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ABSTRACT Multi-criteria optimization problems represent a crucial task for any designer of a public service
system due to conflicting criteria, which have to be faced. Possible solution of this almost unsolvable situation
can be seen in obtaining a series of solutions, where it is impossible to improve one of the criteria without
worsening some of the others. Full set of such non-dominated solutions is called Pareto front. The multi-
criteria optimization problem can be solved by submitting the Pareto front or its approximation on contracting
authority’s board for possible negotiation with representative of public. This paper deals withmethods, which
are able to produce a series of non-dominated solutions of bi-criteria public service system design problem.
The first criterion considered is average response time and the second one corresponds to the number of users
located behind a given limit of response time. We suggest two approaches to the problem. The first of them
is an exact approach, which produces Pareto front of the bi-criteria problem. The second approach makes
use of an evolutionary hybridized algorithm, which uses so called elite set, to save temporary non-dominated
solutions. In the computational study, we try to verify the hypothesis that it is possible to approximate the
Pareto front by utilizing the evolutionary algorithm. We also suggest a way of hybridization and tuning the
algorithm to obtain a good approximation in acceptable computational time.

INDEX TERMS Public service system, multi-objective problem, Pareto optimization, exact approach,
hybridized genetic algorithm.

I. INTRODUCTION
Public service systems are created and operated on public
sources to make public’s life safer and more comfortable.
The systems provide inhabitants of a concerned geographical
region with various kinds of necessary service and they are
subjected to quality evaluation by addressed groups of con-
cerned inhabitants. As population of a geographical region
is heterogeneous from the points of view of age, profession,
dwelling place size and location, various criteria are applied
to the system functioning evaluation, especially, when the
system is to be designed or updated. Some of the crite-
ria may be conflicting, i.e., system changes which improve
one of the criteria cause impairment of the other ones. Due
to impossibility to compare the criteria on a quantitative
base, the selection of the final system design is matter of
a public consensus. To enable the associated negotiation of
the potential system founder, we concentrate our effort on
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the ways of obtaining a representative set of public ser-
vice system designs in the form of so called non-dominated
solutions [1], [2].

The public service system design problem has been studied
as a task of selection of p center locations from a set of pos-
sible service center locations so that a given criterion value is
minimal. The original approaches [3]–[7] evaluated quality of
the p-center deployment by the average response time of the
system on a user’s service request. These approaches mod-
elled the problems as the weighted p-median problem and
made use of exact and heuristic tools for the problem solving.
An important success in large-size p-median problem solving
was achieved by application of the radial approach [8]–[12].
The min-sum weighted p-median problem formulation was
generalized to capture characteristic of a real public service
system with random emerging demands and limited capacity
of the service centers by introducing probability values of
the situations, when the nearest, second nearest and so on up
to r-nearest service center is the nearest available center due
to occupation of the closer centers by earlier demands [13].
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The radial approach to this generalized p-median problem
was developed and tested by [14].

The above-mentioned approaches include usage of an
exact solving tools based mostly on branch-and-bound
searching strategy, which consumes enormous portion of
computational time to verify optimality of the best-found-
solution.

To avoid this computational burden, an attention of profes-
sionals was directed to heuristic approaches based on imita-
tion of biological processes [15]–[18]. To obtain a good set
of non-dominated feasible solutions, an evolutionary meta-
heuristic seems to be a convenient tool, because an evolu-
tionary metaheuristic can build up a set of non-dominated
solutions continuously in the form of an elite set [2].

At the same time, p-location problems with so called cri-
teria of fairness were studied starting with p-center problem
up to the strongest fairness scheme applicable to the public
service systems [19]. The strongest formulation [20] is called
the lexicographic min-max criterion. A weaker, but more
frequent, fair criterion is the number of system users, which
are situated behind a given response time limit.

Within this paper, we will study approaches to the
two-objective problem of the public service system design
with randomly emerging users’ demands and limited capacity
of the service centers. The main goal of the study is to
compare an exact approach to a heuristic one from the point
of efficiency of obtaining a set of non-dominated solutions
of the two-objective problem, where the primary objective
corresponds with the average response time and the sec-
ondary one is defined as the number of users located behind
the given time limit. The exact approach is based on usage
of a special bisection procedure, which employs the radial
formulation of the generalized weighted p-median problem.
The studied heuristic approach has been developed from a
genetic algorithm with elite set, which is hybridized with a
simple improving swap heuristic.

The remainder of the paper is organized as follows:
section II is devoted to the radial formulation of the min-sum
problem with limited min-max criterion. The exact approach
to Pareto front determination is described in section III and
metaheuristic approach is explained in section IV. The asso-
ciated numerical experiments are reported in section V. The
results and findings are summarized in Section VI.

II. ICONFLICTING CRITERIA AND RADIAL
FORMULATION OF THE PROBLEM
A. CONFLICTING CRITERIA OF THE PUBLIC
SERVICE SYSTEMS
The public service system design problem can be formu-
lated as a task to deploy p facilities in a set of m possible
locations so that an objective expressing a disutility per-
ceived by serviced population is minimal. Disutility can
take different forms and it can be modelled by many ways
depending on system users’ point of view and also on
accuracy, with which the real service system characteristics

are described. Within this paper, we will study two of the
often-mentioned objectives. The primal objective is an aver-
age response time of the system and the secondary objective
is expressed by the number of inhabitants behind a given
limitD of generally accepted response time. To formulate the
associated models, we introduce the following denotations
and assumptions. We assume that the serviced population
of a given geographical area is concentrated in n dwelling
places and the number of inhabitants of j-th dwelling place
is denoted by the symbol bj. It is supposed that the value
bj is proportional to the number of average service visits
at the dwelling place and that a visit will be provided by
a vehicle starting from a located service center. The time-
distance between a possible service center location i and a
dwelling place j is denoted by dij.

