IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 18, 2021, accepted August 23, 2021, date of publication August 24, 2021, date of current version August 31, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3107719

Successive Over Relaxation Recurrent Confidence
Inference Network Based on Linear Extrapolation

WENKAI HUANG “', YIHAO XUE 2, ZEFENG XU"“2, AND LINGKAI HU"2

ICenter for Research on Leading Technology of Special Equipment, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou

510006, China

2School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Corresponding author: Wenkai Huang (16796796 @qq.com)

This work was supported by Guangzhou Science and Technology Planning Project under Grant 202002030279.

ABSTRACT It is very important to be able to deduce an unknown conclusion from one or several known
premises when solving a logical inference. The existing inference methods or models have certain logical
inference abilities. However, because of the diversity of the forms of problems and the complexity of the
derivation process, the scope of applying these methods is limited; this means the inference results are not
ideal. Therefore, this paper proposes a new neural network model to solve the logic inference problem found
in calculus. By using the successive over relaxation (SOR) method and the principle of recurrent confidence,
the recurrent confidence inference network (RCI-Net) is built to solve the inference problem. The network
simulates the solving process of the inference problem. Based on the known premise of this problem, it is
calculated step by step so that the result of the calculation becomes gradually closer to the answer. At the
same time, to make RCI-Net have stronger logical inference ability, our team uses the half mean squared
error (HMSE) to construct the loss function of the model, improving the training efficiency of the model and
preventing training collapse caused by the loss value exceeding the system’s value range. Our team takes
Sudoku reasoning problem as an example to carry out experiments. The results show that when the number
of prompts of the reasoning problem is 17, the accuracy of the test set model can reach 99.67%, which is
3.07% higher than the existing models. It proves that the algorithm has better effect than the existing methods
in solving logical reasoning problems.

INDEX TERMS Calculating logical inference, successive over relaxation, recurrent confidence, half mean

squared error, deep learning.

I. INTRODUCTION

Calculus’ logic inference is the thinking process of deriving
a proposition from some facts and propositions according
to logic rules. Solving all the various kinds of logical infer-
ence problems within the realm of calculus can help people
correctly understand the nature and relationship between the
numbers in propositions, help people analyze problems in an
orderly and well-grounded way by using the logical inference
methods related to thinking forms, make appropriate judg-
ments, and carry out logical inference. How to deduce an
unknown conclusion from existing known premises is the key
to solving the problem of logical inference. Most mathemat-
ical inference processes are based on formal logic; the main
purpose is to get the unknown knowledge from the known
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knowledge, especially the unknown knowledge that cannot
be obtained through sensory experience; this makes the infer-
ence process of calculus logic more diverse and uncertain.
In the process of this inference, when there is a change in the
types of problems and known conditions, the workload for
solving the inference problem will be doubled, and more time
and energy will be required. Therefore, using deep learning
method to solve reasoning problem is a hot research field.
The trained neural network model that can automatically and
reasonably assist people to solve logical inference problems
will greatly improve people’s work efficiency and greatly
reduce the burden in solving logic inference problems.
There have been some algorithms developed to solve the
various logic inference problems; here, some of these algo-
rithms have been based on deep learning [1]. Reference [2]
proposed a method to solve the uncertain maldistributed
decision-making problem, which contains both uncertain
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attribute values and uncertain attribute weights so that the evi-
dential inference method can deal with the change of uncer-
tain attribute weights in an appropriate way. Reference [3]
proposed that message passing methods can be used to solve
the logic inference problem of calculus, and reference [4]
proposed an algorithm to solve the logic inference problem by
using the concept of dual quantum computing, thus providing
a theoretical framework for the application of binary quantum
computing. In reference [5], the improved particle swarm
optimization rule and a well-designed mutation operator can
be used to solve the logic inference problem. Reference [6]
introduces recurrent relational networks and achieves good
results in logic inference. In reference [7], a differentiable
maximum satisfaction solver is introduced and integrated into
the loop of a larger deep learning system; here, the exper-
iments show that the model can be used as a solution for
the logical inference problem. Reference [8] uses relation
networks to solve the problem of logical inference in calculus.
Based on eliminating the computational burden of logical
inference and reducing the complexity of the whole network,
the ability to infer the relationship between entities and their
attributes can be obtained. In reference [9], the optimization
problem is integrated into a single layer of a neural net-
work, and a sensitivity analysis, double-layer optimization,
and implicit differentiation techniques are used to accurately
distinguish these layers from the layer parameters; the exper-
imental results show that this method can effectively solve
the problem of logic inference. Based on previous studies on
Hopfield neural networks [11], reference [10] uses Hopfield
neural networks to solve the problem of logical inference or to
solve constraint problems. Reference [12] draws lessons from
the principle of spinning neural networks [13] and verifies
that the method can effectively solve the logic inference
problem by solving a Sudoku puzzle and map color problem.
One study [14] uses an artificial neural network to solve the
inference problem and verifies the effectiveness of the model
in the logic inference of calculus through a Sudoku inference
experiment.

