w is the coupling width that determines
the number of consecutive positions to be coupled and M is
the number of variable nodes at each position [4]. Based on
comprehensive asymptotic analysis, researches on the code
design of (l, r,w,L,M ) SC-LDPC codes having superior
finite-length performance have been followed [13]–[21]. It is
desirable to construct practically good codes showing supe-
rior finite-length performances for a given code rate and code
length. The code rate and BP threshold are important criteria
to design capacity approaching codes in terms of asymptotic
perspective. Thus, SC-LDPC codes with sufficiently large L
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and degrees (l, r) are known to be the best choice because the
inherent rate-loss of SC-LDPC codes approaches to zero as
L grows and the BP threshold approaches the Shannon limit
as the degrees (l, r) increase. For example, the threshold gap
to the Shannon limit of SC-LDPC codes is almost zero with
sufficiently large L and degrees (l, r) = (5, 10).
However, the scaling law, which is an analytical expression

of the frame error rate (FER) of an ensemble, revealed two
weak points of such code parameters with large L and high
degrees (l, r) [14]–[16]; i) the finite-length performance is
degraded linearly as L grows and ii) high degrees (l, r) result
in the slow falling slope of the FER curve. The scaling law
of SC-LDPC codes is a function of L, M , BP threshold, and
so-called scaling parameters (γ , δ, θ ) that depend on (l, r,w).
Especially, it was shown in [14] that the ratio α , γ /

√
δ is

an important parameter directly affecting the slope of FER
curve. In [14], the authors showed that for the fixed l/r ratio,
the value of α tends to decrease as the degrees (l, r) increase.
In other words, when determining code parameters, there
is a trade-off between the asymptotic property and scaling
property. Both properties affect the resulting finite-length
performance but which one has a stronger effect on the
finite-length performance is not well known up to now. For
example, between the (3, 6,w,L,M ) SC-LDPC codes and
the (4, 8,w,L,M ) SC-LDPC codes with the same code rate,
which code shows better finite-length performances has not
been investigated. Two codes have their own strong point;
(3, 6,w,L,M ) codes have the better scaling parameter α
while (4, 8,w,L,M ) codes have the better BP threshold.
In addition, the effect of the coupling width w on scaling
parameters and resulting finite-length performances is still
an open problem. It has been pointed out that the coupling
width w is related to the girth property [17], [18], trapping
sets [21], and convergence speed [22]. They share an intuitive
conclusion that large w has a positive impact on the finite-
length performance. However, a research on finding the direct
relationship between the scaling behavior and the coupling
width w has not been carried out.
As the first contribution of this paper, we first focus on

investigating how the parameter w affects the scaling param-
eters. For the (l, r,w,L,M ) SC-LDPC codes, the scaling
parameters are given in [14] but they assume w = l for sim-
plifying the scaling analysis. By generalizing the approach
in [14], we obtain scaling parameters for various code param-
eters not restricted on the assumption w = l. This scal-
ing behavior analysis shows that the scaling parameter α
increases as w grows, resulting in a sharp slope of the FER
curve. However, at the cost of the performance improvement,
large w values cause a more severe rate-loss. It means that
the coupling width w provides a trade-off between the code
rate and scaling property. Further, we observe that the scaling
parameter α of (l, r) = (4, 8) is noticeably worse than that
of (l, r) = (3, 6) for a given coupling width w while the BP
threshold of (l, r) = (4, 8) is better than that of (l, r) = (3, 6).
We note again that, in the previous work [14], the scaling
parameters of the (3, 6, 3,L,M ) and (4, 8, 4,L,M ) codes are

compared with different w values, which means the effect of
the coupling width w is not considered independently.

Considering the conflicting behaviors of code parameters
(l, r,w) affecting the finite-length performance, it is natural
to have a question what is the best code parameter set for
given code and decoder specifications such as the code rate,
frame size, and decoding complexity. The scaling parame-
ters over various ranges of (l, r,w) without the constraint
w = l, computed in this paper, allow simple optimization
for the code parameters using the scaling law without time-
consuming simulations. The second contribution of this paper
is to search the best code parameter set (l, r,w) for given L
andM using the scaling law, where the difference in the code
rates due to the rate-loss is compensated by the random punc-
turing technique [23]. We assume that the values of L andM
are given because they are related to the code rate, frame size,
and decoding complexity [24], [25] that are usually deter-
mined by external decoder specifications and a target applica-
tion. For example, some candidate applications of SC-LDPC
codes such as optical communications [26] and NAND flash
memory [27] can support a long frame size (large L) and
heavy decoding complexity (large M ) to show the capacity
approaching performance while commercial communication
systemswith limited hardware resources cannot support those
heavy implementation costs. Thus, it is practically important
to suggest the optimal family of SC-LDPC codes for given
available hardware resources (i.e., for given L and M ).

