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ABSTRACT Power grids are cyber-physical systems and can be modelled as network systems where
individual units (generators, busbars and loads) are interconnected through physical and cyber links. Network
components (nodes/edges) may undergo intentional and/or random failures. In catastrophic cases, a failure
initiating from a small set of these components can quickly propagate through the whole network, leading to
a cascade of failures that might force a deep whole-grid blackout. Often network components have different
vitality and protecting some is more critical than others. This manuscript aims to provide a focused overview
of modelling power grids as complex networks and their resilience and reliability analysis. We also perform
a critical review of vitality metrics and their precision in power grid resilience analysis. The review is
accompanied by some simulations on benchmark and real power grids to show the applicability of these
concepts in studying resilience.

INDEX TERMS Power grids, resilience and reliability, complex networks.

I. INTRODUCTION
Many natural and man-made systems can be modelled as
network systems where individual units interact over connec-
tion links. Network science, which was first started within
the physics community, is now a mature field of interdisci-
plinary science with many potential applications [1]. Real
networks share a number of common structural properties,
such as scale-free degree distribution, small-worldness, and
community structure [2]. This indicates that insights provided
bymodel networks can have significant interpretations of real
systems.

Power grids are perhaps the most important engineering
systems that can be modelled as networks. They are among
the most critical infrastructures and daily lives are disrupted
without their proper functioning. Grid failure may lead to
significant socio-economic consequences [1], [2]. The exist-
ing power grids have been developed based on resilience
principles to deal with known critical events. This has made
them one of the most reliable complex infrastructures of the
current century [3]. However, in recent years, social and envi-
ronmental concerns have pushed for cleaner energy genera-
tion. This, along with advances in renewable energy sources,
is changing the structure of power grids towards complex
systems comprised of many distributed generations [4]–[6],
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which does not necessarily inherits the resilience or reliabil-
ity. Modern power grids are indeed cyber-physical systems
composed of interacting physical power grid, and cyber and
communication networks [7]. Such a complex infrastructure
requires a new interdisciplinary paradigm for control and
optimisation [8], [9] as well as for resilience and reliability
analysis [3], [10].

Despite all advances in the design, installation and
operation of power grids, failures in power grids are unavoid-
able [11], [12]. Power grids, like any other network systems,
may undergo random and/or intentional failures in their com-
ponents. These failures may happen because of electrical
and/or mechanical faults, extreme weather events, or faulty
components [13]. In some cases, because of the improper
reaction of protective devices, a single or partial failure may
quickly propagate to other parts [14]–[16]. If no effective
action is taken to limit and clear these failures, a cascaded
failure happens which may result in a wide-spread blackout
over a significant portion of loads [17]–[23].

To quantify damages in a power grid, as a consequence
of a failure or attack, different yet related concepts have
been proposed in the literature, such as resilience, reliability,
robustness, fragility, and vulnerability [24]. A network is
called robust if it can maintain its normal operation against
a class of unexpected events. Vulnerability is defined as how
a network can continuously provide its main functionalities
under random failures or intentional attacks [25]. Resilience
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was first defined by C.S. Holling in 1973 as a measure of ‘‘the
persistence of systems and of their ability to absorb change
and disturbance and still maintain the same relationships
between populations or state variables.’’ [3]. The resilience
of infrastructures can be studied either in the short-term,
i.e. before, during and after an event, or in the long-term
where the resilience enhancement, using the information and
experiences from the past events, is of interest [3], [13], [26].
For instance, an integrated resilience-enhancement frame-
work has been proposed in the form of a robust optimisation
model, which provides effective and efficient responses in
both preventive and emergency states of a power grid [27].

The resilience of systems has been studied from both con-
trol systems and network sciences perspectives [28], [29],
where the latter mainly focuses on the complex networks
paradigm [30]. The Complex Network (CN) concept pro-
vides a promising framework for the analysis and control of
complex power grids, in which generators and loads can be
considered as nodes connected over power cables or com-
munication links [31]–[36]. The study of complex networks
has been mainly a branch of applied mathematics known as
graph theory [37]. One of the interesting topics in this field is
centrality (or vital entities), which is mainly about identifying
nodes and edges with the maximum influence on a desired
performance [38]–[40]. It has been shown that networks may
disintegrate considerably faster when their nodes are removed
deliberately rather than randomly [41]. Therefore, the iden-
tification of central components is interesting for network
operators aiming for resilient performance. It is also fascinat-
ing for attackers as they may result in maximum disruption.
Although many centrality measures have been introduced in
the literature, they need to be modified to include physical
and electrical properties and limitations for power grid appli-
cations [42], [43].

The aim of this manuscript is twofold. First, we review
the existing techniques to model modern power grids as
networks and study their unique properties as compared to
model networks. We then provide a comprehensive review
of the latest state-of-the-art in resilience and reliability of
power networks and the role of different centrality measures
in studying them. The manuscript is organised as follows.
The models applicable to large-scale power grids are intro-
duced in Section II. In Section III, a detailed review on the
events that affect reliability and resilience of power grids is
provided. A literature review on different methods of measur-
ing reliability and resilience of power grids, including flow-
based and CN-based techniques, is provided in Section IV.
Simulation results in Section V compare the performance of
these centrality metrics when applied to some benchmark and
real power grids. Finally, concluding remarks and the future
outlook are provided in Section VI.

II. POWER GRIDS MODELING
The resilience and reliability of conventional power grids
against small perturbations as well as severe faults have
been heavily studied in the literature [3], [44]–[48].

However, with the increased penetration of renewable energy
resources, the complex networks approach has recently
attracted much attention in modelling and control of power
grids [7], [32], [34], [49]. In this section, twomain approaches
in modelling modern power grids, namely ‘complex net-
works’ and ‘cyber-physical systems, are reviewed. These
models facilitate reliability and resilience studies of power
grids through identification of vulnerable points and pre-
dicting potential failures [50]. We see that both of these
potentially correlated approaches have their own drawbacks
in providing practical models for modern power grids which
is indeed a gap for further research.