All the above models have certain effects on solving infer-
ence problems and can obtain good results for simple calculus
logic inference problems [15]. However, for more complex
inference problems, where there is a decrease in the number
of prompts and increase in the range of items to be inferred,
many of the above networks have problems such as slow
convergence, disappearance of gradients in iterative learning,
and training crash caused by loss values exceeding the range
of system values. Thus, the efficiency of model training and
the accuracy of solving inference problems are reduced.

In order to solve the shortcomings of the current reasoning
model, a more reliable reasoning model is established to
help people solve the problem of calculus logic reasoning.
In the current paper, we use the principle of successive over
relaxation (SOR) [16] and recurrent confidence [17] to build
a recurrent confidence inference network (RCI-Net) that can
solve more complex inference problems. In the present paper,
each cycle structure in RCI-Net is composed of convolution
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layers. The model uses the SOR method to learn iteratively,
hence reducing the deviation of each unknown value in
the logic inference problem, that is, reducing the difference
between the unknown value and the correct solution, and
automatically updating the parameters of the convolution
kernel in the network. In the current paper, the network
adopts a cyclic progressive structure and carries out the pro-
gressive operation to solve the logic inference problem of
calculus. Similar to classical convolution neural networks
such as deep convolutional neural networks (CNN) [18],
recurrent CNN [19], encoder—decoder CNN [20], and mul-
ticrop CNN [21], RCI-Net also updates the parameters of the
internal convolution kernel automatically through iterative
learning. However, when the classical neural network uses
the traditional Softmax [22] cross entropy as the training loss
function, the model will collapse because of the loss value
exceeding the system’s value range, so the constraint of a half
mean squared error (HMSE) is added to improve the ability of
the whole network to deal with logical details and to prevent
the training collapse caused by the loss value exceeding the
system value range, hence improving the training efficiency
of the model. The current paper takes the Sudoku inference
problem as an example to conduct experiments. RCI-Net
can learn the mapping between the known premise and the
inference answer in the Sudoku inference problem data set,
along with the characteristics of the Sudoku inference prob-
lem, to accurately deduce the answer to the number inference
problem.

The proposed method has the following advantages: (1) the
construction of the RCI-Net model is based on the SOR
method and recurrent confidence, so a recursive structure
is adopted in the model, on which the problem of calculus
logic inference is solved step by step, and the SOR method is
integrated to reduce the deviation of each unknown value in
the logic inference problem, that is, to reduce the difference
between the unknown value and correct solution. Based on
this, two successive replacement steps are used for linear
extrapolation to improve the model solution and accuracy
of solving problems. (2) Based on the prior knowledge of
reasoning task rules, this paper designs a suitable neural
network structure to improve the performance of neural net-
work. This method is also suitable for other logical reasoning
problems. (3) When the traditional Softmax cross entropy is
used as the training loss function, the model may lead to a
collapse in the training because the loss value exceeds the
system value range. Therefore, we use HSME to construct
the loss function of the RCI-Net model, which not only
completely prevents a training collapse, but also maintains the
high accuracy of the model. (4) After training, the RCI-Net
model can be used independently, which can effectively solve
the Sudoku inference problem and extend the application of
this model to other logic inference problems. (5) In the current
paper, the SOR method and recurrent confidence principle are
integrated into the convolution model for the first time, and
the HMSE function is used as a part of the loss function in
the RCI-Net model; this means that prior knowledge is added,
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which greatly improves the convergence speed and inference
effect of the network.