The optimization result shows that there is no specific
parameter set (l, r,w) exhibiting the best performance for the
entire ranges of L and M . Instead, we observe the optimal
parameter set varies according to the range of L andM . As the
third contribution of this paper, we provide discussions to
illustrate what properties determine the optimal parameter set
in a particular region. For example, for small M , SC-LDPC
codes with the better scaling parameter α such as (l, r) =
(3, 6) outperform SC-LDPC codes with better BP thresholds
such as (l, r) = (4, 8) while the opposite phenomenon hap-
pens for largeM . From our analysis, it is observed that the BP
threshold is an effective measure to predict the performance
for large M but the effect of the scaling parameter α is more
dominant when predicting the performance for moderate and
small M . Regarding the value of L, for small L, SC-LDPC
codes with large w take a higher rate-loss compared to SC-
LDPC codes with small w and thus the performance is sig-
nificantly degraded after puncturing to match the code rate.
Thus, SC-LDPC codes with small w tend to outperform those
with large w in this region for small L while the opposite
phenomenon is observed for large L. Consequently, we show
that the regions of L and M are split into several partitions
and that the best code parameters of each partition differ
from each other. Finally, we note again that the objective of
this paper is not to propose a new class of SC-LDPC codes
but to optimize the code parameters of existing SC-LDPC
codes. In addition, although the scope of this paper is limited
to conventional regular SC-LDPC codes under the BEC,
the proposed framework can be extended to other channels
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such as the additive white Gaussian noise (AWGN) channel
and other code structures such as time-invariant SC-LDPC
codes [17] and irregular SC-LDPC codes [20] as long as
their corresponding scaling law is provided.

This paper is organized as follows. Section II introduces the
construction method of the (l, r,w,L,M ) SC-LDPC ensem-
ble and the analysis tools for analyzing the decoding perfor-
mance of SC-LDPC ensembles. In Section III, we provide the
generalized expected graph evolution to compute the scaling
parameters of various values of (l, r,w) and discuss trade-offs
for code parameters between the code rate, BP threshold, and
scaling behavior. Section IV presents a series of comparisons
to capture the effect of the code parameters and finds the
optimal code parameters (l, r,w) for given L andM . Finally,
the work is concluded in Section V.

II. CONSTRUCTION AND ANALYSIS OF
SC-LDPC CODE ENSEMBLES
A. CONSTRUCTION OF THE SC-LDPC ENSEMBLE
The (l, r,w,L,M ) SC-LDPC ensemble was first introduced
in [4] and it was slightly modified in [14]. (l, r,w,L,M )
SC-LDPC codes are composed ofM variable nodes of degree
l located at each of L positions along with Ml/r ∈ N check
nodes of degree r located at each of L + w − 1 positions.
Let L and w denote the coupling length and coupling width,
respectively. From the definition in [4], each variable node
of degree l at position u is connected to randomly chosen l
check nodes at position in the range of {u, . . . , u + w − 1}.
On the contrary, in [14], they consider the more structured
edge distribution with the assumption w = l to simplify
the analysis of the scaling behavior such that each variable
node at position u has exactly one connection to a check
node at position u + i, i = 0, . . . , l − 1. For example, for
the (3, 6, 3,L,M ) SC-LDPC ensemble, the definition in [4]
permits that a variable node at position 5 is connected two
check nodes at position 5 and one check node at position 6.
However, according to the definition in [14], a variable node
at position 5 is connected to three check nodes from each of
different positions {5, 6, 7}. Since this paper also utilizes the
scaling law, we follow the definition in [14] but generalize
the code design method without the constraint w = l.
To generate a code from the (l, r,w,L,M ) ensemble,

we first define the edge spreading type of variable nodes
at position u using vector x = (x1, . . . , xw), where xt is
the number of edges connected to check nodes at position
u+ t − 1. There are w edge spreading types at each position
represented by S1, . . ., Sw, where we define S1 as

S1 =
( l mod w︷ ︸︸ ︷
dl/we, . . . , dl/we,

w−(l mod w)︷ ︸︸ ︷
bl/wc, . . . , bl/wc

)
.

In addition, Sk for 2 ≤ k ≤ w is obtained by right
circular shifting S1 by k times. Then, each variable node in
a given position exploits one of w edge spreading types, that
is, each group of randomly selectedM/w ∈ N variable nodes
corresponds to x = Sk for some k ∈ {1, . . . ,w}. For example,
for l = 4 and w = 3, there are w edge spreading types

FIGURE 1. A Tanner graph of (4,8,3, L,M) SC-LDPC ensembles. The first
and second variable nodes at position u are connected to four check
nodes at positions {u,u+ 1,u+ 2} while they follow different edge
spreading types. The edge spreading type of the first one is (2,1,1) and
that of the second one is (1,2,1).

