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ABSTRACT Nowadays, deep convolutional neural networks (CNNs) for face recognition exhibit a
performance comparable to human ability in the presence of the appropriate amount of labelled training
data. However, training CNNs remains as an arduous task due to the lack of training samples. To overcome
this drawback, applications demand one-shot learning to improve the obtained performances over traditional
machine learning approaches by learning representative information about data categories from few training
samples. In this context, Siamese convolutional network (SiConvNet) provides an interesting deep
architecture to tackle the data limitation. In this regard, applying the convolution operation on real world
images by using the trainable correlative Gaussian kernel adds correlations to the output images, which
hinder the recognition process due to the blurring effects introduced by the convolution kernel application.
As a result the pixel-wise and channel-wise correlations or redundancies could appear in both single
and multiple feature maps obtained by a hidden layer. In this sense, convolution-based models fail to
generalize the feature representation because of both the strong correlations presence in neighboring pixels
and the channel-wise high redundancies between different channels of the feature maps, which hamper the
effective training. Deconvolution operation helps to overcome the shortcomings that limit the conventional
SiConvNet performance, learning successfully correlation-free features representation. In this paper,
a simple but efficient Siamese convolution deconvolution feature fusion network (SiCoDeF?Net) is
proposed to learn the invariant and discriminative complementary features generated from both the
(i) sub-convolution (SCoNet) and (ii) sub deconvolutional (SDeNet) networks using a concatenation
operation which significantly improves the one-shot unconstrained facial recognition task. Extensive
experiments performed on several widely used benchmarks, provide promising results, where the proposed
SiCoDeF2Net model significantly outperforms the current state-of-art in terms of classification accuracy,
F1, precision and recall. The code will be available on: https://github.com/purbayankar/SiCoDeF2Net.

INDEX TERMS Convolutional neural networks (CNNs), deep learning, face recognition, one-shot learning.

I. INTRODUCTION

The face is one of the most popular biometric features
for the verification and identification of a person, as it is
ubiquitous for the entire human race and quite simple to
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obtain, as it is easily acquired in unconstrained environments
through non-invasive/low-intrusiveness techniques, such as
optical imaging [1], [2]. In this sense, the analysis of this
data provides useful and representative features to perform
accurate facial recognition tasks [3], which is critical in a
wide range of information security-related systems, such as
automatic access control [4], security surveillance [5], [6],
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or smartphones applications [7], among others. As a result,
face recognition [8] has acquired a significant attention
during the past decades within automatic image processing.
In fact, it is considered one of the main analysis problems in
the range of object recognition [9], texture recognition [10]
or content-based image retrieval (CBIR) [11]. However,
the classification of unconstrained face images is an ill-
posed problem due to the high data variability, which appear
in terms of pose, illumination, expressions, age, cosmetics,
artificial occlusion, degradation of image quality [12], [13],
etc., and the limited number of training samples to properly
cover this variability.

Many efforts have been devoted to overcome the above
problems over the past decades. As a result, the current
literature provides an important number of works that address
the face recognition task by applying different perspectives
and strategies [8], [14]-[19]. Nevertheless, they are mainly
concentrated on learning invariant and discriminative feature
representation from face images and videos. In this sense,
it can be assumed that the learning of invariant and discrimi-
native feature representation is the first and crucial step of any
face recognition system. Broadly speaking, this step can be
achieved considering two different and opposite approaches:
i) the manually-designed or hand-crafted features and ii) the
feature representations automatically learned from sample
data [20]. Further details are provided below.

A. FROM HAND-CRAFTED TO AUTOMATIC FEATURE
EXTRACTION

Focusing on the first approach, the journey of hand-
crafted descriptors started at early nineties and became quite
popular due to its design simplicity and its computational
efficiency [21]. Indeed, hand-crafted descriptors have proven
to be quite useful techniques within the computer vision
research, specially when the class-specific available samples
for training are limited, providing a good trade-off between
accuracy and computational efficiency and extracting robust
features by avoiding artifact-driven descriptors. Within the
available literature, there are many interesting works that
successfully employ these features, in particular those that
extract local patterns across the entire image, encoding tex-
tual and gradient based information. Within face recognition
task, some works stand out, for instance Ahonen et al.
proposed a novel feature called local binary pattern (LBP)
for effective face recognition system, achieving a successful
classification performance [22]. Since then, many variants
of LBP have been implemented, where some of them have
been successfully designed and applied in face recognition
tasks [23]. Inspired by LBP, Zhang et al. introduced local
Gabor binary pattern histogram sequence (LGBPHS), which
combines the magnitude part of Gabor feature with LBP
operator, achieving good performance on face recognition
task [24]. Also Zhang et al. proposed a compact and effective
histogram descriptor based on Gabor phase pattern (HGPP)
for robust face recognition [25]. Chen et al. extracted high-
dimensional multi-scale LBP features from patches around
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the key point of facial landmarks [26]. In addition to
these techniques, the local derivative is gaining attention
since the most relevant and discriminative features exist
in the direction of higher order derivative. In this regard,
to encode the most informative eight neighbors relationship
with respect to the reference pixel, Zhang et al. proposed
the local derivative pattern (LDP), which computes the
four directional derivatives of a face image for recognition
and retrieval purposes [27]. Murala et al. modified LDP
and proposed local tetra pattern (LTrP) by splitting the
image along the 0° and 90° derivatives, encoding the most
informative eight neighbors relationship with respect to
the reference pixel [11]. Other interesting approaches have
been proposed by Chen et al. [28], who learned dictionary-
based on Fisher Vector encoding technique for face image
recognition, whereas Lu et al. [29] introduced joint feature
learning to generate sparse code dictionaries from the local
patch, pooling those to produce a high dimensional feature
vector.