A. COMPLEX NETWORKS AND GRAPH THEORY
In the context of graph theory, a complex network is mod-
elled as a graph of nodes connected over a number of
links. It is shown as G = (V , E) where V is the set of
N nodes having either static or dynamical behaviours. The
set E ⊂ V × V includes links that establish a network
among nodes. The network may contain directed/undirected
and weighted/unweighted links. The pair (i, j) or aij denotes
the edge between nodes i and j. The matrix A= [aij] is called
the adjacency matrix in which aij takes a non-zero value if
there is a link from node i to node j. Two nodes connected
by an edge are referred to as adjacent or neighbouring nodes.
The set of adjacent nodes to the ith node is defined as Ni =
{j ∈ V ; aij 6= 0}. In unweighted graphs, aij ∈ {0, 1} resulting
in a binary adjacency matrix. In weighted graphs, each edge
(i, j) is labelled with a weight wij ∈ R+. These weights
may quantify the strength of interactions between nodes using
parameters such as distance, force, and impedance. L = [lij]
is the Laplacian matrix, which is a zero-row sum matrix
with off-diagonal elements equal to −wij (−1 in unweighted
graphs), if there is a link, and 0 otherwise [51]. The diagonal
elements of L are the corresponding degree of the nodes. The
topology of the network can be either static or evolving. The
degree of ith node of a network is defined as the number of
edges connected to that node, i.e. di = 6jaij. If the network
is directed, we have in-degree d ini = 6jaji which shows the
number of edges coming into ith node, and the out-degree
douti = 6jaij which is the number of edges going out of it.
The degree distribution shows the information on how links
are distributed among nodes of the network.

A walk from node i to node j is a series of nodes and edges
starting from node i and ending to node j. The length of a
walk is defined as the number of edges in it. A walk which
does not pass through a node more than once is called a path.
A path between nodes i and j, with the minimum number of
edges, is referred to as the shortest path between these nodes
and is shown by dij in this paper. The average shortest path S̄
of a network is defined as

S =
1

N (N − 1)

∑
i,j∈V

dij (1)

The average path length typically shows how separate
the nodes of a network are. In this paper, all networks are
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supposed to be connected, i.e. there is a path between any
two distinct nodes of the network. The existence of closed
walks, or the cycle structure in a network, is conveyed by the
‘‘clustering coefficient’’. This feature shows the presence of
triangles or loops in a network and quantifies the efficiency
of the network in transferring information locally.

B. POWER GRIDS AS COMPLEX NETWORKS
The study of real-world network systems often requires
sophisticated network models to mimic their properties. Tra-
ditionally, these systems used to be modelled as ‘‘random
graphs’’. This approach, proposed by two mathematicians
Paul Erdős and Alfréd Rényi in 1960, lies at the intersection
of the graph theory and the probability theory, and consid-
ers a set of random edges placed between the nodes of a
graph [52], [53]. They proposed a model for homogenous
networks where nodes are connected with the probability p.
Random graphs were the only model to deal with network
systems for a long time.

The last two decades, however, witnessed tremendous
progress in uncovering generic properties of different kinds
of complex networks. It was discovered that many real-world
networks have some common properties, such as small-world
effect or scale-free degree distribution. Social networks and
power grids have small-world property where any two nodes
are connected through a path of a rather small length, that
scales logarithmically with the network size [54]. Watts and
Strogatz investigated this feature in their seminal Nature
article [55]. They proposed a model for networks with this
feature which starts from a lattice, and then at each step,
a link is rewired with a probability p. Thus, it covers networks
from a completely regular to a completely random topology
as p varies. For some values of the rewiring probability,
the produced networks have both small-world property and
high clustering coefficient, two properties that are observed
simultaneously in real systems.

Although networks with Watts-Strogatz (WS) topology
are often more realistic than the Erdős-Rényi (ER) ran-
dom model, both of them show almost the same degree
distribution [53]. This means that many of the nodes have
almost the same number of connections, a feature observed in
homogenous networks. However, many real networks, such
as the World Wide Web and the Internet, do not follow
such a degree distribution. To address these heterogeneous
networks, Barabasi and Albert proposed a model resulting
in networks with power-law degree distribution which are
often called Scale-Free (SF) networks [56]. In these networks,
nodes with higher degrees have more chance to receive
connections from newly added nodes than those with lower
degrees. The following algorithm is proposed in [57], [58]
to generate SF networks. Starting with a fully connected
graph of small size, at each step, a new node is added to the
network and creates m links with the already existing nodes.
The probability of creating an edge between the newly added
nodes and an existing node i is (di + B)/

∑
j(dj + B), where

di is the degree of node i and B is a constant controlling the

heterogeneity of the network; as B increases, heterogeneity of
the network decreases [57], [58].

Graph-theoretic tools, developed in the context of complex
networks, have been applied to study different phenomena
in power grids [25]. These research activities have mainly
studied topological properties, such as degree distribution
and efficiency, of a power grid to identify whether it shows
WS, SF, or ER behaviours [24], [59]. A review on the topo-
logical properties of the American and the European high-
voltage networks (the whole or parts of them) as well as the
Chinese, South Korean, and Indian ones revealed that their
degree distributions tend to be exponential with some minor
exemptions [60]–[62]. Although they might be considered
as power-law at first sight, many of these power networks
show features of the small-world networks. For example,
clustering coefficients and average shortest paths of these net-
works are significantly larger than ER and SF networks [41].
These research works concluded that power grids are gener-
ally resilient to random breakdowns because of their small-
world feature, while they are extremely vulnerable against
targeted attacks [60]. A similar study showed that the Iranian
high-voltage power grid is a small-world network with a
relatively poor performance against cascaded failures [63].
There exists a notable correlation between the degree distri-
bution of the European electricity transmission system and
its reliability [64]. The fragility of the European high-voltage
network depends only on its size, where it increases logarith-
mically with the size of the network [65]. The topology of
a power grid also impacts failure propagation. For example,
the propagation failure rate decreases in sparse networks [66].
Evolutionary algorithms can be applied to design a power grid
topology with maximum robustness to suppress cascading
failure propagation [67]. It has also been shown that networks
with a high average clustering coefficient together with a
large size are highly sensitive to dispatch scenarios [68].
Table 1 summarizes some of these achievements.

TABLE 1. Modelling of different real-world power grids.

Power Grids as Multi-Agent Systems: The concept of
Multi-Agent Systems (MAS) provides another abstrac-
tion of large-scale systems in the context of ‘systems
engineering’ [69]. Although CN and MAS were origi-
nated in physics and engineering disciplines, respectively,
they address almost similar problems and can be viewed
from a unified approach [70]. With the paradigm shift
from centralised power generation to Distributed Energy
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Resources (DERs) as well as advancements in commu-
nication technologies, power grid modelling and analysis
using MAS-based approaches is of high interest within the
power system community [71]–[73]. Conventionally, moni-
toring and control of power grids were implemented over cen-
tralised Supervisory Control and Data Acquisition (SCADA)
systems [74]. Based on MAS strategy, different monitoring,
protection and control requirements can be distributed among
power units and can be managed in a fast and intelligent
way [75], [76]. Agents can perform different algorithms
collaboratively, such as load-shedding [77], protection [78],
voltage and frequency control [79]–[81], energy sharing and
trading [82], [83], electric vehicle management in distribution
grids [84], fault and attack tolerant mechanisms [85], [86],
optimisation [87], resource allocation and scheduling [88],
and power system restoration [89], [90]. This makes MAS
a strong tool for the analysis and control of micro and smart
grids [91].