determining the edge connection and they are represented
by S1 = (2, 1, 1), S2 = (1, 2, 1), and S3 = (1, 1, 2).
It means that each ofM/3 variable nodes with S1 = (2, 1, 1)
is connected to two check nodes at position u, one check
node at position u + 1, and one check node at position
u+ 2. The detailed construction method is described in [14].
Fig. 1 shows a Tanner graph of the (4, 8, 3,L,M ) SC-LDPC
ensemble, where the first variable node at position u has the
edge spreading type S1 = (2, 1, 1) and the second node has
the edge spreading type S2 = (1, 2, 1).
The total number of variable nodes and check nodes in

the graph of (l, r,w,L,M ) SC-LDPC codes are LM and
(L + w− 1)Ml/r , respectively. Thus, the code length (frame
size) is LM and the code rate of the (l, r,w,L,M ) SC-LDPC
ensemble is expressed as

R(l,r,w,L,M ) =

(
1−

l
r

)
−
l
r
w− 1
L

, (1)

where the first term is the code rate of uncoupled (l, r) regular
LDPC codes and the second term corresponds to the rate-
loss. We can see that larger w and smaller L induce the
higher rate-loss. Note that some check nodes at position v for
v ∈ {1, . . . ,w − 1} ∪ {L + 1, . . . ,L + w − 1} cannot be
connected to any variable nodes in the graph and the actual
code rate is slightly higher than that in (1) [14]. However,
the effect is generally much smaller than other terms in (1)
and thus we use (1) for calculating the code rate.

B. SCALING LAW OF SC-LDPC ENSEMBLES
In this paper, the channel is assumed to be the BEC with
erasure probability ε. The decoding performance of a code
ensemble can be analyzed by the density evolution and
the scaling law. The density evolution is used to derive
the asymptotic performance limit called the BP threshold
εBP. The density evolution of SC-LDPC codes is described
in [4]. While the BP threshold is the performance limit as
M goes to infinity, the scaling law predicts the FER of
finite-length codes with finite values of M . The FER of the
(l, r,w,L,M ) SC-LDPC ensemble, denoted by P(l,r,w,L,M ),
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can be estimated by the scaling law as [14]

P(l,r,w,L,M ) ≈ 1− exp
(
−

εL − τ ∗

µ0(γ, δ, θ ′)

)
, (2)

where

µ0(γ, δ, θ ′) =

√
2π
θ ′

∫ γ
√
M/δ(ε BP

−ε)

0
8(z)e

1
2 z

2
dz

and 8(z) is the cumulative distribution function of the Gaus-
sian distribution, τ ∗ is the start point of the steady state, and
(γ, δ, θ ′) are the scaling parameters. From (2), it is noted that
the finite-length performance is a function ofM , L, εBP, and a
set of scaling parameters consisting of the mean parameter γ ,
the variance parameter δ, and the correlation parameter θ ′.
The scaling law is derived based on the property that the
peeling decoding process of SC-LDPC codes is modeled by
the Ornstein-Uhlenbeck process and the scaling parameters
(γ, δ, θ ′) represent their stochastic quantities [14]. Especially,
it is shown in [14] that the FER decays exponentially fast
with the ratio α , γ /

√
δ. Thus, it is practically important

to improve the quantity of α to design superior finite-length
SC-LDPC codes with a steep slope in the FER curve.

As an extension of the conventional scaling law [14],
a refined scaling law was proposed in [16]. The refined
scaling law predicts the performance more accurately
by replacing the stochastic model with two independent
Ornstein-Uhlenbeck processes. They showed that the refined
scaling law provides a much better FER prediction compared
to the conventional scaling law. We also adopt the refined
scaling law for predicting the decoding performance in this
paper. The refined scaling law is expressed as

P(l,r,w,L,M )

≈ 1−
(
1+

εL − τ ∗

µ0(
γ
2 ,

δ
2 , θ)

)
exp

(
−

εL − τ ∗

µ0(
γ
2 ,

δ
2 , θ)

)
, (3)

where correlation parameter θ is derived from truncated
SC-LDPC ensembles for which check nodes at positions in
the range {L + 1, . . . ,L + w− 1} are removed [16].
Note that the scaling parameters (γ, δ, θ ) are dependent on

(l, r,w) and independent of (L,M ). Thus, we use a simple
representation, (l, r,w) SC-LDPC codes, when dealing with
the scaling parameters. In [14] and [16], they compute the
scaling parameters for (l, r,w) SC-LDPC codes with the
assumption w = l. Our goal is to compute the scaling param-
eters (γ, δ, θ ) for the (l, r,w) SC-LDPC ensemble without
the assumption, which is described in Section III. Since the
(l, r,w) SC-LDPC ensemble without any constraints on w
obviously follows the same stochastic model as the one pro-
posed in [16], the remaining issue for deriving the scaling
law is to compute their scaling parameters.