Il. STRUCTURE OF RECURSIVE CONFIDENCE INFERENCE
NETWORK

The RCI-Net proposed in this paper is suitable for many
complex logic reasoning problems. It uses SOR method to
construct the neural network into a continuous multi-layer
loop structure, and designs the suitable internal structure of
the loop body based on the prior knowledge of the reasoning
problem, then uses HMSE as the loss function of training, and
finally uses the method of recurrent confidence to realize dis-
tributed reasoning. Because the solution to the Sudoku prob-
lem integrates a variety of logic inference methods, such as
the exclusion method, hypothesis method, absurdity method,
and so on, it has certain representativeness. Therefore, the
current paper takes solving the Sudoku inference problem as
an example to verify the RCI-Net model.

A. NETWORK CONSTRUCTION

In the present paper, we use the SOR method to reduce the
deviation of each unknown value in the logic inference prob-
lem, that is, to reduce the difference between the unknown
value and the correct solution. Based on this, two successive
replacement steps are used for linear extrapolation to improve
the accuracy of solving inference problems. The RCI-Net
model contains a convolution layer, cyclic convolution layer,
and anticonvolution layer with different step sizes. The work
of feature extraction and logical inference is completed in
iterative learning. To improve the overall stability of the
RCI-Net model, except for the output convolution layer and
input convolution layer, other convolution layers are added
with the instance normalization layer [24] as the normaliza-
tion function of the model. To speed up the convergence of the
model, a convolution layer is used instead of a pooling layer.
In the learning process of the model for inference problems,
the known items and conclusions of the inference problem
are input into the RCI-Net model for training so that the
RCI-Net model can learn the mapping relationship among
the known items, structure, and conclusions of the inference
problem. After the error between the verification result of the
model and the label of the verification set has been calculated,
the model parameters can be adjusted according to the gradi-
ent descent method to achieve the goal of model autonomous
learning. Finally, we tested the RCI-Net model with the test
set and obtained the accuracy rate of the RCI-Net model for
solving the Sudoku inference problem. The overall structure
of the proposed RCI-Net model is shown in Figure 1, includ-
ing the convolution layer and cyclic convolution layer. In
the training process, we need to input the known premise,
structure, and conclusion of the inference problem into the
RCI-Net model or training and use the verification set to
adjust the parameters of the model so that the model can
obtain more accurate answers to the inference problems. The
RCI-Net model combines the recurrent confidence principle
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with a deep convolution network. The internal structure of the
model is shown in Figure 1.

In the RCI-Net model, we use instance normalization [24]
as the normalization function and leaky ReLU as the acti-
vation function of the model. As shown in Figure 1, the
RCI-Net model consists of a convolution layer and convolu-
tion loop. After the input layer, the convolution layer expands
the number of feature graphs in the hidden layer to m,. Each
convolution loop is composed of an RCIconv layer. During
the convolution cycle, the output data of the RCIconv layer
are re-inputted into the same RClconv layer. After y times
of the convolution cycle, the data are input into the next loop
body, where y depends on the boundary length of the smallest
module in the Sudoku data set. After N loop operations, the
feature map segmented along the last dimension of the hidden
layer is used as the output of the neural network system. In the
RCI-Net model, we hope to maintain the consistency of data
distribution of the input tensor and output tensor in each loop
body through a convolution loop structure. Some of the output
characteristic graph of the convolution loop body represents
the prediction of the result by the convolution loop body, and
other characteristic graphs are used to save the intermediate
state information. The next loop body makes further infer-
ences based on the prediction and state information from the
previous loop.

In addition, each convolution loop has the same parameter
structure and shape. Therefore, in layer-by-layer training,
after obtaining the parameters of the current fully trained
cyclic body, the parameters can be used as the initializa-
tion parameters of the next untrained convolution loop. This
operation makes the neural network fully trained, greatly
improving the training efficiency.

B. RCICONV STRUCTURE IN THE MODEL

Based on the prior knowledge of Sudoku rules, each row,
column and 3 x 3 region of Sudoku contains the logic infor-
mation of its own specific regions, which is independent
from other regions. However, when a deep convolution neural
network is used for a Sudoku inference, the input numbers of
the convolution kernel may come from different 3 x 3 regions
or from the edge padding area of the hidden layer, as shown
in Figure 2. This is contrary to the prior knowledge of Sudoku
solution, cross region convolution operation will interfere
with the operation results, and will cause a negative impact,
resulting in the final solution’s accuracy being reduced.