As a real public service system with randomly emerging
demands for service operates as a queuing system, the sit-
uation must be considered that the nearest service center is
occupied by servicing an earlier demand and thus the current
demand can be serviced by the second, third or r-th near-
est center depending on their current occupancy. To model
this situation, we introduce the values q1, q2, . . . , qr , which
express probabilities that the nearest, the second nearest, and
up to r-th nearest center is the first available one, which can
service the current demand.

To model decisions on service center deployment, a binary
variable yi ∈ {0, 1} will be introduced for each possible
service center location i = 1,.., m. The variable yi takes the
value of one, if a service center is to be located at location i
and it takes the value of zero otherwise. This way, the vector y,
consisting of the zero-one components, corresponds with a
vertex of a unit hypercube in m-dimensional space. The set Y
of all feasible solutions of the public service system design
problem is a sub-set of the unit hypercube vertices and it is
described by (1).

Y = {y ∈ {0, 1}m,
∑m

i=1
yi = p} (1)

The primary objective f1 proportional to the average
response time is modelled by (2).

f1(y) =
∑n

j=1
bj

∑r

k=1
qkmink{dij : i = 1, . . . ,m, yi = 1}

(2)

The result of operator mink{a1, a2, . . . , am} used in (2)
gives the k-th minimal value of a finite set of real values a1,
a2, . . . , am, where k < m.
As the input set of the operator consists of all distances

from dwelling place j to located service centers, the operator
produces the distance from the dwelling place to the k-th
nearest center. This distance is multiplied by probability qk of
the case that the k-th nearest center will be the first available
one and thus the sum of these products gives the average
response time of the system to a demand at the dwelling
place j.
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The second objective f2 is defined by the equation (3) for
a given value D of a response time threshold.

f2(y) =
∑n

j=1
bjmax{0, sign(min{dij : i = 1, . . . ,m,

yi = 1} − D)} (3)

The operator max{0, sign(min{dij: i = 1, . . . ,m,
yi= 1}−D)} gives the value of one if the distance between the
user location j and the nearest service center is greater than
the threshold D. In the other cases, the resulting value equals
to zero. This way, the quantities of inhabitants of dwelling
places distant at most D from the nearest service center will
not be included in the sum, which determines the value of
f2(y) for given feasible solution y.
It can be easily seen that the criteria (2) and (3) are in

conflict. Let us demonstrate it by the ‘‘toy-example’’ depicted
in Fig. 1, where two dwelling places are considered and they
are depicted by circles. The values inside the circles give the
numbers of inhabitants, i.e., b1 = 100 and b2 = 10. For
bigger simplicity of the presented example, the parameters
p = 1 and r = 1 are considered and only two possible
center locations are taken into account. The possible center
locations are depicted as squares and the distances between
pairs of locations are placed under the links, which connect
the locations. Let the threshold D take the value of two.
It can be seen that the objective function values are f1(y1) =
130 and f2(y1) = 10 for the solution y1 = (1, 0), whereas the
solution y2 = (0, 1) has the objective values f1(y2) = 220 and
f2(y2) = 0.

FIGURE 1. Simple example of the solved problem. Circles represent
dwelling places with their population and squares represent possible
center locations.

If the bi-criteria public service system design problem is
studied with the goal to choose some representative solution,
it can be found that it is impossible to choose a unique
solution based on exact approach. That is why, the notion
of non-dominated solution was formulated and a set of
non-dominated solutions is offered as a representative output
instead of a single solution.

We say that a solution y ∈ Y dominates a solution x ∈ Y
if f1(y) 6= f1(x) or f2(y) 6= f2(x) and the following couple
of inequalities holds f1(y) ≤ f1(x) and f2(y) ≤ f2(x). This
definition assumes that the both objective functions are to
be minimized. The definition considers solutions y and x
equivalent from the point of dominancy if they do not differ
in both objective function values. After these preliminaries,
we can define non-dominated solution of the problem as a
solution, which is not dominated by any feasible problem
solution. One of possible mathematical definitions follows.

A solution y ∈ Y is denoted as a non-dominated solution of
the discussed problem if every other solution x ∈ Y satisfying

f1(y) 6= f1(x) or f2(y) 6= f2(x) meets the following clause:
f1(y) < f1(x) or f2(y) < f2(x).
As the set Y of all feasible solutions is finite, the set of non-

dominated solutions must be also finite and non-empty taking
into account that optimal solutions for each of the objectives
must exist.

Relations among dominated and non-dominated solutions
are depicted in Fig. 2, where a feasible solution y is repre-
sented by a pair (f1(y), f2(y)).

FIGURE 2. Non-dominated solutions are depicted by small black circles
and the area of dominated solutions is filled by gray color.

The right most non-dominated solution y can be deter-
mined by the following process. First, solve the prob-
lem (4) and obtain optimal solution x∗ with objective function
value f2(x∗).

min{f2(y) : y ∈ Y} (4)

Second, solve the problem (5) and the resulting solution y∗

corresponds to the right-most non-dominated solution.

min{f1(y) : y ∈ Y , f2(y) ≤ f2(x∗)} (5)

In the case of finite set of all feasible solutions, a solving
method of the problem (5) can be used to obtain the sub-set of
all non-dominated solutions. Such a sub-set is called Pareto
front.

B. RADIAL MODEL OF RESTRICTED PUBLIC SERVICE
SYSTEM DESIGN PROBLEM
As the solving methods of the problem (5) may play a signif-
icant role in searching for non-dominated solution, we intro-
duce a radial formulation of the problem. The radial model
in connection with a common IP-solver may constitute an
important solving tool of the problem. To complete the radial
model for the generalized objective function f1, we start with
several assumptions on constants described in the previous
sub-section. It is generally supposed for the probability values
that q1 > q2 > . . . > qr . We assume that the time-distance dij
between service center location i and user location j is integer
and M denotes the maximal value of all distances. We will
use the earlier introduced location variables yi ∈ {0, 1} for
i = 1, . . . ,m and, in addition, we introduce a series of
auxiliary zero-one variables xjsk ∈ {0, 1} for j = 1, . . . , n,
s = 0, . . . ,M − 1 and k = 1, . . . , r , where subscripts j
corresponds to user location, s stands for a value of distance
and k denotes order of the first available service center in
the sequence of the nearest, second nearest and so on up to
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r-th nearest located center to the user location j. The variable
will take the value of one, if the k-th nearest center to a user j
is more distant than s and it will take the zero value otherwise.
Then, the sum xj0k + xj1k + · · · + xjM−1k represents the k-th
smallest distance from user j to a located center, due to the
following reason.