III. SCALING PARAMETERS (γ, δ, θ ) OF SC-LDPC
ENSEMBLES
In this section, we obtain the scaling parameters (γ, δ, θ )
of the (l, r,w) SC-LDPC ensemble without the constraint
w = l. The scaling parameters are obtained by analyzing

statistical properties of the number of degree-one check nodes
in the remaining graph under peeling decoding [14]. The
peeling decoding algorithm sequentially decodes an unknown
variable node alongwith its connected degree-one check node
at each iteration and removes the variable and check nodes
from the graph. Successful decoding is achieved if at least
one degree-one check node remains alive in the graph until
all unknown variable nodes are recovered. For iteration `
of the peeling decoding, let τ be the normalized iteration
by M , i.e., τ = `/M . Since only one erased variable node is
recovered per iteration, we require εLM iterations on average
to recover all erasures, which implies 0 ≤ τ ≤ εL. Let r1(τ )
be the number of degree-one check nodes normalized by M
at time τ . The scaling parameters (γ, δ, θ ) are related to the
stochastic properties of the evolution of r1(τ ) as [14], [16]

E[r1(τ )] ≈ γ (εBP − ε)

Var[r1(τ )] ≈
δ

M

E[r1(τ )r1(ζ )]− E[r1(τ )]E[r1(ζ )] ≈
δ

M
e−θ |ζ−τ |,

where these approximations hold on the steady state phase
for which E[r1(τ )] remains essentially constant. In [14], it is
shown that the evolution of r1(τ ) , E[r1(τ )] can be obtained
by solving a set of differential equations. We now describe an
extension of the differential equations for r1(τ ) to the (l, r,w)
SC-LDPC ensemble without the constraint w = l.

A. EXPECTED GRAPH EVOLUTION OF THE
SC-LDPC ENSEMBLE
A system of coupled differential equations for computing the
expected number of degree-one check nodes is obtained as
follows. Consider the check nodes at position v. Let ρm,v
be the probability that a check node chosen at random from
position v is of degree m, which is given as

ρm,v =



(
r
m

)( v
w

)m (
1−

v
w

)r−m
, if v ∈ {1, . . . ,w− 1}

1, if m = r, v ∈ {w, . . . ,L}
0, if m < r, v ∈ {w, . . . ,L}
ρm,L+w−v, if v ∈ {L + 1, . . . ,L + w− 1}.

At time τ , let Rj,v(τ ) be the number of edges connected
to the check nodes of degree j, j = 1, . . . , r , at position v,
v ∈ {1, . . . ,L + w− 1}. Likewise, let Ux,u(τ ) be the number
of edges that are connected to variable nodes with the edge
spreading type x at position u, u ∈ {1, . . . ,L}. After the
initialization of the peeling decoder, the expected value of
Rj,v(0) is expressed as

E[Rj,v(0)] = jMl/r
r∑

m≥j

ρm,v

(
m
j

)
εj(1− ε)m−j.

In addition, the initial values of the expected value of
Ux,u(`) can be computed as

E[Ux,u(0)] =

{
εlM/w, u ∈ {1, . . . ,L}, x = Sk
0, otherwise.
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Let E[1Rj,v(τ )] = E[Rj,v(τ + 1/M ) − Rj,v(τ )] and
E[1Ux,u(τ )] = E[Ux,u(τ + 1/M ) − Ux,u(τ )], where the
expectation is determined given the degree distributions in the
remaining graph at time τ . In order to compute the expecta-
tion of Rj,v(τ ) and Ux,u(τ ) from the initial values, we need to
solve the system of differential equations described as

∂Rj,v(τ )
∂τ

=
E
[
1Rj,v(τ )

]
1/M

,
∂Ux,u(τ )

∂τ
=

E
[
1Ux,u(τ )

]
1/M

.

The procedure used to obtainE[1Rj,v(τ )] andE[1Ux,u(τ )]
is described as follows. Let φm,x,u(τ ) be the probability that a
variable node of type x connected to a degree-one check node
at position m belongs to position u. Then, we have

φm,x,u(τ ) =


xm−u+1
|x| Ux,u(τ )∑

i∈S(m)

(∑
x ′

x ′m−i+1
|x ′| Ux ′,i(τ )

) , if u ∈ S(m)

0, otherwise,

where S(m) = {j|min(m − (w − 1), 1) ≤ j ≤ m}. When
a degree-one check node from position m and the variable
node connected to it are removed, we define ξm,v,t (τ ) as the
probability that t edges of the removed variable node are
connected to the check nodes other than the removed check
node at position v. Then, we have

ξm,v,t (τ ) =


∑
i∈S(v)

( ∑
x:xv−i+1=t

φm,x,i(τ )
)
, if m 6= v

∑
i∈S(v)

( ∑
x:xv−i+1=t+1

φm,x,i(τ )
)
, if m = v

for t ≤ l − 1. The average number of degree j check nodes
losing one edge when t edges are randomly removed from
check nodes at position v is given as

Fj,v,t (τ ) =
t∑

k=1

k
(
t
k

)
δkj,v(τ )

(
1− δj,v(τ )

)t−k
,

where δj,v(τ ) = Rj,v(τ )/
r∑

q=1
Rq,v(τ ) for j ≤ r and δr+1,v(τ ) =

0. Then, we have

E[1Ux,u(τ )|pos(τ ) = m]