The RClconv layer used in the RCI-Net model can avoid
the above problems. The RCIconv layer that we designed
has a certain degree of relational inference ability. It is a
combination of multiple-step convolution and deconvolution.
In the RCIconv layer, the SOR principle is used to grad-
ually reduce the deviation of each unknown value; that is,
to reduce the difference between the unknown value and the
correct solution in Sudoku inference problem. Based on this,
a linear extrapolation of two successive substitution steps is
used. To visually describe the RCIconv layer, the structure is
visualized, as shown in Figure 3.
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FIGURE 1. The specific structure of RCI-Net.
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FIGURE 2. In (a), the input numbers of the convolution kernel come from

different regions; in (b), the input numbers of the convolution kernel
come from the edge padding area of the hidden layer.

In Figure 3, the arrows in the figure indicate the input—
output relationship of each convolution layer, and the con-
volution operation is shown in equation (1).
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In equation (2), the parameter i represents the input size of
the convolution layer, k represents the kernel size, s represents
the size of the stripe in the convolution layer, p represents the
region where the input boundary is expanded, and o is the
final output size. The deconvolution operation in the RCI-Net
model is shown in equation (2).

o=si—1)+2p—k+2 2)

As shown in Figure 5, the RCIconv layer in the RCI-Net
model is composed of a convolution layer and an anticonvolu-
tion layer. According to the logic and principle of solving the
Sudoku problem, the Sudoku problem is calculated step by
step to improve the solving accuracy. The parameters of each
convolution layer and anticonvolution layer in Figure 5 are
shown in Table 1.

This study attempts to simply and effectively determine the
impact of a single Sudoku sample added to the sample set
on the training results. On the one hand, when a new sample
appears, it can be optimized on the original training results
without starting over; On the other hand, let the new Sudoku
training samples into the sample set one by one, so as to
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FIGURE 3. The visualization image of the RClconv structure in this model.

simplify the optimization process and improve the speed of
the algorithm.

In this model, we use two successive substitution steps
of the linear extrapolation method to achieve SOR and to
gradually reduce the deviation of the unknown value in the
Sudoku inference problem. Here, deviation refers to the dif-
ference between the unknown value and the correct solution
in the Sudoku inference problem. This method can solve the
Sudoku problem with a size of n x n. Therefore, the current
paper assumes that the equation of vector x” in the kth itera-
tion of the model is as follows:

ajnx1 + apxy + -+ - +aixy = b;

(i=12,--,;k=0,1,2,---) (3

Thus, the iterative formula of the SOR iteration of the
model is shown in equation (4), where @ represents the
relaxation factor.

xl{<+1
k i— k+1 k
{a)bi—i—(l —a))a,-ixi( '—w }:}aijxj( o ;'l=i+1al'jxj( )]
o aii
(i=1,2-,1k=0,1,2,--") )

In this study, SOR iteration method is applied to model
training, where the value of relaxation factor will directly
affect the convergence and convergence speed of the algo-
rithm. In order to ensure the convergence of the iteration
process, 0 < w < 2 must be required.
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TABLE 1. Parameters of each convolution layer and deconvolution layer
in the RClconv layer.

Name Form Number of filters  Filter size
convi convolution 2 (1, 3)
conv: convolution 2 3, 1)
convs convolution 1 (1, 3)
convy convolution 1 3,1
convs convolution 1 (1, 1)
convs convolution 2 (1, 1)
conv; convolution 4 (1, 3)
convg convolution 4 3,1
dconv; deconvolution 1 (1, 3)
dconv; deconvolution 1 3,1
dconvs deconvolution 2 1, 3)
dconvy deconvolution 2 3,1

C. HALF MEAN SQUARED ERROR LOSS FUNCTION

In the early experimental stage, training collapse often occurs
in the training process. This occurs because of using Softmax
cross entropy as the loss function of the model. The Softmax
cross entropy loss function is as follows:

, eZi
yi = Z;(nzl ok (5)
loss (yi, y;) = —yi - log(y) (6)
N — N Y
L(y.y)=— ijlloss (y],y,) )

where z is the output of the neural network, y’ is the prediction
value of the neural network, y is the tag value, and the
Softmax function is output y; and loss L (v, ') for z; produces
a partial derivative.

e G#D
/ 5 l
% = (ka_:O eZk)i N
aZl (_eZt +rn2k=] eZZl)eZt (]- _ l)
QK= €%)
e UFED @®)
A=y)-y, (G=10)
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According to equation (9), when using Softmax cross
entropy as the loss function, z; will infinitely approach +oco
or —oo. Because the input and label of the RCI-Ne model
are one hot discrete data, some data have a clear mapping
relationship, so z; tends to +00 or —oo faster, and y; is very
close to 1 or 0. So when y! tends to zero and y; = 1, the loss
value can easily exceed the numerical range of the system,
resulting in a collapse of the training.