Assuming that the integer time-distance from location j to
the k-th nearest center is t , each variable xjsk of the sum, mid-
dle subscript of which is less than t , contributes by one unit to
the sum.As the remaining variables contribute by zero values,
the sum equals to t . It must be noted that this substitution
approximates the real time distance with preciseness of one
unit.

To be able to complete the model, we introduce constants
aijs for each i = 1, . . . ,m, j = 1, . . . , n, and s = 0, . . . ,
M − 1 so that aijs = 1 if and only if dij ≤ s and
aijs = 0 otherwise.

In addition, we introduce series of zero-one variables
zj ∈ {0, 1} for j = 1, . . . , n, where zj takes the value of
one, if the distance from j to the nearest located service center
exceeds the threshold D and it takes the zero value otherwise
Using the above introduced structures and decision vari-

ables, we constitute the following model [11].

Minimize f 1(y, x, z) =
∑n

j=1
bj

∑r

k=1
qk

∑M−1

s=0
xjsk (6)

Subject to
∑m

i=1
yi = p (7)∑r

k=1
xjsk+

∑m

i=1
aijsyi ≥ r for j = 1, . . . , n,

s = 0, . . . ,M − 1 (8)∑n

j=1
bjzj ≤ B (9)

zj +
∑m

i=1
aijDyi ≥ 1 for j = 1, . . . n (10)

yi ∈ {0, 1} for i = 1, . . . ,m (11)

xjsk ∈ {0, 1} for j = 1, . . . , n,

s = 0, . . . ,M − 1, k = 1, . . . , r (12)

zj ∈ {0, 1} for j = 1, . . . , n (13)

The objective function (6) expresses the expected sum
of response time distances and it is denoted as generalized
disutility. Constraint (7) limits the number of located service
centers by the constant p. Each constraint of the series (8)
gives relation between location variables yi and those auxil-
iary variables xjsk , which are connected with distance s from
users’ location j to r-nearest located centers. It can be noticed
that if each center is located outside the radius s from the
user’s location j then the second sum of the left-hand-side
of (8) equals to zero and thus the first sum has to equal to r .
In general, the sum of auxiliary variables xjsk equals at least to
the positive difference of r and the number of service centers,
which are located in the radius s from the user’s location j.
As the minimized objective function (6) can be seen as a

positively weighted double sum of formulae q1xjs1+ + qrxjsr
and the sequence {qk} is decreasing, the case xjs1+ +xjsr < r
will cause that the integer value of the sum xjs1+ +xjsr will
deployed among the individual zero-one variables so that

the variables with the lowest subscript k will be given by
zero value, to minimize the expression q1 xjs1+ +qrxjsr . This
mode of deployment ensures that xj0k + xj1k+ · · ·+xjM−1k ≤
xj0k+1 + xj1k+1+ · · ·+xjM−1k+1 holds for k = 1, . . . ,
r − 1 and thus xj0k+ xj1k+ · · ·+xjM−1k corresponds to the
distance from location j to the k-th nearest service center in
the optimal solution of the problem.

The constraints (9) and (10) assure that the number of
inhabitants behind the thresholdD is less than a given limit B.
More specifically, the constraint (10) assures the implication
that if no center is located in radius D from the dwelling
place j, then zj must equal to one. It causes that quantity bj
will be included in the sum of the left-hand-side of (9).

The model (6) – (13) imitates performance of a real emer-
gency service system with bigger accuracy than the pre-
vious models, which were based on the assumption that a
user’s demand is satisfied from the nearest service center.
The bigger accuracy is balanced by bigger complexity of
the suggested model and thus it is questionable, which value
of r should be applied to the modelled situation to keep
computational time of the associated optimization process in
an acceptable limit. Fortunately, thanks to sharp decrease of
the probability values qk in the real systems, the relevant value
of r is about three [22].

III. AN EXACT APPROACH TO PARETO FRONT
DETERMINATION
Let us denote F1(u) the optimal value of (6) obtained by
solving the problem (6) – (13) for the value of u substituted
for the right-hand-side B in (9). Let y(u) be the associated
optimal solution of the problem (6)-(13). It holds f1(y(u)) =
F1(u) and f2(y(u)) ≤ u. As diminishing of B makes the set of
feasible solutions of (6) – (13) smaller, then F1(U ) ≤ F1(u)
for every pair of reals U and u, which satisfies U> u. It can
be easily derived from the above-mentioned definition of
non-dominated solution that if F1(U ) = F1(u) holds, then
there is no non-dominated solution y such that U ≥ f2(y) > u.
In addition, if F1(U ) < F1(u) holds, then there is at least one
non dominated solution y, for which f2(y(U )) ≥ f2(y) > u and
F1(U ) ≤ f1(y) < F1(u).
To substantiate correctness of the following algorithm,

we draw attention to some features of the solved problem.
As mentioned above, the set Y of all feasible solutions of
the p-location problem is finite and thus the set of all non-
dominated solutions must be finite as well.