= −|x|φm,x,u(τ )

E[1Rj,v(τ )|pos(τ ) = m]

=



j
l−1∑
t=1

ξm,v,t (τ )
(
Fj+1,v,t (τ )− Fj,v,t (τ )

)
− 1,

if v=m, j=1

j
l−1∑
t=1

ξm,v,t (τ )
(
Fj+1,v,t (τ )−Fj,v,t (τ )

)
, otherwise,

where pos(τ ) is the position at which a degree-one check
node is removed at time τ . Finally, the expectations of
1Rj,v(τ ) and 1Ux,u(τ ) are described as

E[1Rj,v(τ )] =
L+w−1∑
m=1

E[1Rj,v(τ )|pos(τ ) = m]pm(τ )

E[1Ux,u(τ )] =
L+w−1∑
m=1

E[1Ux,u(τ )|pos(τ ) = m]pm(τ ),

where pm(τ ) = R1,m(τ )/
L+w−1∑
v=1

R1,v(τ ). Then, the expecta-

tion of the total number of degree-one check nodes E[R1(τ )]
in the remaining graph at τ becomes

∑
v E[R1,v(τ )] and the

expected and normalized number of degree-one check nodes
r1(τ ) is computed as

r1(τ ) = E[R1(τ )]/M . (4)

B. COMPUTING SCALING PARAMETERS
OF SC-LDPC ENSEMBLES
With the differential equations in the previous subsec-
tion, we can now obtain the expected graph evolution for
the (l, r,w) SC-LDPC ensemble. In Fig. 2(a), we plot
r1(τ )/(εBP − ε) of the (3, 6,w) ensembles for w = 3, 4, 5
and L = 50, where r1(τ ) is obtained by (4). The value of
r1(τ )/(εBP − ε) in the steady state is the mean parameter
γ . Fig. 2(a) shows that the value of γ increases as w grows.
Further, the starting point of the steady state τ ∗ depends on
w as well and the length of the steady state decreases as w
grows. In other words, the probability of decoding failure
in the steady state tends to decrease as w grows. The same
observation is noticed for the (4, 8,w) ensembles as shown
in Fig. 2(b). Comparing Fig. 2(a) with Fig. 2(b), we can see
that the values of γ and τ ∗ of the (3, 6,w) SC-LDPC ensem-
ble are larger than those of the (4, 8,w) SC-LDPC ensemble
for the samew. For example, the (3, 6, 3) SC-LDPC ensemble
has γ = 4.31 and τ ∗ = 11 while the (4, 8, 3) SC-LDPC
ensemble has γ = 2.13 and τ ∗ = 4, which indicates
the scaling behavior of the (3, 6,w) ensemble is superior
compared to the (4, 8,w) ensemble for given w.

We summarize the BP threshold, the scaling parameters,
and τ ∗/L of the (l, r,w) SC-LDPC ensembles in Table 1.
The variance and correlation parameters δ and θ are estimated
via Monte Carlo simulations at which M is set to 4,000
with 10,000 samples. The scaling parameters in Table 1 are
estimated for a channel parameter ε = εBP − 0.04. Note
that the range of code parameters is limited to (l, r) ∈
{(3, 6), (4, 8)} and w ∈ {3, 4, 5} because this limited range
is enough to figure out the overall trend. For given (l, r),
Table 1 shows that the value of α increases as the coupling
width w increases while the BP threshold is not changed.
In other words, the coupling width w affects the slope of
finite-length performance but the asymptotic performance
with infinite code length remains the same. This behavior
will be confirmed by simulation in Section IV. In addition,
we also observe from Table 1 that α value of the (3, 6,w)
ensemble is significantly better than that of the (4, 8,w)
ensemble for given w. Although the case for higher degrees
(l, r) = (5, 10), (6, 12) is not covered in this paper to limit
the search space, it is observed that the scaling parame-
ter is degraded as we further increase the density of the
graph.
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FIGURE 2. The evolution of r1(τ )/(εBP − ε) of the (l, r ,w) SC-LDPC ensembles for (l, r ) = (3,6), (4,8), w = 3,4,5, and L = 50.

TABLE 1. Scaling parameters of (l, r ,w) SC-LDPC ensembles.

TABLE 2. Effects of code parameters (l, r ,w, L,M) on design rate,
BP threshold, and scaling behavior.