Because the Sudoku solution system is a cyclic structure,
the output of the neural network needs to be taken as the
input of the same neural network in the operation process,
and the cycle is carried out. Therefore, to ensure the stability
of the training, the selected loss function should make the
input and output of the neural network maintain a similar data
distribution. When the Softmax cross entropy is used as the
loss function, the output value Z cannot be used as the input
of the next cycle because of its large absolute value. If the
Softmax function output y" is used as the input of the next
cycle, the input and output of the neural network can keep a
similar data distribution, but the gradient in the training easily
approaches 0, which makes the training difficult. Below is the
mathematical proof.

Suppose that the output of a certain RCIconv layer is z,
input Softmax function to get y’, and then input y’ into the
SDconv structure of the next layer. Suppose that the gra-
dient of loss value for [y’l,y/z, s ymlis [ay, az, -, aml,
and the gradient of loss value for z; can be obtained from
equation (10).

dLoss , m ,
P ai-y; — Zj:O (aj-yj- i)

=y (a= Y @ 3)) (10)

According to formula (10), when y; is close to 0, the
gradient of z; is close to 0. However, when y; is close to 1,
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this is because of:

/

{Zj=oyf =1 (11)

y; >0
So:
" )~ 12
D@ )~ a (12)
dLoss m ,
o Vi (ai - Zj—() (a; -yj/-)) ~yi(ai—aj) =0
l -

13)

That is, when y; is close to 1, the gradient of z; is also close
to 0. To sum up, if the output y" of the Softmax function is
used as the input of the next cycle, the gradient will disappear
easily in the training, which makes the training difficult.
Therefore, our team uses the HMSE loss function instead
of the traditional Softmax loss function to solve the above
problems.

The function form of the new HMSE loss function pro-
posed by our team is shown in equation (14):

j——
LG.o)=- Zi:l ((1 — ) - max(0, z)° + i
min (0, z; — 1)2) (14)

where z is the output of the neural network, y is the label value,
max (0, z;) is the maximum value of 0, and z;, min (0, z; — 1)
is the minimum value of 0 and (z; — 1). The partial derivative
of loss value L (y, z) for z; is obtained as follows:

oL (v, z2)
az;
1 9(( =y - max 0,z +yi - min 0,z — 1)°)
T 0z;
Q@fﬁ,#m<m
= §%}@, FO<z<1) (15)
2(1 =z,
iﬁ%ﬁ,ﬁasm

Let n = 1, when the tag value y is 0 and 1, the relationship
between z; and L(y;, z;) and the relationship between z; and
gradient are shown in Figure 4.

The HMSE loss function proposed in the current paper is
based on the principle of the mean squared error (MSE) loss
function [25]. In the training process, the MSE loss function
tends to let z; converge to 0 and 1. Different from the MSE
loss function, in the HMSE loss function, the gradient of z;
is 0, while in other parts, the absolute value of the z; gradient
increases with the increase of distance from y;, as shown
in Figure 7. Therefore, when the HMSE loss function is used,
the distance between z; and y; can be used to represent the
confidence degree of the neural network, which has good
performance in inference problem-solving tasks. The results
are verified by comparative experiments in Sections 3 and 4.
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FIGURE 4. When the tag value y is 0 and 1, respectively, the relationship
between z; and L(y;, z;) is shown in (a), and the relationship between z;
and the gradient is shown in (b).

IIl. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATA SET COMPOSITION

The Sudoku inference data set adopted by our team comes
from [26]. There are 180,000 questions in the training set,
18,000 questions in the test set, and 18,000 questions in the
verification set; in addition, the number of known numbers in
the three data sets ranges from 17 to 34. In the training set,
each known number corresponds to 10,000 questions. In the
test set and verification set, each prompt number corresponds
to 1,000 questions. We first set the Sudoku question into a
matrix with the shape of 9 x 9 and set the unknown number
to 0 so that the number is in the range of 0-9.
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(a) (b) () (d)

FIGURE 5. The operation diagram of our team for data enhancement of
the Sudoku inference data set.