As the quantities bj of inhabitants of the individual
dwelling places are integer, the sum at the left-hand-side of
the constraint (9) is also integer and thus only integer values
can be taken into account, when range of F1(u) is inspected.
In other words, two different members of Pareto front have to
differ at least by unit in the value of f2. These features justify
the proposition that an unknown non-dominated solution y
satisfying f2(y(U )) ≥ f2(y) > u and F1(U ) ≤ f1(y) < F1(u)
can be determined by a finite bisection process performed in
the interval (u, U ]. It must be underlined that the half-open
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interval (u,U ] denotes here only set of integers of the interval
and, furthermore, u and U are also integers.

The suggested bisection process tries to determine
such non-dominated solution y, for which the difference
f2(y(U )) - f2(y) is minimal. To perform the basic trial, if u < v
the value of v is determined by v = b (U + u) / 2 c and values
F1(v) and f2(y(v)) are computed, otherwiseU = u+ 1 and the
bisection process terminates.

Then, the following propositions can be made:
If F1(U ) = F1(v), then there is no non-dominated solution

y with f2(y) ∈ (v, U ] and thus the interval can be reduced to
(u, v]. In this case F1(v) < F1(u) holds.

If F1(U ) < F1(v), then the interval (u, U ] can be reduced
to (v, U ].
As each determination of F1(v) asks for considerable

amount of computational time necessary for solving (6)-(13),
we suggested the following process of Pareto front determi-
nation, which is based on the bisection, but which exploits
the information of all performed computations of the function
F1(v). The suggested process produces step-by-step the series
of non-dominated solutions starting from the solution with
the lowest value of f1 and the highest value of f2. The starting
value of U enters the process as an upper bound of f2 of all
non-dominated solutions.

The process processes a stack L, which is operated as a
first-in-last-out list (FILO). The k-th record of the list con-
sists of three elements L1(k), L2(k), L3(k), where L3(k) is a
solution y, L1(k) is the value f1(y) and L2(k) is the value f2(y).
The subscript noL points at the top of the stack, i.e., it points
at the most recently saved record. The stack L contains the
solutions, which are candidates for being a non-dominated
solution. The searching process performs according to the
following steps.

0. {Initialization}
Initialize U by the input value and compute F1(U ),
y(U ) and f2(y(U )) according to (6)-(13). Initialize the
stack L by noL = 1, L1(noL) = f1(y), L2(noL) = f2(y)
and L3(noL) = y, where y is the input non-dominated
solution with minimal value of f2. Initialize u by
the value of L2(noL). Comment: It is assumed that
F1(U ) < F1(u). Otherwise, the only non-dominated
solution of the problem is L3(1).

1. {Bisection}
Determine v = b(U + u) / 2c and compute F1(v), y(v)
and f2(y(v)) solving the problem (6)-(13).

2. {Decision on reduction of interval (u, U ] to (u, v] due
to no non-dominated solution between U and v}
If F1(U ) = F1(v), then update U = v, F1(U ) = F1(v),
f2(y(U ))= f2(y(v)), y(U )= y(v) and go to 1. Otherwise
go to 3.

3. {Decision on y(U ) being a non-dominated solution}
IfU > v+ 1, then ifF1(U ) < F1(v), then update noL=
noL + 1 and insert the triple F1(v), f2(y(v)), y(v) into L
as L1(noL), L2(noL) and L3(noL) respectively. Update
u = v, F1(u) = F1(v), f2(y(u)) = f2(y(v)), y(u) = y(v)
and go to 1.

Otherwise {U = v+ 1, i.e., y(U ) is a non-dominated
solution} insert the solution y(U ) into the set of
non-dominated solutions and go to 4.

4. {Decision on reduction of interval (u, U ] to (u, v]
due to the only non-dominated solution y(U ) has been
revealed.}
If F1(v) < F1(u) then update U = v, F1(U ) = F1(v),
f2(y(U ))= f2(y(v)), y(U )= y(v) and go to 1. Otherwise
go to 5.

5. {Decision on searching process termination.}
If noL > 1, then update U = L2(noL), F1(U ) =
L1(noL), y(U ) = L3(noL) and noL = noL − 1. Update
u = L2(noL), F1(u) = L1(noL), y(u) = L3(noL) and
go to 1.
Otherwise insert solution L3(1) into the set of non-
dominated solutions and terminate.

The basic operation of the above algorithm is represented by
solving of integer programming problem (6) − (13) by the
branch-and-bound method. Even if the p-location problem is
the polynomial one for fixed number of located centers, its
enormous complexity is O(mp), what approves using a com-
mon IP-solver equipped with the branch-and-bound method,
which does not ensure the polynomial complexity, but, thanks
to the mentioned radial approach, it reaches optimal solution
in acceptable computational time, when applied once. The
situation considerably changes, when the basic operation is
embedded in the presented bi-section algorithm determined
for Pareto front constituting.

If one performance of the basic operation is considered as
a unit, then the above algorithm finds the most right member
of the Pareto front with complexity log2(N ), where N is
the length of the interval (u, U ] and only integers are taken
into account. The number of necessary basic operations for
detecting thewhole Pareto front depends on unknown number
of the Pareto front members. It can be easily derived that if
the number of Pareto front members is k and k = 2a, then
k(1 + log2I (N/k)) – 1 basic operations is enough to deter-
mine the whole Pareto front in the worst case. Nevertheless,
if k ≈ N, then N operations are necessary.

IV. HYBRIDIZED GENETIC ALGORITHM
FOR DETERMINATION OF A SET OF
NON-DOMINATED SOLUTIONS
A. GENETIC ALGORITHM FOR BI-CRITERIA
P-LOCATION PROBLEM
Genetic algorithm (GA) is a metaheuristic inspired by Dar-
winian evolution theory. It works with populations of indi-
viduals, where each individual usually corresponds to a
feasible solution of the solved problem. In the course of
the algorithm execution, these populations are periodically
exchanged. Candidates for the entry into the new population
are created by performing the operations of crossover and
mutation with the individuals of the previous population.
The new population is then built from the candidates by
operation called selection. Due to the specific properties of
the solved problem, we designed our own implementation
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of GA,which allowed us to significantly speed up the routines
used.