The MAS approach has been heavily studied in different
engineering disciplines, including computer and control
engineering, and has a solid mathematical background
that supports its applications in power grids [92]. Unlike
CN-based approaches, which are mainly designed to manip-
ulate large-scale grids by focusing mainly on the topol-
ogy, the focus of MAS-based approaches is on dynamical
behaviours of small-scale power grids. Therefore, there is
still a gap in modelling large-scale dynamical power grids
for analysis and control purposes, especially in the presence
of renewable resources, which indeed requires combining
MAS- and CN-based approaches [93].

C. POWER GRIDS AS CYBER-PHYSICAL SYSTEMS
In recent decades, the capabilities of power grids are
expanded by integrating communication, computation and
control technologies, resulting in so-called smart grids.
Although promising to deliver reliable power to loads,
they are technically complicated Cyber-Physical Systems
(CPS) [94]. In a CPS, a physical system, such as a power net-
work, is monitored and controlled using processing modules
and control loops in the cyber layer [95]. CPS is a structurally
multi-layer system. For example, [95] proposes a three-layer
model by augmenting ‘information’ and ‘user’ layers to the
‘physical’ one. A two-layer model for power grids, including
physical and cyber layers and considering linearized swing
equations and DC power flow, is proposed in [96] as,

E ẋ(t) = L̄x(t)+ P(t)

x =

 δ

f
φ

 , E =

 I 0 0
0 M 0
0 0 0

 ,
L̄ = −

 0 −I 0
Lg D Lgc
Lcg 0 Lc

 (2)

The state vector x includes the rotor angles δ and fre-
quencies f for n generation busses, and voltage angles φ

for all loads. P(t) is the real power demand. L̄ is an aug-
mented Laplacian matrix and includes the Laplacian of the
network among generators Lg, among loads Lc, and interac-
tion between them Lgc and Lcg. Diagonal matrices M and D
include generator inertia and damping coefficients, respec-
tively. In addition to this model, which is useful for the anal-
ysis and design of control strategies, different frameworks for
assessing features of a CPS have been proposed, see e.g. [97]
for security.

A comprehensive CPS framework for power grids is pro-
posed in Fig. 1. This model contains generation units and
loads connected over physical and cyber links. It has been
widely used in the design and optimisation of the dis-
tributed control algorithms in power grids [98]–[100]. Physi-
cal cables, that connect generators to loads, form the physical
layer. Each physical load or generator has a corresponding
cyber node. These nodes can communicate with each other
or with a control centre to implement different algorithms
for distributed control [101], optimisation [100], fault/attack
detection [102], and attack tolerance [98].

FIGURE 1. A CPS model framework for modelling power grids.

Cyber-physical interactions result in complicated scenar-
ios in the reliability analysis of power grids. There have
been several research activities to model these interactions.
For example, different mathematical tools such as Petri
Nets [103]–[105], stochastic graphs [106], and complex net-
works [107], [108] have been used to extract the interac-
tion model. In this context, power grids are also hybrid
systems containing a mixture of continuous and discrete-
time events [109]. Continuous-time dynamics, represented
by frequency, current and voltage, describe the physical pro-
cesses of this hybrid system. The discrete event dynamics
include those cyber components for monitoring, analysis and
control [109]. Hybrid system theory [110] is an approach to
the analysis and design of these systems and has been applied
to power grids. For example, the reachability analysis of a
hybrid system in the presence of constraints is applied to
study the stability of a power grid [109]. A hybrid automaton
model is also used to design a supervisory control system for
microgrids [111].

The appearance of the network topology, in the form of
Laplacian matrices, in the state-space equation (2) sparks
the brain to hire complex networks tools for analysis and
control problems. Indeed, state-space approaches to study
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these problems in modern large-scale power grids suffer from
dimensional issues and computational complexity. Tech-
niques inspired by the graph theory, such as the one proposed
in [35] to identify the frequency control leader unit, can
bring innovative and computationally efficient solutions to
this problem.
Modelling of Blackouts and Cascading Failures: Blackout

prevention is an important strategy in improving the relia-
bility of power grids [112]. Several research studies have
been conducted in both academia and industry on how the
blackout risk, especially through cascading events, can be
reduced [113]. For example, a study on the blackout in
Italy, that happened in 2003, shows that while a signifi-
cant number of nodes should be randomly failed to cause a
breakdown in an isolated network, interdependent networks
are generally highly sensitive to these failures [114], [115].
A precise model which includes the dynamical behaviour
of cascading failures can facilitate these studies [113].
Research studies on the propagation of cascading failures
can be performed using dynamical transient complex net-
work model proposed in [116], or network-based stochastic
models [117], [118]. A stochastic cascading failure model
based on the MAS approach is proposed in [119] consider-
ing interdependencies between physical and cyber networks.
In addition to model-based approaches, data-driven machine
learning techniques have been also applied to study cascading
failures [120], [121].

FIGURE 2. Unexpected events in a power grid.

III. RELIABILITY AND RESILIENCE ANALYSIS OF POWER
GRIDS
Resilience and reliability are two interconnected subjects,
but with different meanings, in the context of power grids.
IEEE 1366 standard defines reliability from a demand-side
perspective: A reliable power grid can deliver enough power
with high quality to consumers with minimum interrup-
tion [126]. The standard introduces the ‘System Average
Interruption Frequency Index (SAIFI)’ which quantifies the
number of interruptions, and ‘System Average Interruption
Duration Index (SAIDI)’ for measuring the duration of inter-
ruption for consumers. On contrary, the main concern of

resilience study is how rapidly the power grid can recover
after a disruptive event [127]. Indeed, a power grid may
meet all reliability standards while it is not resilient to major
events [128].

A. RELIABILITY OF POWER GRIDS
In the reliability analysis of power grids, different types
of events may be considered in physical and cyber layers
(see Fig. 2). Physical power networks are naturally sub-
ject to line faults, generator/load outages, and sometimes
electromagnetic pulse disturbances [129]–[131]. Commu-
nication in the cyber layer may be impacted by variable
delay or packet dropouts during normal operation or after
attacks [132]–[134]. In this section, the impacts of these
events on the reliability of power grids are surveyed.