In modern face recognition era, convolutional neural
network (CNN) has shown its potential to learn compact
and discriminative representation for many image processing
tasks, reaching promising results in training and classification
of large facial datasets. The face recognition using CNN can
be generally classified into three groups: i) classification,
ii) matching, and iii) identification or verification. Focusing
on classification, Sun et al. extracted feature vectors from
unconstrained face images and then predicted the label
of the obtained feature vectors using the classifiers [30]
or trained on different local patches with joint Bayesian
ensemble model [15]. In DeepFace [31], the CNNs were
used to extract deep features and to train the network
on large-scale frontal face images to perform the final
classification, achieving better performance in comparison
with traditional methods. Wu et al. proposed a lightened
CNN framework [32] to learn a compact and invariant
embedding space for face representation under noisy face
image. The main goal of the second approach is to match
the pairs of face images by optimizing the verification loss
directly, overcoming the problem associated with multi-
classification network, which usually fails to generalize
into new instances when they do not belong to training
set or even not are seen during training. To increase the
inter-class separability and reduce the intra-class distance,
Sun et al. [33] combined both the verification and classifica-
tion loss to design a relatively cheap network to provide fur-
ther improvement. Similarly, FaceNet [34] combined triplet
loss and adopted an architecture for deep object recognition
to directly optimize the embedding space, training on large-
scale unaligned face datasets. Parkhi et al. [35] trained a
VGG network [36] and fine-tuned it by optimizing a triplet
loss function on the top of the model. Yi et al. [37]
also trained a deep CNN model using a relatively small
face dataset to learn invariant and discriminative feature
representation. Despite their results, the limitations of these
methods lie, on the one hand, on the proper selection of
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FIGURE 1. The convolution operation applied on a real-world image (center) using a correlated Gaussian kernel adds
undesired correlations to the output feature map (right), impairing object recognition due to the blurring effects of the

kernels.

negative pairs from training data and, on the other hand,
on the manually determination of the threshold, which
plays an important role in verification loss. To overcome
these limitations, identification/verification methods propose
to optimize the deep face network by combining identifi-
cation and verification restrictions together. For instance,
Chopra et al. introduced the learning of contrastive similarity
energy function from training face image pairs for face
verification task [38]. To minimize the intra-personal distance
while maximizing the inter-personal distances, Sun et al.
designed a deep neural model to extract effective deep
IDentification-verification (DeepID2) features, where face
identification and verification signals are combined and
employed to supervise the model [15].

Recently, deep metric learning has been considered in the
new studies about face recognition tasks to fulfill the same
goal, either directly or indirectly. In metric learning, faces are
learned and transformed into a low dimensional feature space,
where those faces from the same instances are close to each
other but stay apart for different instances, while the learning
similarity function can boost the performance [39]. The
current state-of-the-art regarding metric learning methods
include information theoretic metric learning (ITML) [40],
which learns the Mahalanobis distance based information
theoretic objective function, and large margin nearest
neighbor (LMNN) [41], which helps to learn the marginal
constraint effects among the triplets from training samples.
These models are much simpler because of both their linear
nature and their shallow architectures. However, there is a
lack of experimentation of these techniques on challenging,
sampler, real-world human faces datasets. For instance,
Koch et al. proposed one-shot learning framework based
on convolution feature by minimizing contrastive similarity
loss [38], called Siamese convolutional network [42], which
has been quite successful in challenging conditions, for
instance, when the number of classes during training is
unknown and/or few samples are available per class.

In this paper, instead of learning simply convolutional
features, the proposed Siamese convolution deconvolution
feature fusion network (SiCoDeF2Net) can produce com-
plementary features through its two subnetworks: i) the
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Siamese convolution network (SiConvNet) and ii) the
Siamese deconvolution network (SiDeConvNet), respec-
tively. The former one is built using standard convolution
layer, while the latter one comprises several deconvo-
lution layers which completely replaces the convolution
layers to efficiently remove the pixel-wise and channel-
wise correlations. Experimental evaluations conducted over
several widely used face benchmarks show that the proposed
complementary features are able to boost the performance
significantly in case of inadequate or few training samples.

The rest of the paper is organized as follows. Section II
delves into the motivations behind the proposed network for
face recognition, pointing out the challenges introduced by
this task and the limitations of the standard CNN models.
Section III provides the details of the proposed methodology,
describing the architecture of our new SiCoDeF2Net
model. Section IV conducts several experiments over several
widely used facial datasets, in particular AT&T, Yale,
extended Yale-B, UFI cropped and LFW face datasets.
Moreover, the proposed SiCoDeF?Net model has been
compared with five different deep classification models of
the current state-of-the-art. Obtained results demonstrates the
improvement of our proposed algorithm. Finally, Section V
contains the conclusions.

Il. MOTIVATION

The convolution operation is the core in convolutional neural
networks (CNNs), where the receptive field (RF) plays
an important role while extracting informative features by
shifting it across the entire image in an overlapping fash-
ion [43]. Due to the ability of automatic feature extraction,
CNN s achieve breakthrough performance and gain enormous
attention in the computer vision community [36], [44]-[46].
However, real-world images exhibit strong correlations and
due to the existence of such natural correlations, receptive
fields are enforce to re-learn redundant information during
the convolution operation [47]-[49]. In fact, the standard
CNN model wastes a significant effort in creating copies
of the kernel weights by rotating, scaling or translating
them, which unnecessarily increases the computational
burden [50]-[52]. Besides this, as depicted in Fig. 1 applying
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the convolution operation on real-world images (center) using
these correlated Gaussian kernels introduces undesired corre-
lations to the output features (right), which impair recognition
tasks due to the blurring effects of the kernel application
during convolution. These blurring effects are intrinsically
related to the receptive field of the network, which follows
a Gaussian distribution instead of an uniform distribution,
producing a great impact on the backpropagation, where the
central pixels will have a larger gradient magnitude when
compared to the border pixels. As a direct consequence,
convolution-based models often fail to generalize feature
representation due to the presence of strong correlations in
neighboring pixels within an image or in the feature maps
obtained by a specific layer. Similarly, high redundancies
between different feature maps in a hidden layer (called
channel-wise correlations) also impair the effective training.
Furthermore, the real-world images can also be interpreted as
the result of some unknown correlative filters, which might be
difficult to find, but in terms of the deconvolution operation
it is easy to estimate the deconvolution matrix in a reverse
manner. Also, the re-learning of redundant information in
successively convolutional layers hampers the training of
deep CNNs, by wasting precious resources that do not delve
into the most discriminating features of the data [53], [54].
In this sense, it is desirable to eliminate such redundancies
within the convolution kernels. However, the existing CNNs
fail to avoid the re-learning of such information during
training, and faster convergence become a key issue for
deeper network.

To overcome the above challenges, deep artificial neu-
ral network strongly demands an application which can
successfully remove both the pixel-wise and channel-wise
correlations before the data is processed by each layer. In this
context, the deconvolution operation offers an interesting
solution to this limitation. This operation becomes quite
popular among the deep learning community and have proven
to be quite effective for image classification and segmentation
tasks [55]. These promising results have inspired the adoption
of network deconvolution to design an end-to-end one-
shot learning framework for face recognition, the so-called
Siamese convolution deconvolution feature fusion network
(SiCoDeF?Net). In the proposed model, image pairs
are passed through twin subnetworks, which are named
SiConvNet and SiDeConvNet respectively, to perform a deep
feature extraction, as we can observe in Fig. 2. Moreover,
to learn the invariant and discriminative complementary
feature representation the extracted features are fused using
concatenation for unconstrained facial recognition.