The set of non-dominated solutions is maintained in the
form of an elite set. This set is updated only when a new
non-dominated solution is found or if an element of the set
becomes dominated by a newly found solution, otherwise it
passes through the populations unchanged.

In the implemented algorithm we use several subroutines.
First of them is the basic operation of the genetic algorithm –
crossover. Input into crossover are two individuals called
parents and output are also two individuals called offspring.
Each individual is represented by a list of located centers.
Operation of the subroutine is expressed in the following
scheme.

Crossover(y1, y2):
0. {Initialization}

Initialize o1, o2 as empty lists.
1. {Common locations}

Create a list c of center locations that are present in both
parents y1, y2.
Create another list d of center locations that are present
in one parent, but not in the other.

2. {Offspring creation}
Insert all the center locations from c into both o1,
and o2.
Randomly shuffle locations in d . Divide d into two
equal halves d1 and d2. Insert locations from d1 into
o1 and locations from d2 into o2.

3. {Output}
Return offspring o1, o2.

Second basic subroutine of the genetic algorithm is the oper-
ation mutation. Input into mutation is a single individual m
and a hyper parameter noM giving the number of exchanges
performed during the mutation. Output is the modified indi-
vidual. This subroutine is expressed by the following steps.

Mutation(y, noM):
0. {Initialization}

Create a list c of all the centers not located in y.
1. {Mutation}

Repeat noM times:
Randomly choose index i in the list y and index
j in the list c.
Exchange center locations at y[i] and c[j].

2. {Output}
Return modified individual y.

Using these two subroutines, we can express the schema of
the implemented genetic algorithm by the following steps.

0. {Initialization}
Initialize starting population Pop. Compute the objec-
tive functions f1 and f2 for each Pop member and find
the non-dominated solutions. Place these solutions into
the elite set El. Set the starting population Pop as the
current population cPop.

1. {Termination}
If the termination rule is met, terminate. Otherwise
continue with step 2.

2. {Creation of candidates}
Create required number of candidates by repeating
the following steps: Select two individuals m1, m2
from the cPop. Perform the Crossover(m1, m2), pro-
ducing offspring o1, o2. If the condition for muta-
tion is met, then apply o1: = Mutation(o1), o2: =
Mutation(o2). Compute the objective functions f1 and
f2 of the offspring o1, o2 and place them into the set of
candidates Cas.

3. {Elite set update}
Update the elite set El with non-dominated solutions
from the set of candidates Cas.

4. {New population creation}
Create the new population Pop by inserting the whole
elite set El and filling the remaining gaps with individ-
uals from the set of candidates Cas, until the required
population size is reached. Set the new population Pop
as the current population cPop and go to step 1.

In the step 0, the starting population is initialized by ran-
domly generated feasible solutions until the required size is
achieved. Random generation of a feasible solution involves
random selection of p locations from m possible center
locations.

The termination rule, in the step 1, is based on the time
elapsed during the execution of the algorithm. When the
specified time limit is reached, the current elite set is returned
as the output of the algorithm.

Both subroutines Crossover and Mutation have, in our
implementation, computational complexity of O(m), where
m is the number of possible center locations. Subroutine
computing the values of objective functions f1 and f2 has
computational complexity of O(mpr), where p is the number
of deployed centers and r is a parameter of generalized disu-
tility objective function, in our experiments it has the value
of 3. However, since the GA as a whole has a time-based
termination rule, computation complexity of the GA would
not pose a meaningful information.

There are two points in the algorithm, where individu-
als from the population (members to perform crossover on)
or from the set of candidates (when filling in gaps in the
new population) are selected. This selection is based on the
fitness of the individuals. Fitness represents the quality of
solutions and is therefore dependent on the values of objective
functions f1 and f2. Fitness of a feasible solution x is given
by (14). The parameter α allows us to manage the selection
process towards prioritizing one or the other objective func-
tion. Values of the objective functions in (14) are scaled to the
interval [0, 1].

g (α, x) = α ∗ f1 (x)+ (1− α) ∗ f2(x) (14)

We suggested and tested three strategies for setting the
value of coefficient α.

The first strategy consists in setting α at the beginning
of the algorithm and keeping it constant during the whole
execution.
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The second strategy divides the execution time into three
parts. In the first part, α is set to the value of 1, and therefore
the algorithm considers only the objective function f1 in the
operation of selection. In the second part, α is set to the
value of 0, and therefore the fitness value depends only on
objective function f2. Finally, in the third part, α is set to the
value of 0.5, which causes that the selection considers both
objective functions equally.

The third strategy is similar to the previous one and it
differs only in the third part of the execution. In this case,
the value of α is modified dynamically, based on the cur-
rent elite set. These adaptive changes enable to manage the
search in that direction, in which the greatest potential of
finding a new non-dominated solution is expected. Deter-
mination of the direction is based on the assumption that
the elite set is a subset of Pareto set. Under this hypothesis,
it can be seen in Fig. 3 that the only space, where missing
Pareto set solutions could be situated, corresponds to the
union of rectangles formed by adjacent elite set solutions.
For each rectangle, its top left corner is given by one elite
set solution and its bottom right corner by the following
elite set solution. Then it can be expected that the greatest
potential to find a missing Pareto set solution of the Pareto
front is in the part, where the area of these rectangles is the
largest.

B. HYBRIDIZATION OF GENETIC ALGORITHM
Genetic algorithms are usually good in performing global
search and finding promising regions of the solution space.
But they may be slow in converging to the best solution in
these regions. The two processes are called the exploration
and the exploitation. It is possible to hybridize a genetic algo-
rithm with the use of simple heuristics, which can accelerate
the exploitation process [15]. In this setting, such arbitrary
heuristic is called ‘‘meme’’. While the processes of a genetic
algorithm are inspired by the biological evolution, memes are
more similar to the cultural evolution [21].