1) OPERATIONAL RELIABILITY
Although several automation technologies have been aug-
mented to power grids for effective monitoring and con-
trol purposes, reliability of power grids is still sensitive to
operators’ decisions [135]. Events like what happened in
Southwest US in 2011 [136] clearly shows the contribution
of operators’ actions in a blackout. Human reliability is also
important in a high-quality maintenance [137]. To embed
the operators’ behaviours into models of cascaded failures,
a probabilistic approach based on Markov chains has been
proposed in [138]. [139] studied the impact of frequency of
inspections of the system components on the reliability of
power grid, and suggested one inspection per year as optimal
using a mathematical modelling.

Appropriate grid segmentation is also important to help
operators to quickly identify possible risks and act accord-
ingly, thus increasing reliability of the grid. To this end, Wide
Area Monitoring Systems (WAMP), mainly based on Phasor
Measurement Units (PMU), have been extensively studied
to increase controllability and stability of the grid [140].
Intermittence and uncertainty of renewable resources have
encouraged researchers to apply data-driven approaches,
such as those based on machine learning, for segmenta-
tion [141], [142]. For example, load pattern segmentation
can be performed in residential power grids using clustering
techniques [143]. Besides, appropriate segmentation of AC
system through DC links in HVDC grids can reduce the risk
of blackout [144], and improve the performance of the whole
system [145].

2) CYBER ISSUES AND ATTACKS
Rapid penetration of new technologies, such as renew-
able generation and AMI, in the grid has made the power
grids very dynamic. Reliable operation of such as dynamic
system needs continuous adjustments based on real-time
data, which indeed results in a complicated real-time cyber
layer [146]. A vulnerable communication system may
cause abnormal operation of power grids, and even cas-
cading failure [147], [148]. Therefore, advanced data rout-
ing and switching algorithms are required for a reliable
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operation [149]. Attacks against intelligent protection
devices, which is normally performed through the SCADA
systems, can also severely disrupt the operation of power
grid [106], [150].

In addition to individual components and services,
interconnections between physical and cyber layers make
reliability analysis of power grids complicated since fail-
ure or attack in one of the layers affects other layers as
well [151]–[153]. Different types of threats in physical and
cyber networks can be defined, including cyber-physical,
cyber-cyber, physical-cyber, and physical-physical [154].
The origin of a cyber-physical threat may be in the cyber net-
work, which may then impacts the characteristics of the phys-
ical network as well. These threats require various prevention
and mitigation approaches [154]. For instance, a communi-
cation failure led to a serious impact on the Hydro-Quebec
power grid in 1988 [155]. A mixed physical/cyber attack
on the Ukrainian power grid in 2015 [156] revealed that
any combination of physical and cyber components should
be considered in the reliability analysis of a power grid.
Li et al. [157] proposed a bi-level model for the case that
physical line disconnections are accompanied by a false data
injection in the cyber layer. The reliability of power grids
against mixed physical and cyber attacks and failures still
needs further research.

3) RELIABILITY IN DISTRIBUTION GRIDS
Commitment to mitigate greenhouse emission has not only
pushed the power generation environment towards renewable
energy resources, but has also impacted the demand side
by introducing new intermittent and unpredictable electrical
consumers such as Electric Vehicles (EV). Lack of coordi-
nation of these new technologies can significantly weaken
the reliability of distribution grid by overloading distribution
transformers [158] or reducing the quality of voltage regula-
tion [159]. With the massive increase in Photovoltaic (PV)
and energy storage batteries in distribution grids, new
local technologies, such as demand-response [160], [161],
load shifting [162] and coordination strategies [163], have
emerged to improve the reliability. These technologies are
well supported by real time data over the AMI. In addition,
demand-side ancillary services for voltage and frequency reg-
ulations are under development [164]–[166]. Besides supply-
load balancing, a reliable distribution grid requires advanced
data-driven algorithms for detection of anomalies and illegal
consumers [167], [168].

B. RESILIENCE OF POWER GRIDS
The resilience of an infrastructure can be assessed using the
‘‘resilience triangle’’ [169]. Figure 4(a) shows the loss of
functionality caused by any events, as well as the restoration
pattern. Resilience-enhancing algorithms aim to reduce the
size of this triangle, see e.g. [170] and [171]. This approach
is enhanced to a so-called ‘‘resilience trapezoid’’ [47], which
considers the disturbance progress period after the event
happens as well as the post-event degradation period before

restoration (Fig. 4(b)). In this context, operational and infras-
tructure resilience are defined in a power grid. Operational
resilience shows how secure the power can be delivered
to loads, while infrastructure resilience refers to the suc-
cess of the power grid to mitigate failure or collapse in its
components [47]. For example, Fig. 4(b) shows that both
operational and infrastructure resilience is 100% before the
event time toe, meaning that all demand is successfully sup-
plied and there is no non-functional component in the power
grid. In the case of an event at toe, the resilience of the
power grid drops to Rpdo (for operational resilience) and Rpdi
(for infrastructure resilience). Recovery of the operational
resilience normally happens earlier than the infrastructure
one, as shown in Fig. 4(b). Based on the resilience trapezoid,
different time-dependent metrics for operational and infras-
tructure resilience can be defined. For example, 8 = (Rpdo
− R0o)/(tee − toe) shows the slope of resilience degradation,
and 3 = Rpdo − R0o shows the resilience degradation level
during Phase I of Fig. 4(b) [47].

1) RESTORATION OF POWER GRIDS
Both resilience triangle and trapezoid methods show that a
quicker restoration process results in a more resilient sys-
tem. The idea of restoration of power grids has recently
attracted a lot of interests among researchers. A power grid
maybe restored from the negative impact of faults [172] or
attacks [173], or after a blackout using black-start strate-
gies [174]. A successful power system restoration may
require an optimal start-up sequence, reconfiguration of
the transmission network [175] or appropriate distribu-
tion network strategies [176]. In the presence of uncer-
tain renewable energy resources in the generation side
and uncertain and almost uncontrollable generation/demand
caused by DERs, advanced restoration strategies for future
power grids are required [176], [177]. In this context, new
restoration approaches have been proposed including agent-
based and learning-based [178]–[180], and probability-based
ones [181].

2) EXTREME WEATHER EVENTS
Increasing the frequency of extreme weather events, such
as floods, high temperature and wildfires, as well as sud-
den failures and intentional attacks in recent years has
made the resilience study of power grids a hot research
topic [26], [45], [182]–[184]. A model of the impact of these
events on the performance of a power grid is a crucial part of
such studies. For the case of extremeweather, the comprehen-
sive modelling framework of Fig. 3 has been proposed [185].
It includes models of the weather, components, and the
whole power grid in obtaining desired resilience indices,
such as expected but not served energy and loss of load
probability [186]. Using this framework, [182] proposed a
fragility model for components of the grid, such as towers and
lines, and augmented them to achieve a model for the whole
transmission system. The model describes the probability of
failure in a component considering the intensity of a hazard,
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e.g. probability of getting a tower broken conditional to the
wind speed. These probability curves can be derived from
local long-term statistical analysis. This framework can help
to make the power grids proactively resilient against high-
impact low-probability extreme weather events [187], [188].
It can also help to optimise capital investments in resilient
power networks [189], [190]. Among different approaches
that make the power grids robust against unexpected events,
the performance of microgrids is promising, especially when
they are networked [187], [191]–[194]. They can reduce the
undesired effects of these events or facilitate the restoration of
power supply to critical loads after events if they are optimally
located to support fragile points [195]–[197].