To prevent overfitting of the neural network in train-
ing, we designed a data enhancement method according to
Sudoku rules. As shown in Figure 5, the data sets are ran-
domly combined according to the transformation mode in the
figure, hence greatly increasing the number of training sets.

As shown in Figure 5, where (a) represents the row (or
column) exchange in the 9 x 3 (or 3 x 9) block in the same
Sudoku inference problem, (b) represents a different 3 x 9
(or 9 x 3) block exchange, (c) represents the transposition
of the matrix, and (d) represents the numerical exchange of
the known numbers. In the Sudoku matrix mentioned above,

118352

because the number form is a character, it is not suitable for
being directly applied to neural networks. Therefore, it needs
to be transformed into one hot tensor form. Therefore, when
inputting a neural network, the Sudoku question is one hot
tensor with a shape of 9 x 9 x 10. The number range of
the Sudoku answer is 1-9, so we converted it into a tensor
of 9 x 9 x 9.

Label

HMSE <+—

trainyxk,

loss,

Split along last

RClconv; —" . .
: dimension

| ) trainyxk,

Split along last
RClcony, — - 2 015 2 ammy HMISE | +—

'

loss,

train,xk
i~ L0 loss,

__Split along last
dimension

HMSE | &——

RCiconv,

!

Output

FIGURE 6. The operation and training process of the data in the first loop.

B. MODEL PRETRAINING

In the solution for the calculus logical inference problem,
the parameters of each loop’s body should be initialized
according to the parameters of the previous loop’s body.
Therefore, our team pretrained the first loop body RCIconv
in the RCI-Net model. After the first circulation body when
RClconv is pretrained, there is no need to do the pretraining
from the second cycle body, and the training method of the
subsequent circulation body is the same, that is, the output
segmentation after four cycles, to obtain the predicted value
and loss value. The operation and training process of the data
in the first loop body are shown in Figure 6.

When training the RClconv; structure, we first segmented
the output of a single cycle to get the predicted value and
then input this into the HMSE loss function to obtain the loss
value loss| . Here, the goal of train| was to reduce loss;. After
completing the pretraining of the first cycle body RCIconvy,
the parameters of the first loop body are used to initialize
the second circulation body RCIconv;. After training the first
cycle body RClIconv; k; times, the parameters of the first
loop body are used to initialize the second circulation body
RClIconv;. In the same way, after training the second cycle
RClIconv; kj times, the third cycle to the N-cycle is gradually
trained until loss,, tends to be stable. Then, we get the output
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TABLE 2. The procedure of the model pretraining algorithm.

Function Train (X, Y, n)

Forifrom 1 ton do
Net=SDconv; (X, 256)
Net=Split (Net)
Loss;i=HMSE (Net, Y)

train<—minimize (Loss))

End For

Forifrom 1 ton do
Net=SDconv; (X, 256)
Net=SDconv; (Net, 256)
Net=Split (Net)
Loss>=HMSE (Net, Y)

train—minimize (Lossz)

End For

Fori from 1 to n do
Net=SDconv; (X, 256)
Net=SDconv; (Net, 256)
Net=SDconv; (Net, 256)
Net=SDconv; (Net, 256)
Net=Split (Net)
Lossn=HMSE (Net,Y)

train<—minimize (Lossn)

End For

End Function

after N cycles, and segment it to get the predicted value and
loss value. The pretraining steps of this model are shown
in Table 2.

VOLUME 9, 2021

C. TRAINING PROCESS AND RESULTS

In the experiment, our team used the RCI-Net model to test
the Sudoku inference data set and compared it with the latest
inference model. We used deep conv [27] and RClconv,
model single cycle, and complete cycle for comparative train-
ing; we set up two groups of comparative experiments. At the
same time, the HMSE loss function and Softmax loss func-
tion are compared to prove the effectiveness of this research
technology.

We use tensorflow [28] to build a neural network, we use an
Adam optimizer [29] to optimize, and we train the model on
NVIDIA GTX 1080ti GPU. In the pretraining, the learning
rate was 0.0128. In the following training, the learning rate
becomes half of the original one every time we enter the next
loop. During the training, the batch size was 128.