The memes employed in our implementation of GA are
exchange heuristics based on neighborhood search. The
neighborhood of a current solution consists of all the solu-
tions which differ from the current solution in exactly one
service center location. We used two exchange heuristics,
namely the best admissible and the first admissible.
The best admissible heuristic searches the whole neigh-

borhood of the current solution and takes the neighbor with
the best value of fitness. If fitness of this neighbor is better
than the fitness of the current solution, then the neighbor is
declared as the current solution and the process repeats.

The first admissible heuristic also searches the neigh-
borhood of the current solution. The difference from the
best admissible heuristic is such that if it encounters a
neighbor with better fitness value than the current solution,
then this neighbor is immediately declared as the current
solution and the search is restarted with the new current
solution.

In both heuristics, we limit the maximal number of the
neighborhood search repetitions by a hyperparameter. That
enables us to limit the amount of computational resources
used by the memes. The memes are applied to solutions of
the elite set and the probability that a meme will be applied
to a solution is given by another hyperparameter.

C. TOOLS OF TUNING
Performance of a GA or other evolutionary metaheuris-
tics in general depends on the choice of hyperparameter
values. When the hyperparameter value is to be set, inter-
actions among other hyperparameters must be considered.
A simple but expensive approach to hyperparameter tuning
is an exhaustive grid search. The grid search means that each
combination of relevant values of different hyperparameters
is tested.

First a set is formed from combinations of relevant
hyperparameter values and then, the algorithm is executed
with each of these combinations on some representative
test problem. Preliminary experience with tuning similar
algorithms has provided us with some reasonable limits.
Metaheuristics are generally stochastic algorithms; there-
fore, it is a common practice to perform several runs
with each configuration of hyperparameters and to take the
mean of a chosen performance quality criterion. If com-
binations of values for hyperparameters are chosen care-
fully, grid search is able to provide a good hyperparameter
configuration for the test problem. However, it is possible
that the determined hyperparameter configuration will not
perform well for different problems. Substantial disadvan-
tage of the grid search is its enormous time complexity,
which is not practical for case of an algorithm with many
hyperparameters.

Much simpler approach to hyperparameter tuning also
begins with choosing a set of reasonable values for each
hyperparameter. Then, an order of hyperparameters and a
starting combination of hyperparameter values are chosen.
The process of hyperparameter configurations testing is exe-
cuted step by step, where each step corresponds with one
of the hyperparameters in the chosen order. For each hyper-
parameter, iteration over the set of relevant values of the
processed hyperparameter is done so that configuration with
each of these values is tested. Values of the other hyperparam-
eters are kept constant during this process. Value, for which
the best average performance quality criterion is attained,
is incorporated into the configuration and processing of the
next hyperparameter follows. The whole process can be
restarted again with the obtained hyperparameter configura-
tion used as a starting configuration, to ensure its stability.
We call this hyperparameter tuning approach ‘‘one-by-one’’.
Authors in the paper [2] tested both mentioned approaches
to the task of tuning hyperparameters of a two-objective GA.
Their results show that in most cases there is no statistically
significant difference between the solutions obtained by these
approaches.
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FIGURE 3. Quality of the non-dominated set is given by the hatched area
under the black line connecting the non-dominated solutions.

Based on the results of the study [2], we decided to
use for our GA the one-by-one tuning approach. This is
mainly because of a large number of hyperparameters such
as population size, number of candidates created in popu-
lation exchanges, mutation probability, number of changes
in a single mutation, strategy for setting the α parameter
from equation (14), type of used meme and others. Practical
execution of the hyperparameter tuning process is described
in section V-B.

During the process of hyperparameter tuning, we assess the
quality of a hyperparameter configuration by a performance
quality criterion. This criterion incorporates both the speed of
convergence during the algorithm execution and the quality of
obtained non-dominated set.

Measure of quality of non-dominated set is displayed
in Fig. 3. It is given by the area under the line con-
necting the non-dominated solutions plotted as points in
two-dimensional space with coordinates given by the val-
ues of objective functions. Both objective functions of these
solutions are scaled and shifted for their values to lie in the
interval [0, 1]. Since we minimize both objective functions,
it naturally follows that smaller area represents better solu-
tion. We refer to this measure as an area criterion. Compar-
ison of two sets of non-dominated solutions is demonstrated
in Fig. 4.

Measure of algorithm convergence speed can also be
visualized geometrically. Comparison of two algorithm exe-
cutions is displayed in the Fig. 5. Time elapsed since
the beginning of the execution of the algorithm is dis-
played on the horizontal axis. On the vertical axis is the

FIGURE 4. Comparison of two sets of non-dominated solutions. Set
displayed by solid black points has smaller area under the line, therefore
it is considered better.

FIGURE 5. Comparison of two executions of the algorithm by the means
of performance quality criterion. Criterion is given by the area under the
plot. The execution corresponding to the hatched area is considered
better because it has a lower value of the criterion.

above-mentioned area criterion of the elite set achieved in
that particular time. Performance quality criterion is then
given by the area under the plot. Algorithm execution cor-
responding to the hatched area in Fig. 5 is considered to be
better because its area is smaller.
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FIGURE 6. Resulting non-dominated sets when employing different strategies for modification of parameter α. The top line shows from left
to right the results of the first strategy for α values fixed at 1, 0, 0,5 respectively. The second row displays results of using the second and
third strategy, respectively.

V. COMPUTATIONAL STUDY
A. BENCHMARKS
This section is devoted to the computational study aimed at
studying performance of the suggested genetic algorithm and
the exact bisection process from the viewpoint of computa-
tional time demand and the solution accuracy.