In a nutshell, the main contributions proposed by this paper
are highlighted as follows:

« To learn the invariant and discriminative complementary
feature representation, the proposed SiCoDeF2Net
model comprises twin networks, the SiConvNet and
SiDeConvNet.

o Focusing on SiConvNet, it is a Siamese network com-
posed by standard convolution layers. The subnetwork
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FIGURE 2. Simple graphical interpretation of the proposed network,
where the SiConvNet and SiDeConvNet networks are combined to create
the final sicoDeF2Net model.

of SiConvNet will be denoted as SCoNet. In addition,
SiDeConvNet is a Siamese network composed by
deconvolution layers, and its subnetworks are denoted as
SDeNet. Both Siamese networks receive the same pair
of facial images. The two data representations of each
image obtained by SiConvNet and SiDeConvNet models
are combined by a feature fusion strategy.

o Moreover, the subnetwork SDeNet in the proposed
model eliminates the widely used batch normalization
layer, achieving faster convergence towards optimiza-
tion. The combination of the SCoNet and SDeNet
outputs also produce state-of-the-art performance in face
datasets.

o The proposed SiDeConvE’Net learns complementary
features by successfully avoiding the re-learning of
specific redundant information. This mechanism greatly
helps to encode informative features since the training
set contains a small number of samples.

In the following sections we will provide more detailed
explanations about the proposed SiDeConvF’Net model
and analyse its performance in comparison with other
methods of the current state-of-the-art.

lIl. PROPOSED SiCoDeF2 NET MODEL

One-shot learning aims to learn discriminative image
representation to assign the corresponding class label to
those unseen examples during training with limited labelled
samples. This is possible with the help of supervised
distance learning and the Siamese convolution network
architecture [56]. Due to its simplicity, easy design and low
complexity, this model gains attention among the scientific
community and has been successfully adopted for weakly
supervised metric learning [38], signature verification [57],
person re-identification [58] and face verification [34], where
the number of labelled instances per classes in a datasets
is not enough to train a traditional CNN classifier. Due to
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the availability of few training samples and the existence of
both pixel-wise and channel-wise correlations, the network
is enforced to re-learn redundant information during the
back-propagation stage, hampering the effective learning
of the deep model. In this section, we present the one-
shot learning framework SiCoDeF2Net to learn invariant
and discriminative complementary feature representations
by combining the two subnetworks SCoNet and SDeNet,
where SCoNet uses standard convolution layers and the
subnetwork SDeNet uses deconvolution layers, respectively.
Fig. 2 provides a graphical scheme of the proposed network.
Indeed, the combination of the complementary features can
better characterise the sparse discriminative representation of
embedding space. The steps of the deconvolution operation
are detailed below.

A. DECONVOLUTION LAYER

The convolution operation produces correlated information
through the widely used * operation, which can be defined as
follows:

k k
Tl = > Y flx+iy +jlhlx +i,y+]
x=—k y=—k

= (f =i, j] = Hf, ey

where the convolution kernel & of size (k x k) is convolved
over the input f € RP*W (where the naturals H and W
indicates the height and width dimensions) to produce the
highly correlated transform outputf, where H corresponds to
convolution matrix. In this context, the aims of deconvolution
operation is to eliminate the redundancies which are present
in the form of correlations through the network. These
redundancies can be removed by f = H’lf, assuming that H
is an invertible matrix. Let kernel (k x k) overlaps the input
patches extracted from f[1 : H,1 : W] and flatten into a
vector of size [1, k2], which is stacked in column-wise into
X and can be calculated by:

XLj=fli—r:i4+r,j—r:j+r], 2)

where r = k/2 — 1 and the columns of X shows high
correlation among the overlapping patches extracted with
stride of size 1. This significantly hampers the convergence
of any deep network during its training stage, and even the
batch normalization [59] operation becomes unsuccessful
to address this limitation. Therefore deep network models
require the deconvolution operation to overcome this draw-
back. To calculate the covariance matrix X, the extracted
data matrix X5 r has to be reshaped and represented by the
number of samples S and the number of features F as follows:

1 T
2=§(X—M) (X =) 3)

where u is the mean of the data matrix and 7T represents the
transpose. In order to avoid the correlation effects from both
pixel and channel dimensions, the mean shifted centered data
(X — p) is multiplied using the approximated inverse square
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root of X, resulting into (X — ) - D where D = X 5 is

the deconvolution matrix. Algorithm 1 provides the steps to
successfully compute D. If D is well approximated through
the widely used Newton-Schulz method [60], the covariance
matrix X’ of transformed data produces an identity matrix as
below:

2 =D'Xx - WX —wb
=305, 5. 57051 4

Finally, the deconvolution operation is performed in terms
of matrix multiplication among the deconvolved data matrix,
where kernel w removes the correlations between both local
neighbourhood pixels and across different channels. This can
be formulated as:

y=X—-w) -D-w+b, 3)

where b is the bias parameter. To generate the input to the next
layer x; 1, the same deconvolution operation in the i layer
D; is performed in the following way:

Xit1 = ®joWioDjoux; (6)

where o is the right associated matrix multiplication opera-
tion, x; is the input from (i — 1) layer, W; is the weights in
the i layer and ®; is the ReLU activation function [61].

Algorithm 1: Computing the Deconvolution Matrix
.y xc] € RC

Data: C channel features X = [x;, x2, ..
Result: Deconvolution matrix D
1 while (/1 <i<C)do
2 ‘ X; = im2col(x;j) % according to Eq. (2);
3 end while

4 X =X, X, ..., Xc] % column-wise concatenate;

5 X = Reshape(X') % columns are grouped on batch
sizes;

6 X = %/i’\T X ;

7D=(Z+¢ -I)_% % 1 is identity matrix & small value €;

B. PROPOSED ARCHITECTURE

Let the training set composed by n samples with C different
classes denoted as {x;, y;}i_;, where y; € {1,2, ..., C} rep-
resents the corresponding label. Fig. 2 provides the graphical
scheme of the proposed SiCoDeF2Net architecture. In this
context, the aims of the proposed model is to evaluate the
similarity score between a pair of input images x; and x;,
where the corresponding label of the image pair can be
generated by the following target function:

L ify; =yj,
0 ify; #y;.
The details of the proposed network is given step by step:

As we can observe in Fig. 2, the S iCoDeF2Net contains two
identical networks, which are represented by SiCoDeNetY