1.0

Accuracy
© o © o o
w o ~ oo o

o
'S

0 25000 50000 75000 100000 125000 150000 175000
Step

FIGURE 7. In the training process, the filling accuracy curve of the model
in the training set.

Figure 7 shows the change in the filling accuracy of the
RCI-Net model on the Sudoku inference training set with the
number of iterations.

It can be seen from Figure 7 that when the number of iter-
ations of the whole network is 125,000, the accuracy rate of
the RCI-Net model tends to be stable, and it has a good ability
to solve Sudoku inference problems. Finally, the accuracy
of the RCI-Net model in the training set was found to be
99.71%. As can be seen from the figure, the accuracy rate
of the accuracy curve at some positions will increase rapidly.
This is because when the RCI-Net model is trained a certain
number of times, the convolution cycle structure in the model
will switch progressively, going from the previous loop to the
next loop body. At this time, the filling accuracy value is also
based on the output of the next loop.

After the training, we tested the complete training set, test
set, and verification set and calculated the Sudoku solution
accuracy rate of the RCI-Net model in a single cycle oper-
ation. The experiment shows that the accuracy rate of the
model for the test set can reach 97.24% when the number of
prompts in the inference question is 17. The accuracy rate of
a single cycle solution of the RCI-Net model with an increase
in the number of prompts is shown in Figure 8.

Next, we further tested the RCI-Net model, using the model
for complete recursive confidence loop operation, testing the
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FIGURE 8. Accuracy of Sudoku inference in the RCI-Net model after a
single cycle operation.

complete training set, test set, and verification set, and calcu-
lating the accuracy rate of the model for the Sudoku solution
after a complete cycle. The experimental results show that the
accuracy of the model for the test set can reach 99.67% when
the number of prompts in the inference question is 17. The
accuracy of the RCI-Net model in the complete cycle with an
increase in the number of prompts is shown in Figure 9.

1.0000
0.9995 \/
0.9990

a 0.9985

o

5 0.9980

9]

& 0.9975
0.9970

— train
0.9965 —— test

— valid

0.9960

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Number of prompts

FIGURE 9. Accuracy of Sudoku inference in the RCI model after complete
cycle operation.

D. COMPARATIVE EXPERIMENT
In the training process of the RCI-Net model, when the
traditional Softmax cross entropy is used as the loss function
of the model, the model may collapse because the loss value
exceeds the system value range. Therefore, we constructed
the loss function of the RCI-Net model by using HMSE,
which not only completely prevented training collapse, but
also maintained the high accuracy of the model. To verify
the effectiveness of the HMSE loss function, we used the
Softmax cross entropy loss function and HMSE loss function
to conduct comparative training on the RCI-Net model. The
training results are shown in Figure 10.

In the contrast experiment, the neural networks used in
the two experiments are a single cycle RCI-Net model.
In the first experiment, the HMSE loss function is used to
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FIGURE 10. The accuracy curve of the RCI-Net model using two different
loss functions.

train the neural network, and the Softmax cross entropy loss
function is used to train the neural network in the second
experiment. The two groups of experiments were trained in
the same environment and were trained 40,000 times. The
accuracy of filling in the training process was compared
between the two groups. It can be seen from Figure 9 that
when training for 10,000 times, the model using the Soft-
max cross entropy loss function will collapse the training
because the loss value exceeds the system value range,
so the training cannot continue. The HMSE loss function
proposed in the current paper allows the model to train nor-
mally. To clearly show the advantages of the HMSE loss
function compared with Softmax cross entropy loss func-
tion and better show the reason why the training of the
model using Softmax cross entropy loss function collapsed,
we have visualized the data distribution of the output layer
of two experiments during the training process, as shown
in Figure 11.

Softmax Cross Entropy

Distribution Eis Distribution

P -

7“\*/»
il

FIGURE 11. The data distribution of the output values of the two groups
of neural networks during the training process.

In Figure 11, we show the model (a) using HMSE loss
function training and (b) using Softmax cross entropy loss
function training. Here, when the model is trained with the
HMSE loss function, the data distribution of the model output
value can be kept stable and the distribution range small.
When the Softmax cross entropy loss function is used for
training, the data distribution of the model output value
increases with the increase of training times. This proves that
the HMSE loss function has the ability to keep the output
layer data distribution stable.
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TABLE 3. The comparison between the accuracy of the proposed model and the latest models.