The real instances of p-location problems were obtained
from the road network of Slovak Republic and the emer-
gency health care systems organized in particular self-
governing regions. The individual instances are named by the
names of capital cities of the regions. The list of the eight
instances consists of Bratislava (BA, 87, 14), Banská Bystrica
(BB, 515, 36), Košice (KE, 460, 32), Nitra (NR, 350, 27),
Prešov (PO, 664, 32), Trenčín (TN, 276, 21), Trnava
(TT, 249, 18) and Žilina (ZA, 315, 29). The triples attached
to each instance name contains the following instance char-
acteristics: The first member is the further used abbreviation
of the instance name. The second member gives the number
m of all possible center locations and the last member stands
for the number p of deployed centers.

All cities and villages denoted as communities were taken
into account. The coefficient bj corresponds to the number of
inhabitants of a community j given in hundreds.
The set of possible service center locations and the set of

system users’ locations are identical and correspond to the set
of communities.

Here, the problem with objective function (2) was solved
for r = 3. As discussed in [22], three nearest service cen-
ters are enough to model real emergency medical service
system with satisfactory solution accuracy. The associated
coefficients qk for k = 1, . . . , r were set in percentage as
follows: q1 = 77.063%, q2 = 16.476% and q3 = 100% −
q1 − q2. These values were obtained from a simulation model
of existing system in Slovakia as described in [22]. The
threshold D was set up at the value of 10.

An individual experiment was organized so that the exact
solution of the underlying p-location problem was computed
using the radial approach described in [10] and [11]. To obtain
the exact solution of the problem, the optimization software
FICO Xpress 7.3 was used, and the experiments were run on
a PC equipped with the Intel R© CoreTM i7 5500U processor
with clock speed 2.4 GHz and with 16 GB RAM.

The genetic algorithm including the above-described
hybridization was programmed in programming language
JAVA in NetBeans IDE 7.3 and the associated experiments
were run on a PC equipped with the Intel R© CoreTM i7-860
processor with clock speed 2.8 GHz and with 8 GB RAM
installed.

RAM usage on both computers remained below 8 GB
during the algorithm execution, so the main difference was
in processor clock speed. The computer on which GA
was executed has approximately 17% higher clock speed.
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FIGURE 7. Relation of the error in area criterion of proposed GA approaches to the size of the problem instance. Size of the problem instance is
represented by the number of possible center locations. In the case of GA individual, the whiskers display single standard deviation.

TABLE 1. Results of the exact approach.

Differences in computation time between GA and exact
approach are large enough, so that this computational differ-
ence does not influence any conclusions made in the follow-
ing sections.

The bisection algorithm described in Section 3 was imple-
mented in the language ‘‘mosel’’ of the solver Xpress using
its exact optimization procedures to obtain solution of the
problem (6)-(13) for a given value of B. The Pareto front
of solutions for objectives (2) and (3) was obtained for each
instance (self-governing region) mentioned above. The num-
ber of Pareto front members and computational time neces-
sary for the associated bisection process for each instance is
referred in Table 1.

B. HEURISTICS APPROACH
The first series of experiments was focused on tuning the
parameters of the implemented GA. We used the proce-
dure explained in section 4.3, with relevant values for each
parameter determined by several initial experiments or from
previous experiments with similar algorithms. Visually inter-
esting were the effects of different strategies for modi-
fying the α coefficient from the equation of the fitness
criterion (14) in section IV-A. on the shape of the resulting
non-dominated set.

Non-dominated sets obtained by the different strategies
on the problem instance Prešov (PO, 664, 32) are displayed
in Fig. 6. For the first strategy, we can observe set members
clustered in that region of objective function space which the
current value of α in the fitness criterion (14) favors most.
In the case of α = 1 objective function f1 is minimized which
drives the solutions into the upper left part of the objective
function space. In the case of α = 0 we can observe similar
effect for objective function f2. For α = 0.5 both objective
functions are considered equally which produces a cluster
in the central part of the objective function space. Second
strategy, which during its execution once employs all three
above-mentioned values for the α coefficient produces set
members more evenly spread across the whole spectrum of
objective functions values approximating Pareto front. Even
better spread reflected in the superior value of the used
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FIGURE 8. Comparison of the area criterion for the results of exact algorithm, combination of 50 GA runs and the average over 50 GA runs.

performance quality criterion achieves third strategy, which
changes the value of α adaptively.

After determining good values for all parameters of the
basic algorithm, we turned to testing the hybridized version.
We tuned the parameters of the memes in a similar fashion
that we used for the basic algorithm. The first admissible
heuristic proved to provide better results than the best admis-
sible. Having tuned the hybridized algorithm, we focused on
examination of hybridization effects on the algorithm per-
formance. We tested both the basic and hybridized versions
of the algorithm and statistically evaluated the results. The
hybridized version achieved statistically significantly better
performance than the basic version in five out of eight prob-
lem instances. The difference between both versions was not
statistically significant in the remaining three instances.

C. COMPARISON
To evaluate the results of the hybridized genetic algorithm
introduced in section 4, we used Pareto front obtained by
the exact algorithm described in section 3. Each run of the
hybridized genetic algorithm was restricted by the time limit
of two minutes and each instance solution was repeated
fifty times with fixed parameter values. As the genetic algo-
rithm operations are based on random trials, each run of
the algorithm produces different results, i.e., different sets of
the non-dominated solutions. These results can be observed

TABLE 2. Area criterion comparison .

individually, or the sets of non-dominated solutions can be
merged, and the resulting combined set of the non-dominated
solutions can be considered as the algorithm output. In the
following text, we denote the results concerning the indi-
vidual GA executions as ‘‘GA individual’’ and the results
concerning the combined outputs of the fifty individual GA
executions as ‘‘GA combined’’.

Comparison criterion used in the following experiments
is the area criterion as described in section IV-C. Using
this criterion, we examined accuracy and precision of the
proposed genetic algorithm. We also observed the number
of Pareto set members for each problem instance as well as
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TABLE 3. Nondominated solutions comparison.