SiCoDeF?Net'"$¢ (x;, xj) = (7
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FIGURE 3. Overview of the proposed Siamese convolution deconvolution feature fusion network sicobeF2Net.

and SiCoDeNet". Superscript ‘U’ and ‘L’ indicate upper and
lower parts of the proposed network. To extract more robust
and discriminative feature representations, both S iCoDeNerV
and SiCoDeNet" further comprise twin networks, namely
sub convolution network (SCoNet) and sub deconvolution
network (SDeNet), respectively. Moreover, both of the
networks SiCoDeNetV and SiCoDeNet" are designed to use
the same parameter settings and share the same trainable
weights throughout the twin networks [42]. The input is being
processed through SCoNet to extract the 2-D convolutional
features, while SDeNet helps to extract 2-D deconvolutional
features, working as the counterpart (or complementary part)
of the convolution. Furthermore, features from each path can
be represented as

HY = SCoNet(x;
SiCoDeNetV (x;) = { " ¢° oNet (x;) ©
Hpy, = SDeNet(x;)
and
HL = SCoNet(x;
SiCoDeNet"(x;) = { ~ ¢° oNet(x;) .
Hp;, = SDeNet(x;),

where SCoNet(-) and SDeNet(-) are the mapping function
corresponding to 2-D SCoNet and 2-D SDeNet, respectively,
U/L U/L
and H,~ and Hp = represent the output feature vectors
of the twin networks, which are designed using 2-D
convolution and deconvolution architectures, respectively.
Both sub networks SiCoDeNetV and SiCoDeNet" update
their weights in a mirror fashion during training stage.
In particular, SCoNet and SDeNet are trained from scratch
and thus both images are passed through the entire model
(i.e., the two branches) in parallel, one into the SiCoDeNetY
and the another one into the SiCoDeNet", as Fig. 3 indicates.
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Furthermore, both networks contain the same number of
convolution and deconvolution filters as reported in Table 1.
The discriminative latent embedded feature encoding
vectors of each image are represented by H, U/ L and Hp, v/ L,
as they are processed through the twin sub networks, SCoNet
and SDeNet, respectively. Moreover, the corresponding
output features FeV, and Fe! of twin networks SiCoDeNetY
and SiCoDeNet" can be derived by fusing both the output

feature vectors H, / L and H, U/ as follows:

U~ fusion(Hgo, ng)

SiCoDeF*Net(x;, x;) =
(i %) = fusion(HE,, HE,)

(10)
where fusion(-) represents two kinds of fusion strategies,
namely ‘early concatenation’ and ‘late concatenation’,
respectively. Based on that the proposed networks can
be denoted by SiCoDeF?Net®”? and SiCoDeF?Net /@,
respectively. The superiority of both networks are validated
through the experimental evaluations in Section IV.

At the top of twin SiCoDeF?Net networks, a loss
function is used to connect both models and to evaluate the
similarity score between the embedded representation of both
fused features FeU and Fe!. This similarity score is based on
the widely used Euclidean distance. Moreover, the contrastive
loss [38] is such a loss function used in Siamese network and
can be defined as follows:

Loss(FeV , Fe*, y) = a(1 — y)va + Bymax(0, m — D,,)?

Y
where FeV and Fel represent features of two samples, y is
a binary valued function that indicates if both images are

belonging to the same class or not, « and § are two constants
and the margin m equal to 1 for the experiment. The Euclidean

VOLUME 9, 2021



S. Kumar Roy et al.: SiCoDeF2 Net for One-Shot Classification

IEEE Access

TABLE 1. Details of layer-wise comparison between standard sub convolutional network (SCoNet) and the sub deconvolutional network (SDeNet).

SiConvNet SiDeConvNet
Layer Kernel Shape Stride  BatchNorm  Activation Layer Kernel Shape Activation
Input 100 x 100 Input 100 x 100
Reflection Padding - 1 x 102 x 102 - - - Reflection Padding - 1 x 102 x 102 -
Convolution 8x3x3 8 x 100 x 100 1 Yes ReLU deconvolution 8x3x3 8 x 100 x 100 ReLU
Reflection Padding - 8 x 102 x 102 - - - Reflection Padding - 8 x 102 x 102 -
Convolution 16 x3x3 16 x 100 x 100 1 Yes ReLU deconvolution 16 x 3 x3 16 x 100 x 100 ReLU
Reflection Padding - 16 x 102 x 102 - - - Reflection Padding - 16 x 102 x 102 -
Convolution 32x3x3 32x 100 x 100 1 Yes ReLU deconvolution 32x3x3 32x100 x 100 ReLU
Max Pool 32 x 50 x 50 Max Pool 32 x 50 x 50
Fully Connected Linear 1024 ReLU Fully Connected Linear 1024 ReLU
Dropout 0.5 1024 - Dropout 0.5 1024 -
Fully Connected Linear 512 ReLU Fully Connected Linear 512 ReLU
Fully Connected Linear 128 Fully Connected Linear 128

distance D,, is computed based on the embedded feature
space FeV and Fel, and it defined as:

D, = [|Fe¥ — Fe"||
= ||SiCoDeF*Net(x;, w1)
— SiCoDeF*Net(xa, w2)||2, (12)

where SiCoDeF?*Net(-) represents the function mapped
into a real valued embedded representation of a pair of
sample images, x; and x;, when passed through the twin
networks, SiCoDeNetV and SiCoDeNet™, respectively, while
wi and wy indicates the learned weights parameters during
training through the underlying networks. In this sense,
SiCoDeF’Net aims to model the output embedded feature
vector adjacent to each others in the low dimensional metric
space when both images belong to the same class, and
taken far away when both images do not belong to the
same or similar class. In contrast to conventional Siamese
convolutional networks, the removal of both pixel-wise and
channel-wise correlation conducted by the deconvolution
operation helps the proposed model SiCoDeF’Net to
learn more robust and discriminative complementary feature
representation through the fusion. Moreover, both branches
of the proposed network SiCoDeNetV and SiCoDeNet" can
better approximate the images into an embedded mapping
space through the SiCoDeF*Net(-) model. Hence, to evaluate
the contrastive loss in Eq. (11), the Euclidean distance
between FeU and Fel outputs is computed. This plays an
important role in bringing the embedded space close to each
others, evaluating the dissimilar value close to zero when
both instances belong from same class and obtaining the
dissimilarity value larger than one.