FIGURE 3. A comprehensive modelling framework to study the impact of
extreme weather on the resilience of power grids [185].

FIGURE 4. (a) The resilience triangle [169], (b) the resilience
trapezoid [47].

In addition to these model-based approaches, data-driven
techniques based on Artificial Intelligence (AI) methods
have shown a strong capability in studying large datasets,
which are gathered in monitoring systems, and evaluating the
resilience of a power grid [198], [199]. Machine learning, one
of the popular AI-based techniques in power grid studies, has
been applied to predict power outages [200], [201], vulner-
able points [202], [203], and power outage duration [204].
AI-based techniques can be also used as a decision-making
engine in the post-event control and restoration of the sys-
tem [205]–[207]. The application of AI-based techniques
in resilience studies in power transmission and distribution
systems is a field of future research activities.

IV. MEASURES FOR RESILIENCE AND RELIABILITY OF
POWER GRIDS
Resilience and reliability assessments have been among
major topics in engineering [186] and non-engineering dis-
ciplines such as ecology [208]. Appropriate metrics have
been introduced to measure these features in a system. For
example, [209] proposes an availability-based metric to mea-
sure resilience of an engineering system based on the system
design and maintenance resources. The code-based metric,
proposed in [210], receives the current state of a power distri-
bution grid as well as other information such as weather, and
quantify the system capability to supply critical loads. One
strategy in increasing resilience and reliability of a power grid
is to first identify weak points. To this end, suitable metrics
to identify vulnerable point of the grid are required. In this
context, two main sets of measures have been developed:
‘‘Flow-based measures’’ which are based on the load-flow
study of the grid, and ‘‘Centrality-based measures’’ which
are inspired from the centrality concept in complex networks.
These two sets are reviewed in this section.

A. FLOW BASED MEASURES
In addition to the study of the resilience of the whole power
grid, identifying vulnerable busses and power lines is of high
interest for both network operators and attackers. Approaches
based on ‘‘load-flow study’’ and ‘‘complex networks’’ have
been developed to answer this question and are reviewed in
the section.

The load-flow analysis is an important approach in study-
ing power grids. It includes calculating node voltages and
branch power flow in a specific operational condition.
Mathematically, this problem solves a system of nonlinear
algebraic equations of active and reactive power balances at
each operating point [211]. More precisely, the objective of
the load-flow study in a power grid is to calculate voltage
magnitude Vi and angle δi of each bus i, knowing the amount
of injected active and reactive powers (Pi and Qi, respec-
tively). The relationship between these parameters of a power
grid is generally nonlinear,

Pi = fi(V , δ)

Qi = hi(V , δ), (3)
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where, V = [V1, V2, . . .Vn] and δ = [δ1, δ2, . . . , δn] include
voltage magnitudes and angles of all busses, respectively.
It means that a system of nonlinear algebraic equations may
need to be solved at each time step or in the case of any
changes in generation, consumption, or network topology
because of failures. Therefore, this study is computationally
expensive, especially when large-scale power grids are stud-
ied in the presence of uncertain and unpredictable renewable
generation units. To reduce the complexity, a DC load flow
study is proposed which is a non-iterative approach focusing
only on calculating the active power flow [212], [213]. It sim-
plifies calculations by assuming identical 1 p.u. voltage at all
nodes and neglecting the resistance of the transmission lines.

Both AC and DC power-flow analyses have been applied
to the study of cascading failure and blackout caused by
unexpected events. An intuitive estimation of the impact of
line l = (i, j) on a power grid can be derived using a flow-
based approach. If Fl is the power flow through the line l in
the normal operation, then

V (l) =
Fl

max{Fl}
(4)

can rank all links. The line margin metric [214] augments the
line capacity (thermal rating) Cl to define a margin for the
line l as,

M (l) =
Cl − |Fl |

Cl
(5)

It indicates howmuch the power flow through line l is close
to its maximum capacity. Therefore, lines with smaller mar-
gins would be more vulnerable than others [214]. The Oak
Ridge–PSERC–Alaska (OPA) model proposed in [215] uses
DC load-flow to study cascaded failures while [216] applies
AC load-flow to the same problem. To include realistic uncer-
tainties, such as variations in load demand, a stochastic (prob-
abilistic) load-flow study [217], [218] is also considered. For
example, [219] develops probability distribution functions for
bus voltages and power transmissions over lines to assess how
they violate limits. This assessment is done more quantita-
tively in [220]. The main drawback of the flow-based metrics
is that they need computationally complex load-flow studies.

1) MAXIMUM FLOW METHOD
The maximum flow problem is about finding the maximum
amount of flow between two desired nodes, called ‘source’
and ‘sink’, of a network [221]. This approach is inspired
from the traditional maximum-flowminimum-cut problem in
the network community. In a directed graph G, where each
link l has the flow Fl and the capacity Cl , the Ford-Fulkerson
theorem [222] states that the maximum flow is equal to
the sum of the flows across the ‘‘minimum-cut’’ links. This
problem can be solved using the following algorithm [223].

1. Reset the flow of all links in the augmenting path set, i.e.
Fl = 0. An augmenting path is an acyclic path between
source and sink which links satisfy Fl < Cl .

2. Set residual r = ∞ for all links mentioned in item 1.

3. For each link l in an augmenting path, set r = min(r ,
(Cl − Fl)).

4. Update the flow of edge Fl = Fl + r .
5. Repeat items 3 and 4 until no augmenting path remains.

Max-flow Min-cut theorem has been applied to the vulner-
ability analysis of power grids [223], [224]. The maximum
power flow F in a power grid should be calculated subject to
the following restrictions [224].