FIGURE 9. In the bottom plot is displayed the relation between the size
of Pareto set and the number of possible center locations. In the top plot
is displayed the relation between the average ratio of Pareto- optimal
solutions among the elite sets produced by GA individual and the number
of possible center locations.

the number of Pareto set solutions, which were found by the
metaheuristic.

A member of a set of non-dominated solutions obtained by
the genetic algorithm is referred to as Pareto-optimal, if it is
a member of the Pareto set obtained by the exact approach.

In all comparisons with individual GA executions,
the value of respective criterion is averaged over the fifty
executions.

We evaluated the performance of both the fifty individual
GA execution results and the combination of these results
by the means of computing the difference in area criterion

between solutions obtained by these GA approaches and the
exact solution. We denote this statistic as the error, and it is
a representation of the inaccuracy of the proposed GA. For
GA individual we used the average of area criterion over the
fifty obtained solutions. To examine the imprecision of the
GA individual approach, we computed the standard deviation
(sd) in the area criterion over the fifty executions. Relation
between these two closeness statistics and the number of pos-
sible center locations, in the model denoted asm, is displayed
in the Fig. 7. As we can see, the error for both GA individual
and GA combined has a raising trend for increasing number
of possible center locations. Problem instance ZA stands out
in this plot, it has the smallest error for both GA approaches,
although it is a medium sized benchmark. Raising trend of
the error is less prominent for the GA combined approach,
this could suggest that this combining approach could be
better suited for countering the increasing error of individual
executions for larger problem instances. This hypothesis is
further backed by the generally increasing trend of standard
deviation for larger problem instances. As we can see in
the Fig. 7, improvement in error in GA combined over GA
individual has a good correspondence to standard deviation
of individual solutions.

More detailed comparison of the area criterion is displayed
in Fig. 8 and the associated data are plotted in Table 2.

Another comparison was carried out for the number of
Pareto-optimal solutions contained in resulting elite sets
produced by GA individual and GA combined. For GA
individual we plotted the relation between average ratio of
Pareto-optimal solutions among the resulting elite set and the
number of possible center locations. This relation is displayed
in the top plot of Fig. 9.We can observe a sharp decrease in the
ratio of Pareto-optimal solutions in outputs for larger problem
instances. When we consider the increasing size of Pareto
sets for larger problem instances, displayed in the bottom plot
of Fig. 9, we can conclude significantly increased difficulty
of finding members of Pareto set for larger problems. This
suggests that for larger problem instances it is not necessary
to increase the size of the elite set and to rather experiment
with longer execution times.

Complete results concerning Pareto-optimal solutions in
outputs of GA are plotted in Fig. 10 and displayed in Table 3.
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FIGURE 10. Comparison of number of solutions and of Pareto optimal solutions obtained by different methods.

FIGURE 11. Comparison of a Pareto front with a combination of fifty GA runs and with a single GA run for the problem instance PO.

Comparing the test results obtained for the individual bench-
marks, the combined set of non-dominated solutions of
instance ZA contains all Pareto set solutions but one. On the

other hand, the least portion of Pareto set created by merg-
ing the fifty results of genetic algorithm was obtained
for the instance KE and contained only 46.18% of Pareto
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set solutions. Notably, both these problem instances are
among the middle sized by the number of possible center
locations and among the larger by the number of deployed
centers. The average portion of Pareto set discovered by an
individual GA run was the greatest one for the test instances
TT and ZA. The least average portion was obtained for the
test instance KE.

Execution time for different algorithmswas also compared.
Single GA execution time was limited to 120 s, therefore
execution times ofGA individual (120 s) andGA combined
(6000 s) are constant for all test instances. Execution times
for exact method are reported in Table 1. As can be seen
in the table, execution times of a single GA run are much
shorter than the execution times of exact method in all tested
instances of the problem.

It is worth to notice that fifty GA runs were several
times faster than the exact method in solving the largest test
instances such as KE, BB or PO.

To show that good results can be obtained by GA even in
the largest test instance PO, we plotted a comparison of the
Pareto front with the combination of fifty GA runs and with a
single selected GA run. This comparison is shown in Fig. 11.
The selected single GA run contains ten Pareto-optimal solu-
tions and the size of the resulting elite set is 76. As can be
seen in Fig. 11, even the single GA run provides a relatively
good set of choices for the system design, which are spread
over the whole spectrum of the Pareto optimal solutions. The
combination of the fifty GA runs approximates the Pareto
front even better.

VI. CONCLUSION
The presented research was devoted to the approaches, which
can find either the Pareto front or its satisfactory approxi-
mation for the bi-criteria public service system design prob-
lem. An exact bi-section method was suggested to be able
to produce the exact Pareto front for the problem, which
includes generalized disutility as one of the considered crite-
ria. The second criterion corresponds with one of the possible
fairness criteria. The further studied approach was based on
an evolutionary metaheuristic represented by a hybridized
genetic algorithm. Within this paper, the hypothesis was
verified that the hybridized genetic algorithm can approxi-
mate the Pareto front of solutions satisfactorily in acceptable
computational time. Nevertheless, the computational study
showed that only one run of the evolutionary process is not
enough to obtain a substantial part of the Pareto front even
if the genetic algorithm is carefully tuned and hybridized
with improving meme. We proved that the key to success
is repeating the suggested algorithm run and merging the
obtained results.

The achieved results prove that the suggested heuristic
approach can provide a good approximation of the Pareto
front in the sense of the measure of quality of non-dominated
sets. For practical reasons, the presented method can replace
the exact approach, which is very time consuming and often
fails, when large problem instances are solved.

However, we observed increasing gap between solutions
obtained by GA and exact solutions for larger test instances.
Tests we performed suggest that for solving larger prob-
lems, longer execution times of individual GA solutions
may be required and it’s possible that the GA will not
be able to reach accuracy as high as it did for the tested
problem instances. Memory requirements of the suggested
GA approach are increasing linearly with rising number of
deployed centers and with the number of possible center loca-
tions and therefore should not pose any limitation in practical
settings.
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