In order to introduce clarity in classification, one has to
determine the threshold value 1 in order to decide the pair
of instances belonging to same or different classes. Fig. 4
shows the dissimilarity score evaluated on test set based on
the Euclidean distance. It can be observed that scores lower
than 1 are produced for similar instances, whilst scores higher
than 1 are produced for images taken from AT&T and Yale
face datasets. Once the whole network is trained by imposing
the contrastive loss, the network computes the distance based
dissimilarity score first on (x, x;) to evaluate a test image
x for all possible x;, then it predicts the label of x on the
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dissimilarity score T which is further thresholded by 1 as:

0, ifr>1

SiCoDeF*Net' V8¢ (x, x;) =
1, else

(13)

Table 1 details the layer-wise summary, providing also
the size of convolution/deconvolution kernels, shape of
the feature maps, the regularization technique and non-
linearities used in the baseline network SiConvNet [42]
and the SiDeConvNet, respectively. In addition to this,
Fig. 5 provides the convergence of loss using SiConvNet,
SiDeConvNet, SiCoDeF’Net®™, and SiCoDeF’Net /@
networks for AT&T dataset, while Fig. 6 depicts the graphical
visualization of the convolution and deconvolution filter
banks in the second layer extracted over AT&T dataset during
the training stage.

IV. EXPERIMENTAL RESULTS

This paper is mainly focused on unconstrained conditional
facial recognition with the availability of few training
examples. In this context, and with the aim of evaluat-
ing the performance of the proposed one-shot learning
framework SiCODeF’Net with the current state-of-art
methods in a comprehensive manner, it has been compared
with five classification models, in particular: i) standard
CNN [44], ii) Bilinear-CNN [62], [63], iii) Pretrained-
VGG [36], [64], iv) LightCNN [32] and v) Pretrained-
VGG+KNN (VGG+KNN) [36], [64]. Moreover, two vari-
ants of the one-shot learning framework are compared,
in particular the Siamese convolutional network (SiCon-
vNet) [42], and Siamese deconvolutional network (SiDe-
ConvNet). We have also compared the proposed model
with several metric learning approaches, such as the large
margin nearest Neighbor (LMNN) [41], information the-
oretic metric learning (ITML) [40], least squares metric
learning (LSML) [65], and Mahalanobis metric for clus-
tering (MMC) [66] based on the extracted VGGFace2
Pre-trained features [67].

Experiments have been conducted using five different
and widely used benchmark datasets, which includes AT&T,
Yale, extended Yale-B, LFW and UFI cropped face datasets.
Furthermore, all the experiments have been performed with
Ubuntu 18.04LTS operating system and NVIDIA Titan V
12-GB graphics processing unit. The training is conducted
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FIGURE 4. Dissimilarity values among the instances of different subjects and the instances of similar subjects randomly taken from (a)-(b) and (e)-(f)

AT&T dataset and (c)-(d) and (g)-(h) Yale dataset.
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FIGURE 5. Graphical evaluation of loss using SiConvNet, SiDeConvNet,
SiCoDeF2Net®d, and sicoDeF2Net/ate for AT&T dataset.

10 15 20

a) Convolution filters

10 15 20
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FIGURE 6. Visualizing the convolutional and deconvolutional filters from
the second layers of SCoNet and SDeNet network which are trained on
AT&T dataset.

5 times, where each one conducts 200 epochs, with batch of
size 64. To evaluate the performance, the mean accuracy of
the model is reported. The cosine annealing scheduler is used
to update the learning rate, which has initially set to 0.0005,
with a momentum value of 0.9. The network parameters have
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also been optimized through Adam optimizer [68] during
training stage. The details about the datasets are described
below.

A. FACE RECOGNITION DATASETS

The AT&T dataset [69] contains 40 different subjects, where
each one comprises 10 examples of 92 x 112 pixels, with 256
grey levels per pixel. Moreover, the images were captured at
different times, varying the lighting, facial expressions (open
and closed eyes, smiling and not smiling) and facial details
(with glasses and no glasses). All the images were taken
against a dark homogeneous background with the subjects
in an upright, frontal position (with tolerance for some side
movement).

The Yale face dataset [14] contains 165 grayscale images
of 15 different subjects. There are 11 images per subject
which were captured from different settings such as center-
light, with glasses, happy, left-light, with no glasses, normal,
right-light, sad, sleepy, surprised, and wink, respectively. The
extended Yale-B contains images of 38 different subjects,
comprising a total of 2432 images under 64 different
illumination condition [70], [71]. The dataset is further
divided into 5 groups based on the illumination angles where
Group-1 includes 7 images per subject from 0° to 12°,
Group-2 includes 12 images per subject from 13° to
25°, Group-3 includes 12 images per subject from 26° to
50°, Group-4 includes 14 images per subject from 51° to 77°
and Group-5 includes 19 images in each subject on and above
78°. It is observed that those images of Group-4 and Group-
5 are the most challenging and difficult to classify.

The UFI-Cropped dataset [72] contains images
of 605 subjects with an average of 7.1 images per person
in the training set and one in the test set, where images are
cropped into a size of 128 x 128 pixels.

Finally, the LFW face dataset [73] contains 13233 images
from 5749 different people where 1680 among them have two
or more different photos. These images were collected from
the web and were processed (i.e., detected and centered) by
the Viola Jones face detector.
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TABLE 2. Classification results and training time in ms per sample using all the models on (a) AT&T, (b) YALE, (c) UFI-Cropped and (d) LFW face datasets.