C. EFFECTS OF CODE PARAMETERS ON THE
FINITE-LENGTH PERFORMANCE
In Table 2, we summarize how to behave the finite-length per-
formance as the code parameters (l, r,w,L,M ) vary. First,
the effect of L is well known in the literature. As the coupling
length L increases, the rate-loss approaches to zero while
the BP threshold remains unchanged for large L [4]. Since
the long code length can be addressed by windowed decod-
ing [24], the large coupling length L is preferable in the per-
spective of the asymptotic performance. However, the scaling
analysis shows that large L induces the finite-length perfor-
mance degradation as a linear function of L [14]. Besides,
the minimum distance growth rate converges to zero as L
increases, which implies the poor error floor performance [3].
Second, consider the degrees (l, r) with the fixed l/r ratio.
One can simply improve the BP threshold by increasing the
degrees (l, r) [4]. However, the higher degrees (l, r) result in
the worse scaling parameter α as shown in Table 1. Third,
increasing the coupling width w can lead to the improved

scaling behavior while this improved property comes at the
cost of the increased rate-loss. To sum up, we can see that
all operating code parameters (l, r,w,L) have conflicting
effects between the asymptotic performance, code rate, and
scaling property. Clearly, the problem to find the optimal code
parameters is not trivial. In the next section, we will find the
best code parameters for given constraints.

IV. FINITE-LENGTH PERFORMANCE COMPARISONS
The objective of this section is to find the best code parame-
ters of (l, r,w,L,M ) SC-LDPC codes for a given code rate
and length. As noted in the introduction, we focus on compar-
isons among various parameters (l, r,w) while the values of
L andM are fixed for each comparison because the values of
L and M are commonly determined by external constraints
on the frame size, decoding complexity, and latency. Since
the code parameters L andM are changed based on different
applications and their available hardware resources, we have
to investigate the best code parameters (l, r,w) for the target
application. We first perform three comparisons to show the
effect of (l, r) and w on the performance one by one. While
introducing various simulation results, we carry out corre-
sponding discussions and analysis to study the finite-length
performance properties of (l, r,w,L,M ) SC-LDPC codes.
Finally, we find the best parameters (l, r,w) for given L
and M and discuss the result with the revealed properties,
which provides us an intuition on how to choose the code
parameters.

A. COMPARISON 1: VARIABLE COUPLING WIDTH WITH
FIXED OTHER PARAMETERS
In Fig. 3, we compare the FER of the (3, 6,w, 50, 600)
and (4, 8,w, 50, 600) SC-LDPC codes with w = 3, 4, 5.
We obtain the actual performance (solid line) byMonte Carlo
simulation over the BEC. The result for the (3, 6,w, 50, 600)
SC-LDPC codes shown in Fig. 3(a) demonstrates that w val-
ues directly influence the slope of the curve as expected by the
scaling behavior analysis. These three codes have the same
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FIGURE 3. Finite-length performances of (3,6,w,50,600) and
(4,8,w,50,600) SC-LDPC codes for w = 3,4,5. Solid line corresponds to
the actual performance and dashed line corresponds to the estimated
performance by the scaling law.

BP threshold 0.4881 but the finite-length performance signif-
icantly differs from each other because of their difference in
α values as shown in Table 1. This result gives us a lesson that
the finite-length performance highly depends on the scaling
parameters as well as the BP threshold. A similar result is
shown in Fig. 3(b) for the (4, 8,w, 50, 600) SC-LDPC codes.
In addition, we add the estimated performance obtained by
the refined scaling law in (3), where the estimate is very
accurate. Note that there is a slight gap between the actual
simulated curve and the estimated curve for (l, r) = (3, 6),
which is also remarked in [16]. However, the negligible gap
is not large enough to reverse the relative superiority of
compared codes and thus we keep using the scaling law
in the following comparisons instead of performing actual
simulations.

Note that, although using large w results in significantly
improved performances, the comparison is not fair because
the code rates of the compared codes in Fig. 3 are not equiv-
alent i.e., R(3,6,3,50,600) = 0.48, R(3,6,4,50,600) = 0.47, and

R(3,6,5,50,600) = 0.46. A fair comparison is required with the
fixed code rate, which is introduced in Subsection IV-D.

B. COMPARISON 2: COMPARING DEGREES
(3,6) AND (4,8)
In this subsection, we compare two SC-LDPC codes of
(3, 6,w,L,M ) and (4, 8,w,L,M ) with fixed (w,L,M ).
It is generally known that the code performance of the
(4, 8,w,L,M ) SC-LDPC ensemble is superior to that of
the (3, 6,w,L,M ) SC-LDPC ensemble because of the gap
between their BP thresholds, i.e., εBP(4, 8,w,L,M ) >

εBP(3, 6,w,L,M ). However, the fact that α of the
(3, 6,w,L,M ) ensemble is higher thanα of the (4, 8,w,L,M )
ensemble implies the possibility that the (3, 6,w,L,M )
ensemble outperforms the (4, 8,w,L,M ) ensemble in terms
of the finite-length performance.