Method Number of prompted | Accuracy
numbers
Loopy BP, parallel [3] 17 53.2%
Loopy BP, random [3] 17 61.7%
Loopy BP, modified [4] 17 92.5%
Deep convolutional network [30] 24-36 70%
Recurrent relational network [6] 17 96.6%
Satnet [7] 31-42 98.3%
RCI-Net (single cycle) 17 97.24%
RCI-Net (complete cycle) 17 99.67%

E. COMPARISON OF EXISTING TECHNOLOGIES

In the algorithm verification stage, we use the Sudoku infer-
ence test set, use the accuracy rate of the model solution
and time-consuming time of the model as indicators, and
make a detailed calculation and comparative analysis of the
test results of the proposed RCI-Net model and the latest
inference solution model. Compared with the latest model,
the inference problem-solving model has a better ability to
solve inference problems.

In a common inference process, the output rate of a prob-
lem is often measured. The samples can be divided into four
cases according to the combination of their real categories and
the categories predicted by the classifier: true positions (TP),
false positions (FP), true negatives (TN), and false negatives
(FN). The definition of accuracy is shown in equation (16):

TP + TN

100% 16
total x v (16)

acc =

In the process of testing the model, we first must input the
Sudoku inference test set into the RCI-Net model to obtain the
solution accuracy of the model. At the same time, the same
test set is input into other inference models to obtain the
solution accuracy of these algorithm models. After the above
steps were completed, we were able to compare the accuracy
results obtained; the results are shown in Table 3.

Because the data distribution of the data sets used by
each research is different, the data sets with more prompts
are used in [7], [30] and the data sets with fewer prompts
in [3], [4], [6]. To unify the criteria for judging the pros and
cons of each scheme, we used the same data set for these mod-
els and unified the number of prompts to 17 to better evaluate
the advantages and disadvantages of the different models.
As shown in Table 3, the RCI-Net model has the highest accu-
racy among the Sudoku solution models. Even if the RCI-Net
model only carries out a single cycle, its solution accuracy
is still better than the most recent model. By inputting the
same Sudoku inference data, the RCI-Net model can obtain
a higher solution accuracy and has strong practicability in
solving the logic inference problems of calculus.
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F. LIMITATIONS

In the current paper, we have proposed an RCI-Net model
based on the SOR method and the recurrent confidence
principle to solve the problem of logical inference in cal-
culus. The model is mainly composed of a progressive
structure with more hidden layers and higher complexity,
making the process of training inference networks more
time-consuming. In addition, the accuracy of the model for
solving Sudoku inference problems depends on the number
of prompts. When the number of prompts is 17, the accu-
racy rate cannot reach 100%, which is true for the other
models as well. The reason is that with a decrease in the
number of prompts, the parameters needed to be calcu-
lated in the model increase exponentially. Even with suffi-
cient training data, the experimental results are not better.
However, this model can avoid training failure caused by
overfitting when the number of prompts is small and the
number of iterations is sufficient. At the same time, the infer-
ence model based on the SOR method and the recurrent
confidence principle can provide more types of inference
methods for people and help them complete inference tasks
better.

IV. CONCLUSION

In the current study, a new deep learning model, RCI-Net,
was built based on the linear extrapolation method, here by
using the SOR method and recurrent confidence principle.
The model adopts the progressive way, and the inference is
repeated step by step until the solution is found. The integra-
tion of the SOR method makes the model reduce the deviation
of each unknown value in the logic inference problem, that is,
to reduce the difference between the unknown value and cor-
rect solution. Based on this, two successive replacement steps
are used for linear extrapolation to improve the accuracy.
We have also proposed the RCIconv layer and HMSE loss
function and applied them to the RCI-Net model, which not
only completely prevented training collapse, but also main-
tained high accuracy. This superiority was proved through
theory and experiment. Compared with the latest inference
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model, this model has improved the accuracy of the Sudoku
solution.

In the follow-up research, we will further explore how
to simplify the neural network structure, reduce the training
time, and further improve the accuracy of solving Sudoku
inference problems. In the next step, we will study how
to combine the RCI-Net model with generative counter-
measure neural network [31] or Autoencode neural net-
work [32] to construct an inference problem generation neural
network.
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