(a) AT&T Dataset
Metrics CNN Bilinear-CNN  Pretrained-VGG  LightCNN ~ VGG+KNN SiConvNet SiDeConvNet  SiCoDeNet®*”™¥  SiCoDeNet!ate
Accuracy 93+1.5% 94+1.5% 93+1% 94+1.5% 94+2% 93.33+1.05%  96.66+1.23% 97.8240.35% 98.541+-0.37%
F1 0.91 0.92 93 0.93 93 0.923 0.9696 0.9798 0.9831
Precision 0.91 0.92 92 0.92 0.93 0.9 0.9411 0.9524 0.9682
Recall 0.91 0.92 92 0.92 0.92 0.9523 1 1 1
Time 8 14 17 19 24 4.5 4.7 6.3 6.1
(b) Yale Dataset
Metrics CNN Bilinear-CNN  Pretrained-VGG  LightCNN ~ VGG+KNN SiConvNet SiDeConvNet  SiCoDeNet¢”™¥  SiCoDeNet!at€
Accuracy 66+3% 70+2% 78+3% 80+1.5% 82+2% 90.9+1.29%  93.45+1.11% 95.2840.47% 96.471+0.26%
F1 0.72 0.74 79 0.82 0.84 0.909 0.93 0.9512 0.9623
Precision 0.65 0.69 0.73 0.75 0.77 1 1 1 1
Recall 0.65 0.69 0.73 0.75 0.77 0.9 0.923 0.9423 0.9513
Time 12 18 21 24 28 53 5.6 74 7.2
(c) Extended Yale-B Dataset
Metrics CNN Bilinear-CNN  Pretrained-VGG  LightCNN ~ VGG+KNN SiConvNet SiDeConvNet  SiCoDeNet®®"%%  SiCoDeNet'*%¢
Accuracy 63£1.5% 67+2% 75£1.5% 77£3% 79£1.5% 83.41£2.67%  86.52£2.54% 87.58£3.25% 88.08+3.12%
F1 0.66 0.70 0.79 0.80 0.83 0.8632 0.8907 0.8976 0.9029
Precision 0.61 0.66 0.74 0.75 0.77 0.7829 0.8013 0.8079 0.823
Recall 0.61 0.66 0.74 0.75 0.77 0.9024 0.938 0.9689 0.9769
Time 19 26 28 32 36 9.2 9.5 12.1 12
(d) UFI-Cropped Dataset
Metrics CNN Bilinear-CNN  Pretrained-VGG  LightCNN  VGG+KNN SiConvNet SiDeConvNet ~ SiCoDeNet®*”™¥  SiCoDeNet!%t¢
Accuracy 48+3% 534+2% 61+3% 62+1.5% 64+1% 75.77+£2.3%  77.67£1.95% 79.54+1.87% 79.92+2.04%
F1 0.53 0.55 0.65 0.67 0.70 0.771 0.8131 0.8376 0.8456
Precision 0.48 0.53 0.57 0.59 0.61 0.7015 0.7323 0.7512 0.7578
Recall 0.48 0.53 0.57 0.59 0.61 0.8869 09112 0.9345 0.9467
Time 42 58 78 87 96 20.1 21 25.6 252
(d) LFW Dataset
Metrics CNN Bilinear-CNN  Pretrained-VGG  LightCNN  VGG+KNN SiConvNet SiDeConvNet  SiCoDeNet®?”™¥  SiCoDeNet!ate
Accuracy 65+2% 69+2.5% 85+2% 86+1.5% 89+1% 92.93+2.34%  94.24+1.55% 97.50+0.38% 97.81+0.25%
F1 0.67 0.70 0.86 0.88 0.90 0.9232 0.9474 0.9751 0.9779
Precision 0.64 0.68 0.84 0.85 0.88 0.9223 0.9417 0.9717 0.9791
Recall 0.64 0.68 0.84 0.85 0.88 0.9288 0.9475 0.9751 0.9781
Time 54 76 101 132 151 31 322 42 41.3
Parameters 53M 106M 138M 6M 138M 165M 165M 333M 330M

TABLE 3. Classification results obtained by metric learning approaches using VGGFace2 pre-trained features on AT&T, YALE, extended YALE-B, UFI

cropped, and LFW face datasets.

Datasets KNN LMNN ITML LSML MMC SiCoDeNet¢?™¥  SiCoDeNetlete
AT&T 94.7840.54%  95.46+0.47%  95214+0.61%  95.1440.23%  93.844+0.38% 97.28+0.35% 98.54+0.37%
Yale 89.12+0.41%  89.7940.69%  89.71£0.78%  89.34+0.57%  88.67+£0.51% 95.28+0.47% 96.47+0.26%
Ex. Yale-B 80.35+£3.62%  81.5443.21%  81.43+3.14%  81.3543.78%  79.77£3.29% 87.58+3.25% 88.02+3.12%
UFI 71.83+£1.69%  72.234+2.14%  72.1942.03%  72.18+1.89%  71.544+1.97% 79.54+1.87% 79.92+2.04%
LFW 92.2442.04 %  92.86+1.74%  92.64+1.45%  92.37+2.14% 91.77+£1.67% 97.50+0.38% 97.81+0.25%

TABLE 4. Impact of activations on the proposed siDeConvF2Net using
AT&T, Yale, Ex. Yale-B, UFI cropped, and LFW face datasets.

datasets ReLU PReLU Mish LiSHT
AT&T 98.54+0.37%  98.54+0.37%  98.52+£0.42%  98.50+0.45%
Yale 96.47+0.26%  96.47+£0.26%  96.46+0.3% 96.46+0.3%
Ex. Yale-B | 88.024+3.12%  88.024+3.12%  88.02+£3.02%  88.01+3.1%
UFI 79.9242.04%  79.924+2.04%  79.88+2.05%  79.89+2.08%
LFW 97.81+0.25%  97.81+0.25%  97.78+0.23%  97.77+0.33%
B. EXPERIMENTAL SETTINGS

In order to perform unbiased experiments, we have split
the entire AT&T dataset into training and testing sets.
Additionally, we have randomly chosen 37 classes from the
40 available classes to create the training set, while the
remaining 3 classes are used for evaluating the performance
of SiCoDeF?Net model. Similarly, we have divided the
Yale face dataset by randomly selecting 13 classes for the
training set and the remaining 2 classes were used to create
the testing set. There are a total of 38 classes in the extended
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Yale-B dataset, of which 35 have been randomly chosen
for the training set, while the remaining 3 classes are used
for the testing set. The UFI-Cropped dataset comprises 605
classes, of which 560 classes have been randomly selected
and used in the training set and the remaining 45 classes
have been considered into the testing set. Finally, regarding
the LFW dataset, 5000 classes have been randomly selected
from the 5749 available classes to create the training set,
and the remaining 749 classes have been used to evaluate
the proposed model during testing. All the images have
been reshaped into 100 x 100 to feed the network. For
this purpose, the disjoint training-testing strategy has been
considered, i.e., all the samples of the training classes have
been considered for training the networks, while the rest of
the classes are used for testing. In this sense, there is no test
information during the training, which makes the evaluation
even more challenging and interesting in order to check the
generalization of the model.
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(d) AT&T (e) YALE (f) UFI-Cropped datasets.
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C. PERFORMANCE ANALYSIS

1) COMPARISON WITH OTHER DEEP

LEARNING CLASSIFIERS

One shot learning classification is domain specific and quite
effective when there are few training samples available for
training and the number of classes are not known during
training. The conventional SiConvNet performs well in the
described scenario. However, due to the pixel and channel
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wise correlations into the output feature maps, the SiConvNet
model fails to generalize the feature representation and
hence, scarifies the recognition performance up to some
extends. To learn invariant and discriminative complementary
feature representation, the proposed network SiCoDeF?Net
combines both the convolutional and deconvolutional
features at the top of the network, boosting the recognition
performance. Table 2 reports the obtained classification
results in terms of accuracy, F1, Precision and achieved
Recall using SiCoDeF?Net and comparing it with CNN,
Bilinear-CNN, Pretrained-VGG, LightCNN, VGG+KNN,
SiConvNet, and SiDeConvNet, respectively. It can be seen
that the proposed model significantly outperforms all
the classification models, achieving state-of-the-art results
for every dataset. In addition, the number of trainable
parameters is also reported for every classification model,
including the baseline networks and the proposed networks.
As we can observe, our proposed network contains more
parameters as it includes two subnetworks. In addition to
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through SiConvNet, SiDeConvNet, SiCoDeF2Net 9"
(q)-(t) LFW face datasets, respectively.