0 ≤ fuv ≤ Cuv∑
k∈Lou

fuk =
∑
s∈Liu

fsu

|F | =
∑
g∈S
j∈Ng

fgj =
∑
d∈D
k∈Nd

fkd (6)

The links adjacent to node u are defined as L iu (L
o
u ), based

on whether the power flow is coming into (going out of) this
node, and F represents the network power flow. S and D
are the sets of generators and loads, respectively. The first
equation guarantees that the flow over power lines between
any pair of nodes (u, v) is in the admissible range, the sec-
ond equation shows the inflow and outflow of each node
u are equal, and the third equation represents that the net-
work flow is equal to the flow injected by generation units,
which is indeed the flow consumed by loads. In addition to
these equations, two more constraints should be considered
to make the results realistic [225]. First, capacity limitation
only on the links is not enough since generators have also
practical constraints in the power they can supply. Second,
multiple maximum flows between all possible source-sink
pairs should be considered simultaneously since a specific
load is not necessarily fed from only a specific generator
in a power network. In addition to conventional techniques,
such as linear programming, this optimisation problem is
solved using a modified maximum flow algorithm [225].
Both of these methods benefit from the following normalised
maximum flow centrality index for the link l [226]:

Fl =

∑
u∈S

∑
v∈D f

l
uv∑

u∈S
∑

v∈D f uv
(7)

in which, f̄uv shows the maximum flow from a source node u
to a sink node j, and f luv is the portion of the power flow
between nodes u and v which passes through the link l.

2) STUDY OF THE BLACKOUT SIZE
The importance of a node or link can be defined as the size of
the blackout that may happen if that node or link fails [227].
The network assessment algorithm starts by removing a gen-
eration node randomly or based on a feature such as degree
of the node. A DC load-flow study is used to re-calculate the
network flow. It is supposed that each line is equipped with
a protective relay that trips the line if its load exceeds 50%
of its capacity for 5 seconds. If such a cut happens, the DC
load-flow study is repeated. It is also supposed that generation
units can compensate up to 10% of their adjusted output to
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achieve generation/consumption balance in the grid. The pro-
cess continues until when a balance between generation and
loads happens and flows on lines are all in their admissible
capacity. Finally, the blackout size 1i caused by a failure in
node i is defined [227]:

1i = 1−

∑
P′d (i)∑
Pd

(8)

where Pd and P′d (i) represent consumption loads before and
after the generator failure, respectively. Clearly, large values
of 1i show that failure of node i results in a severe outage in
loads, i.e. i is a vulnerable node.

Comparing with pure topological metrics, [227] concludes
that evaluating vulnerability using these metrics may be mis-
leading since their results show only a mild correlation with
the achieved blackout size. A similar study has been reported
in [228] where the percentage of noncritical links is intro-
duced as a metric for network vulnerability. The percentage
of unserved nodes Pu(l) is calculated for the case of failure
in link l. If it is less than a specific threshold, then the link is
tagged as noncritical:

δ(l) =

{
1; Pu(l) < threshold
0; otherwise

(9)

Finally, the percentage of noncritical links Pn of the net-
work is calculated as:

Pn =
1
m

∑
l∈E

δ(l) (10)

Therefore, a power grid with a large Pn is robust against
link failures. Interestingly, [228] concludes that the average
shortest path and the loads’ accessibility to generators are
two parameters that significantly affect the robustness of a
power grid. To quantify the accessibility of a load to gen-
erators, the resistive distance between node i and its nearest
generation is considered as

d(i) = min(Ris); s ∈ S (11)

where Ris is the resistance between the node i and the gen-
erator s. If the number of generation units in a network is
high enough and they are evenly distributed, the load imposed
on transmission lines is reduced and the network will be
robust [228]. Therefore, the average effective resistance to
the nearest generator, calculated for all loads, is defined as
the vulnerability metric

β =
1

N − NS

∑
i∈N\S

d(i) (12)

The smaller the β is, the more robust the network will
be [228].

B. COMPLEX NETWORK BASED MEASURES
Traditional models of power grids mainly consider struc-
tural features of power grids. That means elements of the
adjacency matrix are aij = 1 if there is a cable connecting

substation i to j, otherwise aij = 0. To study vulnerability,
a subset of nodes or links of the graph is removed selectively
or randomly. Then, the variation of a topological feature
of the graph is assessed, such as diameter or the size of
the largest connected component [65], [229], network dis-
integration [230], the efficiency of the network [231], and
decrease of the average number of generation substations
connected to nodes, called connectivity loss [232]. These
studies clearly show how failure in a subset of nodes or
links impacts power grid stability and performance. However,
a more accurate study of the power grid requires a dynam-
ical complex network model that considers i) dynamics of
loads/generators connected to substations, ii) evolution of the
failure effect in the network [233]. The first research activities
on the vulnerability of power systems assumed that electricity
flow between substations i and j mainly happens through
the shortest path dij between them. This was a motivation to
apply the betweenness centrality metric in power grids [234].
It also attracted attention to the efficiency of a network as a
vulnerability criterion. Efficiency is traditionally defined as
how well a network exchanges data and is strongly related to
topological properties [235]. The efficiency of a network G
is measured based on the shortest path dij between any two
nodes i and j, as

E(G) =
1

N (N − 1)

∑
i 6=j

1
dij

(13)

Indeed, efficiency is an extension of the average shortest
path measure to account for unconnected nodes [236]. The
relationship between efficiency and vulnerability of power
grids is reported in [237], [238]. Later studies show that effi-
ciency is not still an accurate metric to study power networks
because power flow between two nodes does not necessarily
happen through the shortest path. It is extended to electrical
power systems in different ways. For example, [239] intro-
duced a ‘directed global efficiency’ by augmenting physi-
cal network and fault features into the model. To augment
the dynamical behaviour of the power grid into efficiency
analysis, the ‘load’ Lk of the k th node is defined as the
number of shortest paths passing through it [240]. Therefore,
the load of all nodes in the network may change if a node
fails. This may cause nodes to become even overloaded if
a practical maximum capacity is considered. A similar load
redistribution approach has been applied to the robustness
analysis of the Western US grid [241]. Algorithm 1 shows
how this dynamic modelling works in identifying vulnera-
ble nodes [238]. Based on this algorithm, an evolutionary
technique is proposed to create resilient networks against
cascading failure [242]. This algorithm can be empowered
by embedding a DC power flow model into it [243]. An algo-
rithm similar to Algorithm 1 has been proposed to identify
vulnerable nodes of a power grid using dynamic power flow
studies [244]. Modified versions of efficiency for power net-
work applications are reviewed in the next section.

Another approach in the study of resilience and reliability
of large network systems, including power grids, emerges
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from the centrality concept in complex networks. ‘‘Central
(or vital)’’ nodes or links of a complex network are those
with the highest influence on a specific behaviour. Several
centrality metrics have been introduced to identify influ-
ential components of a network [39], [245], [246]. In the
next section, some of these centrality measures, which show
promising performances or have been customised for power
grids, are reviewed.

Algorithm 1 Identifying Vulnerable Nodes Using Network
Efficiency

Initialisation.
Calculate the load Lk (0) for all nodes, i.e. k = 1, 2, . . . ,N .
Define a capacity Ck = αLk (0) for each node k choosing
0 < α ≤ 1.
For all nodes i = 1, 2, . . . ,N
Remove node i.