The FER curves of (l, r,w, 100,M ) finite-length SC-
LDPC codes for (l, r) = (3, 6), (4, 8), w = 3, 4, 5, and
M = 300, 600, 1,200, 1,800 are depicted in Fig. 4. The codes
in each sub-graph have the same M value. The solid curves
correspond to (l, r) = (3, 6) whereas the dashed curves cor-
respond to (l, r) = (4, 8). In order to clarify the comparison,
we use the same color for the same w. Fig. 4(a) shows that the
(3, 6,w, 100, 300) codes outperform their counterpart codes
with (l, r) = (4, 8) for all w. It can be interpreted that the
effect of α is stronger than the difference in the BP thresholds
for small M = 300. On the contrary, as M value increases,
the finite-length performance gets close to the asymptotic
performance, which means the BP threshold plays a critical
role for determining the finite-length performance. Fig. 4(d)
shows (4, 8,w, 100, 1800) codes have better performance
than (3, 6,w, 100, 1800) for all w up to FER 10−3. It is
also shown that the (3, 6, 3, 100, 1800) code still exhibits a
notably fast falling slope compared to the (4, 8, 3, 100, 1800)
code, and consequently surpasses the (4, 8, 3, 100, 1800)
code in FER lower than 10−3. From Fig. 4(a) to Fig. 4(d),
we can confirm that the relative superiority between codes
with (3, 6) and codes with (4, 8) varies over the range of M .

C. RANDOM PUNCTURING FOR MATCHING
THE CODE RATE
Since the code rate varies depending on w and L as repre-
sented in (1), comparing two codes with different w and L
values is not fair. In this section, we match the code rate
to the target rate using the random puncturing technique
in [23]. This allows us to compare various codes without
considering differences in their code rates. Let ρ be the punc-
turing fraction and ρM variable nodes at each position are
punctured. Then, the total number of punctured bits becomes
p = ρLM = ρn and the code rate of punctured codes
becomes R(ρ) = 1 − k

n−p =
R

1−ρ . To match the code
rate to target rate Rtarget, the puncturing fraction should be
ρ = 1 − R

Rtarget
. Since punctured bits can be considered as

erasure of channel, the punctured codes under the BEC with
ε is identical to transmit across the equivalent BEC channel
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FIGURE 4. Finite-length performances of the (l, r ,w,100,M) SC-LDPC codes for (l, r ) = (3,6), (4,8), w = 3,4,5, and
M = 300,500,1,200,1,800.

with erasure probability ε′, where (1− ε′)n = (1− ε)(n− p),
i.e., ε′ = ε + (1− ε)ρ. Consequently, the FER of punctured
codes PB,Punct(ε) is equal to PB(ε + (1 − ε)ρ), which is
equivalent to the shifted FER of unpunctured codes. In other
words, punctured codes suffer the puncturing loss as much as
(1− ε)ρ.

D. COMPARISON 3: VARIABLE COUPLING WIDTH WITH
FIXED OTHER PARAMETERS AND THE SAME CODE RATE
We reconsider the performance comparison performed in
Subsection IV-A, where w is a variable and l, r,L,M
are fixed but we include punctured codes achieving tar-
get code rate 0.5. Fig. 5(a) shows the performances of the
(3, 6,w, 50, 900) ensembles for w = 3, 4, 5 together with
their punctured codes with code rate 0.5. As we can see,
larger w suffers more severe puncturing loss and the relative
superiority between the codes with different w is reversed
after puncturing, i.e., the punctured code with w = 3
shows the best performance among the punctured codes while
the unpunctured code with w = 5 is the best among the
unpunctured codes. On the other hand, for large L as shown
in Fig. 5(b), the rate-loss is negligible due to sufficiently large
L, and accordingly the puncturing loss is not strong enough to

change the relative superiority, i.e., the SC-LDPC codes with
w = 5 are the best for both punctured and unpunctured cases.

E. OPTIMAL CODE PARAMETERS OF SC-LDPC CODES
From the previous comparisons 1, 2, 3, three properties on the
finite-length performance of (l, r,w,L,M ) SC-LDPC codes
are confirmed as follows.
• Large w corresponds to a higher value of α and a fast
decaying slope of the FER curve.

• For largeM , the finite-length performance is dominated
by the BP threshold rather than the scaling parameter
α, whereas the value of α has more influence on the
performance for small M .

• For large L, the puncturing loss to match the target code
rate is relatively low, thus codes with large w mostly
outperform those with small w. For small L, the trend
is opposite due to the considerable puncturing loss.

Considering the above properties on the finite-length per-
formance, we can expect which code parameters will show
the best performance for given L and M . For example, for
large L and small M , the puncturing loss is negligible and
the value of α has more effect on the performance than the
BP threshold and thus we can expect that codes with larger w
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FIGURE 5. Finite-length performances of the (3,6,w, L,900) SC-LDPC codes for w = 3,4,5 and L = 50,200 and their punctured
codes with code rate 0.5.

FIGURE 6. 2-D plot showing the optimal code parameters (l, r ,w)
showing the best performance with target FER 10−4 for a given L and M.
All code rates are set to 0.5. Black diamond: (3,6,3), Blue circle: (3,6,4),
Red square: (3,6,5), Cyan reverse-triangle: (4,8,3), Green star: (4,8,4),
Purple triangle: (4,8,5).

and higher α value such as (3, 6, 3,L,M ) codes show the best
performance. Using the scaling law in (3), it is possible to find
the optimal code parameters (l, r,w) for given L and M that
show the best finite-length performance. More specifically,
we set a target FER and search for the erasure probability
at which the estimated FER by the scaling law matches the
target FER for all possible code parameters (l, r,w). Finally,
choose the optimal parameters showing the highest value of
the erasure probability achieving the target FER.