r) SiDeConvNet

this, Table 2 reports the training times (in terms of ms
per sample) for all datasets using each model. It can be
observed that the time taken by the proposed network is
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5) SiCoDeF?Net @t

f) SiCoDeF’Net @

m’)les are represented in points and different samples are shown with different colored generated
¥, and sicoper2Net®@” on (a)-(d) AT&T (e)-(h) Yale (i)-(l) Extended Yale-B and (m)-(p) UFI-Cropped

comparable or even better as compared to the CNN, Bilinear-
CNN, Pretrained-VGG, VGG+KNN and LightCNN,
respectively.
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FIGURE 11. Gradcam visualization: (a)-(c) provides the visualization of convolutional features and (d)-(f) illustrate the
visualization of deconvolution features.

TABLE 5. KL-divergences between the twin network SiCoDeNetV (P) and
SiCoDeNet! (Q) on AT&T dataset.

Image A KL-Divergence (P[[Q)
pairs Network Distribution Minimun | Maximum Early Late
fusion fusion concatenate C
siCoDeNetV | 9CONL® | 00076 | 0.0823 0.0684 0.0423
Identity S Ce Nell ((%)
. L oNef
SiCoDeNet SDeNet (Q) 0.0954 0.0874 0.0677 0.0511
SiCoDeNet” Sg"ge‘ B 1 oae | onin 0.1268 0.1384
Different 5 Ce Nat ((%)
X I oNe
SiCoDeNet SDeNet (Q) 0.1145 0.1157 0.1250 0.1368

2) COMPARISON WITH OTHER DEEP METRIC

LEARNING MODELS

Moreover, to show the effectiveness of the proposed
SiCoDeF’Net, Table 3 reports the achieved recognition
rates considering different metric learning approaches,
in particular KNN, LMNN, ITML, LSML, and MMC
where VGGFace2 pre-trained features are extracted to train
the models. It can be observed that the performance of
metric learning approaches are better than the classification
models on Table 2, and sometimes they are comparable
with the conventional SiConvNet. However, our proposed
networks SiCoDeNet*™™ and SiCoDeNet'™ achieve the best
classification performances, in particular the SiCoDeNer'™¢
model reaches the best results, obtaining between 1 and
3 percentage points more than traditional methods.

3) ROBUSTNESS EVALUATION BY CHANGING THE NUMBER
OF IMAGES PER CLASS AND THE NUMBER OF CLASSES

In order to assess the robustness of the proposed model, some
experiments have been performed by varying the number
of images per class, where SiConvNet, and SiDeConvNet
have been compared with other two versions of the proposed
model, ie. SiCoDeF’Net®™? and SiCoDeF?Net!®
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Moreover, these experiments have been conducted over the
described datasets considering the modified experimental set-
ting discussed in SubSection IV-B. In this sense, Figs. 7(a)-(d)
illustrate the accuracy curve while Figs. 7(e)-(h) provide the
Receiver Operating Characteristic (ROC) curve considering:
1, 4, 7 and 10 images per class from AT&T dataset; 1, 5, 8,
and 11 images per class from Yale dataset; 35, 45, 55 and
65 images per class from extended Yale-B faces collection,
and 1, 3, 5 and 8 images from each class of UFI-cropped
dataset, respectively.

In addition, to explore the capability of the one-shot
learning classification provided by the proposed networks,
similar experiments have been conducted by changing the
number of classes during the training stage, while the classifi-
cation results are evaluated considering the remaining classes.
In this sense, Figs. 8(a)-(d) illustrate the accuracy curve while
Figs. 8(e)-(h) illustrate the ROC curve considering: 24, 28,
32 and 37 classes from AT&T dataset; 7,9, 11 and 13 classes
from Yale collection; 23, 27, 31, 35 classes from extended
Yale-B face dataset, and 380, 440, 500, 560 classes from UFI-
cropped dataset, respectively. The accuracy and ROC curves
for LFW dataset are shown in Figs. 9(a)-(b) considering
different numbers of classes for the training of the network,
particularly 3500, 4000, 4500, and 5000 different classes.
As pointed before, the remaining classes are used to evaluate
the models performance during testing.

The results of both experiments show for all the cases
that, even with very small amount of training samples and
big number of unseen classes during training, the proposed
models achieve good classification results in terms of both
accuracy rates and ROC measurement, respectively. Due to
the pixel and channel wise redundancies, the SiConvNet
performs slightly worse than SiDeConvNet. However, both
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TABLE 6. Triplet loss impacts using the baseline Siamese networks and both the proposed sicoDeF2Net®Y and sicobeF2Net/dte on AT&T, Yale,

Extended Yale-B and UFI Cropped face datasets.

Metrics AT&T dataset Yale dataset
SiConvNet SiDeConvNet  SiCoDeNet®®"¥  SiCoDeNet!?¢ SiConvNet SiDeConvNet ~ SiCoDeNet®@”  SiCoDeNet!%t¢
Accuracy 73.644+2.95%  78.23+3.15% 80.14+2.87% 80.79+£3.12% 71.4£3.27% 74.21£3.54% 75.67£2.5% 75.94+2.34%
F1 0.7182 0.7633 0.7924 0.8011 0.684 0.7238 0.7441 0.7587
Precision 0.7056 0.7545 0.7735 0.7829 0.7124 0.7434 0.7513 0.7624
Recall 0.7535 0.8024 0.8265 0.8358 0.7012 0.7387 0.7434 0.7513
ROC AUC 0.7488 0.7913 0.8126 0.8194 0.7113 0.7454 0.7544 0.7614
Metrics Extended Yale-B dataset UFI dataset
SiConvNet SiDeConvNet  SiCoDeNet®®""¥  SiCoDeNet/?¢ SiConvNet SiDeConvNet  SiCoDeNet®*™"¥  SiCoDeNet'**¢
Accuracy 74214+1.89%  76.35+£1.67% 78.774+2.5% 79.14+2.31% 70.234+3.83%  72.74+2.14% 73.52+3.85% 74.91+4.12%
F1 0.7538 0.7744 0.7834 0.7946 0.7214 0.7424 0.7554 0.7618
Precision 0.7121 0.7374 0.7518 0.7623 0.6522 0.6719 0.6827 0.6914
Recall 0.8077 0.8428 0.8777 0.8818 0.8214 0.8429 0.8614 0.8729
ROC AUC 0.7344 0.7537 0.7749 0.7928 0.7077 0.7267 0.7344 0.7457

networks SiCoDeF’Net " and SiCoDeF?Net ™ signif-
icantly outperform the baseline represented by conventional
SiConvNet and SiDeConvNet, respectively.