For all remaining nodes
Calculate the load Lk for all nodes, i.e.
k = 1, 2, . . . ,N .
For all nodes, if Lk > Ck then multiply weights
of its adjacent links by Lk /Ck .

End
Calculate network efficiency Ei using Eq. (13).
Reset the network to the original version.

End
Output
The most vulnerable node = argmin

i
Ei

C. CENTRALITY-BASED MEASURES
The topology of a power grid has an evident impact on its
robustness [65], [247]. In the context of complex networks,
topology-based centrality metrics can be used to study how
networks are resilient when failures happen in the central
nodes. Among them, Degree Centrality (DC), Betweenness
Centrality (BC), Closeness centrality (CC), and Eigenvector
Centrality (EC) are popular. DC considers hubs, i.e. nodes
with the highest degrees, as central nodes. The BC of each
node (link) of the network is the number of shortest paths
that pass through that. The CC measures how close a node
is to the other nodes of the network. Closeness Ci of node i
of a network is defined as the inverse of the average length
of the shortest path between node i and all other nodes in the
network. It is computed as

Ci =
N − 1∑
i,j∈V dij

(14)

EC defines node centrality based on the importance of its
neighbours [248]. The EC of node i of a network is shown by
ei > 0 and is proportional to the sum of ECs of its neighbours.
More precisely, the ECs of nodes of a network are defined
as the elements of the eigenvector of the adjacency matrix
associated with its dominant eigenvalue. EC is interestingly
related to some dynamical behaviours of networks [249].

The concept of DC is also expanded into power system
vulnerability studies using a so-called ‘pseudo degree’ [250].

Complex Dynamical Networks (CDNs) are a class of com-
plex networks whose nodes have internal dynamics. Many
large-scale real-world systems can be modelled as CDN, such
as social networks [251] and power grids [1]. In addition to
the aforementioned centrality measures, which sometimes do
not work well in CDNs [40], Spectral Centrality (SC) met-
rics have been introduced using eigen-decomposition of the
original or a modified version of the adjacency or Laplacian
matrices of the network. It is shown that the spectrum of these
matrices has a significant impact on collective behaviours
in CDNs [38], [252]–[254]. For example, the variation of
frequency in a distributed generation system is a function of
the spectrum of its graph [107], [108]. Network spectrum is
also important in the control of a CDN [100], [252], [255].

Research studies have shown that pure topological
metrics, such as global efficiency, degree and between-
ness centrality, may fail to capture the physical properties
and operational constraints of power grids and needs to be
customised [17], [130], [239], [256], [257]. Therefore,
centrality measures should be extended to power grid appli-
cations. To get the benefits of the well-developed central-
ity concept, researchers have been focused on extending
these measures to power grids. In this section, CN-inspired
centrality metrics which are customised for power grid
applications are reviewed. Considering correlations between
some of these measures, such as average shortest path and
efficiency [258], [259], the independentmetrics are addressed
here.

1) LINE CENTRALITY MEASURES
Vulnerable power lines, i.e. those with the maximum impact
on the power grid performance if failed, can be considered
as central links on CN model. Therefore, edge centrality
measures are suitable for this study [260]. In the following,
we provide a review of a number of edge centrality metrics in
the context of power grids.

a: GEODESIC LINK VULNERABILITY
In power grids, since the power flow is always from gener-
ator nodes to loads, a modified version of efficiency, called
source–demand efficiency ESD, has been proposed [258]:

ESD(PG) =
1

N (N − 1)

∑
i∈S,j∈D

1
dij

(15)

where S and D are sets of supply and demand nodes in the
power grid PG, respectively. Based on ESD, the geodesic
vulnerability Gl of the power line l is defined as the drop in
efficiency when the link l fails [233].

Gl = 1−

∑
i 6=j

1
d lij∑

i 6=j
1
dij

(16)

Gl takes large values when the network is not resilient against
the failure of line l.
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b: NET-ABILITY
Applying the efficiency metric defined in Eq. (15) to the
vulnerability study of power grids is problematic since elec-
tric current does not only flow through a specific path, like
the shortest path [17]. Transmission capabilities between any
pair of generators and loads should also be considered when
studying flow-based networks like power grids. Net-ability is
a metric inspired by efficiency to consider these operational
constraints [17]. The weightwlij of the link l in path k between
generator i and load j shows the difficulty of the power
transfer through that link. This weight is defined by:

wlij =
∑
l∈k

f lijZl (17)

Zl shows the impedance of line l and the Power Transmission
Distribution Factor (PTDF) of line l in path k is shown by f lij .
Elements of the PTDF matrix F = [flj] express the change
in the power over the line l caused by a unit change of
power injection at bus j. Therefore, f lij = fli – flj reflects
the sensitivity of power flow in the line (i, j) to injection at
bus i and delivery at bus j. The net-ability of the power grid
is defined as [17],

η =
1

NSND

∑
i∈S

∑
j∈D

Cij
∑
k∈Hij

pkij
1

wkij
(18)

where S and D are sets of NS generators and ND loads,
respectively. Hij is the set of paths from generator i to load j
where each path has a power transmission capacity Cij, and
pkij is the power share of path k in power transfer from node i
to j. In the DC load flow study, wkij = Zij, which simplifies
Eq. (18) to

η =
1

NSND

∑
i∈S

∑
j∈D

Cij
Zij

(19)

Therefore, the vulnerability of line l of a grid can be
defined as the drop of net-ability of the grid when the line
is failed and removed from the grid:

V (l) =
η − ηl

η
(20)

Close to PTDF, the concept of ‘‘line correlation’’ is intro-
duced in [261] and applied to identify vulnerable transmis-
sion lines. Two transmission lines are called ‘correlated’ if
the failure of one of them results in the change of power flow
in another one.

c: EDGE BETWEENNESS
The betweenness centrality measure is also defined based
on the shortest path concept. It was introduced by Linton
Freeman as a measure to quantify the control of a person
on the communication between other people in a social net-
work [262]. The edge betweenness centrality for the link l of
the network is defined as:

B(l) =
∑
k,j∈V

d lkj
dkj

(21)

where d lkj shows the number of shortest paths between nodes k
and j which passes through the link l. Although this is a pure
topological and computationally expensive metric, it is still
of interest in error and attack tolerance analysis of power
grids [227], [263]–[265].

d: ELECTRICAL EDGE BETWEENNESS
The electrical betweenness of line l has been proposed to
compensate for the lack of electrical information in the orig-
inal edge betweenness centrality [264]. It is defined as