Fig. 6 shows 2-D plot of the optimal code parameters
(l, r,w) for given L and M , where each point indicates
the best code parameters (l, r,w) with target FER 10−4.
Each symbol represents as follows: black diamond (3, 6, 3),
blue circle (3, 6, 4), red square (3, 6, 5), cyan reverse-triangle
(4, 8, 3), green star (4, 8, 4), and purple triangle (4, 8, 5). The
code rates of all codes are set to 0.5 by using puncturing.
As we can see, there is no specific code parameter set that
shows the best performance for all regions of L and M . That
is, the best SC-LDPC code parameters are changed based on

different applications. Fig. 6 shows each code parameter set
has its own dominant region. We can interpret the result as
follows.
• In the region for small L and smallM such as L = 50 and
M = 600, the puncturing loss is relatively significant
due to small L and the value of α is more important than
the BP threshold for small M . The puncturing loss of
w = 3 is the least and the code with (l, r) = (3, 6)
has the higher α compared to the code with (l, r) =
(4, 8). Thus, the code parameters (3, 6, 3) (black dia-
mond) exhibit the best performance. Fig. 7(a) shows the
performance comparison for L = 50 and M = 600.

• In the region for small L and large M such as L = 50
and M = 3,000, the puncturing loss is still relatively
large and it enters the region where the BP threshold is
more important than the value of α. Thus, the degrees
(l, r) = (4, 8) showing the higher BP threshold and
the small coupling width w = 3 are expected to show
the best performance. Fig. 7(b) shows that the code
parameter (4, 8, 3) (cyan reverse-triangle) exhibits the
best performance for L = 50 and M = 3,000.

• In the region for large L and small M such as L = 200
and M = 600, the puncturing loss is not significant and
the value of α is more important measure than the BP
threshold. According to Table 1, the code parameter set
(3, 6, 5) has the largest α and the puncturing loss can be
negligible even for large w = 5 due to large L. Thus,
the code parameter set (3, 6, 5) (red square) shows the
best performance as shown in Fig. 7(c).

• In the region for large L and large M such as L = 200
and M = 3,000, the puncturing loss is not significant
and the BP threshold has more dominant effect on the
performance than the value of α. Thus, the degrees (4, 8)
with high BP threshold have an advantage compared
to the degrees (3, 6). Among the degrees (4, 8), large
w shows the better performance with their negligible
puncturing loss, which means the code parameter set
(4, 8, 5) (purple triangle) shows the best performance in
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FIGURE 7. Finite-length performances of (l, r ,w, L,M) SC-LDPC codes with code rate 0.5.

this region. Fig. 7(d) shows the performance comparison
for L = 200 and M = 3,000.

Comparing the operating ranges of the channel parameter
ε for the results in Fig. 7(a) (0.4 ≤ ε ≤ 0.45) and Fig. 7(d)
(0.46 ≤ ε ≤ 0.48), the finite-length performances of
SC-LDPC codes for large L andM are considerably superior
to those for small L and M . Thus, it is desirable to choose
large values of L and M if a target application can support
relatively heavy implementation costs. In addition, the result
in Fig. 7(d) recommends choosing code parameters (4, 8, 5)
that shows the best performance for large values of L andM .
However, Fig. 7(a) shows the opposite phenomenon for small
L and M such that the code parameters (4, 8, 5) exhibit the
worst performance while the counterpart parameters (3, 6, 3)
shows the best performance. It means that (3, 6, 3) is prefer-
able for hardware resource-limited scenarios and the best
code parameters depend heavily on the target application.

V. CONCLUSION
In this paper, a study on the finite-length performance of SC-
LDPC codes was carried out to reveal the existing trade-offs
for code parameters and find the optimal code parameters.
Based on the scaling behavior analysis focusing on the cou-

pling width w, it was shown that the larger coupling width w
leads to the higher scaling parameter α and a steep falling
slope of the finite-length performance at the cost of the
increased rate-loss. Moreover, by including the parameter w
in the scaling law as a variable parameter, we could perform
comparisons to understand the behavior of the finite-length
performance affected by code parameters. It was shown that
the performance measure of α is more critical than the BP
threshold for smallM , and smaller w could be a better choice
for small L because of its relatively low puncturing loss when
codes are compared at the same code rate using puncturing.
Consequently, we obtained the optimal code parameter sets
for given L and M and provided sufficient interpretation for
the optimization results. Since the appropriate values of L and
M depend on available hardware resources and target applica-
tions, we believe that this optimization result over wide range
of L and M helps to select the code parameters of SC-LDPC
codes showing superior finite-length performances for given
constraints.
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