4) ROBUSTNESS EVALUATION CONSIDERING DIFFERENT
ACTIVATION FUNCTIONS

In order to evaluate the robustness of the proposed
SiCoDeF?Net model under different activation functions,
an experiment has been conducted considering ReLU [61],
PReL U, [74] Mish [75], and LiSHT [76] activation functions,
employing the same network architecture. Table 4 reports
the achieved results using AT&T, Yale, Extended Yale-B,
UFI Cropped, and LFW face datasets. It can be observed
that the proposed SiCoDeF’Net model achieves similar
performance for every activation function, so we can infer that
the proposed network is quite independent of the activation
function considered within the architecture.

5) FEATURE REPRESENTATION EVALUATION

To intuitively illustrate the advantages of the extracted
deconvolutional feature map over the standard convolutional
feature maps, we applied the Grad-CAM [77] to provide
the visualization of the obtained features. It can also be
readily observed from Fig. 11 that the deconvolution has more
discriminative feature representations than the convolution.
Similarly, in order to visualize and evaluate the discriminative
power of the feature representation obtained by the proposed
SiCoDeF?Net model, Figs. 10(a)-(d) provide the graphical
representation using t-SNE visualization [78]. As we can
observe, SiConvNet, SiDeConvNet, SiCoDeF2Net®!,
and SiCoDeF2Net @ have been tested over AT&T dataset.
In a similar way, Figs. 10(e)-(h) depict the obtained feature
representations for Yale collection, Figs. 10(i)-(1) provide
the graphical visualization for Extended Yale-B dataset,
Figs. 10(m)-(p) depict the obtained representation for UFI
face dataset, and finally, Figs. 10(q)-(t) provide the obtained
representation for LFW face dataset. It can be clearly
observed that the obtained features are compact, invariant
and more separable in comparison with those obtained by
the baseline networks SiConvNet and SiDeConvNet. In this
sense, the great separability of test feature representation is
one of the paramount reasons for the success of our proposed
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TABLE 7. Triplet loss impacts using the baseline Siamese networks and
both the proposed siCoDeF2Net®¥ and sicobeF2Net/at€ on LFW face
dataset.

Metrics LFW face Dataset
SiConvNet SiDeConvNet | SiCoDeNet®®™¥ [ SiCoDeNet/“?¢
Accuracy 90.21+£0.89% | 91.28+1.06% 93.02+0.67% 93.64+0.44%
F1 0.9044 0.9157 0.9322 0.9384
Precision 0.9019 0.9166 0.9285 0.9312
Recall 09114 0.9152 0.9354 0.9404
ROC AUC 0.9033 0.9185 0.9319 0.9377

model, which reaches better performance than the current
state-of-art methods.

D. EFFECTIVENESS OF COMPLEMENTARY FEATURES
To measure the degree of dissimilarity between the gen-
erated features from the SCoNet and SDeNet subnet-
works of the twin networks SiCoDeNetrV and SiCoDeNerL,
we have obtained the relative entropy using an asymmetrical
Kullback-Leibler (KL) divergence measurement. In partic-
ular, the KL divergence between the distribution SCoNet
(P) and SDeNet (Q) on the same probability space X can be
defined by the following asymmetrical function:
Dk (P||Q) = ) P(x)log uGoy (14)
= O(x)

which is based on the constraint Dk, (P||Q) # Dk (Q||P).

Table 5 provides the dissimilarity values calculated from
the fused (minimum, maximum, early and late concate-
nations) feature distribution of the SCoNet and SDeNet
subnetworks, using both SiCoDeNetV and SiCoDeNet™
networks on a similar and dissimilar face pairs extracted from
AT&T face dataset. Among the various fusion techniques,
early and late concatenations achieve the score closest to zero
when compared with similar pair and furthest away from zero
for the dissimilar face pair. These results support the previous
experiments, where the late concatenation performs better
than others for all the face datasets, providing an interesting
information theoretic reason behinds the obtained results.

E. CONTRASTIVE LOSS VS. TRIPLET LOSS

In order to study the impact of loss function in the proposed
SiCoDeF2Net model, some experiments have been con-
ducted considering the contrastive and the triplet loss. Indeed,
these functions have been evaluated using the baseline
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networks, i.e. SiConvNet, and SiDeConvNet, on AT&T, Yale,
Extended Yale-B, UFI and LFW face datasets. Table 6
shows the obtained performance of these models, comparing
the obtained results with those provided by the proposed
networks SiCoDeFNet®® and SiCoDeF?Net /™ using
triplet losses on AT&T, Yale, Extended Yale-B and UFI face
datasets. It can be seen from Table 6 that the contrastive
loss performs significantly better than the triplet loss for
all the face datasets. This is mainly due to the important
lack of training samples that are available during training.
In addition, Table 7 shows the obtained performance of these
models on LFW face dataset, the behavior of which is quite
similar to that observed earlier in AT&T, Yale, Extended Yale-
B and UFI face datasets. This inspires us to evaluate both
the proposed SiCoDeFZNet®”? and SiCoDeF?Net/@
networks using contrastive loss as shown in Eq. (11).

V. CONCLUSION

In this paper, we have proposed a simple but effi-
cient Siamese convolution-deconvolution feature fusion net-
work (SiCoDeF2?Net) to learn invariant and discriminative
complementary features from two subnetworks, i.e. SCoNet
and SDeNet, following a feature fusion strategy at the top
of the network for one-shot face classification. Through a
comprehensive experimentation over different face-datasets,
evaluating also different classification measurements, it can
be observed that, although both networks share the same
architecture, the deconvolution operation in SDeNet can
successfully replace the widely used convolution and
batch normalization operations of the conventional SCoNet,
reaching an outstanding performance during classification.
Moreover, the proposed networks SiCoDeF?Net ¥ and
SiCoDeF?Net® can successfully learn the convolution
and deconvolution features, whilst significantly outperform-
ing the results of widely used current state-of-art classifiers
for the considered face datasets.
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