Bl =
∑
i∈S

∑
j∈D

wij
∣∣∣I lij∣∣∣ (22)

where I lij is the current of line l when a unit current is injected
in generator bus i to be delivered to load j. That is,

I lij = Yl(Vi − Vj) (23)

where Yl shows the admittance of line l, and Vi and Vj are
voltages at generation and load buses, respectively. We have
wij = min{Si, Dj} where Si is the capacity of generator i and
Dj is the maximum load at bus j. The electrical betweenness
of line l can be transformed to,

Bl = max{Bpl ,
∣∣Bnl ∣∣} (24)

using the PTDF concept, where Bpl is calculated as

Bpl =
∑
i∈G

∑
j∈D

Cijf lij (25)

and is the positive electrical betweennesses of line l, i.e. for
links with f lij > 0. Those link with f lij < 0 results in Bnl ,
the negative electrical betweenness, which is calculated using
the same equation as (25). It is worth noting that f lij > 0
(f lij < 0) means that injecting power at bus i, which should
be delivered to bus j, increases (decreases) the electrical flow
of line l. Finally, Eq. (24) picks the one with the maximum
absolute value as the electrical betweenness centrality of the
link l.

2) BUS CENTRALITY MEASURES
Node centrality metrics in the study of complex networks can
be extended to identify vital buses of power grids.

a: GEODESIC NODE VULNERABILITY
In the same way as section A, the geodesic vulnerability of
bus v of a power grid can be defined as,

Gv = 1−

∑
i 6=j

1
dvij∑

i 6=j
1
dij

(26)

where dvij is the shortest path between busses i and j of the
network when bus v is failed.
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b: NODE BETWEENNESS CENTRALITY
Similar to the edge betweenness metric, the node between-
ness centrality for node v of a network is defined as:

B(v) =
∑
k,j∈V
k,j 6=v

dvkj
dkj

(27)

where dvkj shows the length of shortest paths between nodes k
and j which passes through the node v.

c: ELECTRICAL NODE BETWEENNESS
If Cij represents the maximum power which can be injected
at bus i to be delivered to bus j, the electrical betweenness of
bus u is redefined as,

Bu =
∑
i∈S

∑
j∈D

[
Cij
2

∑
l∈Lu
|f lij |

]
︸ ︷︷ ︸

κ

(28)

where Lu is the set of lines connected to bus u and f lij = fli− flj
is derived from the PTDF matrix. κ represents the transmis-
sion power taken by bus u where i and j are generation and
consumption busses, respectively. Another form of electrical
node betweenness is defined using Kirchhoff’s law for bus v
as [264],

Bu =
∑
i∈S

∑
j∈D

wijIuij (29)

where the current through node u can be calculated as,

Iuij =
1
2

[∑
l∈Lu

∣∣∣I lij∣∣∣+1u

]
(30)

when a unit of electric current is transmitted from i to j.
1u = 1 if u = i or u = j, otherwise 1u = 0. This
metric needs information about current in all branches of the
network. It is also extended to study cascading failures in
power networks [266].

d: NODE ELECTRICAL CENTRALITY
Node electrical centrality has been introduced as a com-
bination of the electrical betweenness and the eigenvector
centrality metrics [267]. The electrical centrality of node u
is defined as

Nu = εB̄u + (1− ε)eu (31)

where eu is the eigenvector centrality of node u and B̄u is the
normalised electrical betweenness of node u, derived from
Eq. (29) as,

B̄u =
Bu∑

i∈S
∑

j∈D
√
CiCj

(32)

where Ci is the rated active power of ith generator and Cj is
the actual load at bus j. The parameter ε tunes the trade-off
between betweenness and eigenvector centralities.

3) ENTROPIC DEGREE
The concept of entropy in complex networks has been used
to define the entropic degree to study the vulnerability of
busses in a power grid. The entropy of a given distribution
pi is computed by

H =
L∑
i=1

pi log pi (33)

where L refers to the number of sample values in the distribu-
tion. The idea is to extend the definition of entropy to include
the number of connections to a node, their strengths, and the
distribution of weights. Suppose that w̄ij is the normalized
weight of the power line between ith generator and jth load,
i.e.

wij =
wij∑
j wij

(34)

The entropic degree of bus u is defined as [130], [268],

Gu =

1−
∑
j

wuj logwuj

∑
j

wuj (35)

Other weighted entropymetrics are applied to vulnerability
analysis, see e.g. [269]. Table 2 summarizes the centrality
metrics discussed above.

TABLE 2. Summary of metrics which are compared in this paper.

V. CASE STUDIES
To assess the performance of centrality metrics in identifying
the important power lines and generation buses correctly,
they are applied on six benchmark networks (Table 3).
We compare performances of the centrality metrics in the
three different scenarios. Scenarios 1 and 2 compare the
performance of link centrality measures, while Scenario 3
focuses on bus centrality ones. In Scenario 1, the load pro-
tection on the power lines, which is normally implemented in
power grids, are omitted. Instead, we measure how much the
power lines are overloaded due to a failure. This is helpful
to compare the performance of centrality measures in an
unconstrained environment although. Scenario 2 repeats this
comparison when practical constraints on the capacities of
power lines are considered. In this case, it is assumed that
the overloaded cables will be disconnected from the grid by
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the protection system, which indeed impacts the topology
and dynamics of the system. The same practical constraint
is considered in Scenario 3.
Scenario 1 (Line Failure Happens When Overload Protec-

tions of Lines Are Ignored): In this scenario, link centrality
measures including geodesic vulnerability, net-ability, edge
betweenness and Electrical edge betweenness are compared.
To achieve the ground truth, we first rank the power lines
based on the impact of their failure on the overload of other
lines. To this end, we remove the lines one by one and perform
aDC load flow study, usingMATPOWER R© [270], after each
line is removed. At each step, we calculate the following total
line margin (Ll) after removal of the l th line,

Ll =
∑
l∈E

Cl − |Fl |
Cl

(36)

where Cl is the power capacity of line l and Fl is its power
flow. Therefore, small Ll means that power lines become
close to overload if the line l is removed. In other words,
line l with the smallest Ll is the most influential (central)
line. We determine the ground truth by sorting the power
lines, such that the line with the minimum Ll is on the
top (let’s name this value as Lmin). Then, we calculate the
most central line predicted by the above-mentioned centrality
metrics and find its related load (L ′) from the ground truth.
The precision of each metric in finding the most central
power line is defined as P = (Lmin/L ′) × 100. For example,
P = 40% for a centrality metric means that if the link pre-
dicted by that metric is failed, the reduction in Ll becomes
40% of the maximum possible reduction which may happen
because of a line failure. Therefore, P shows how precise
these metrics can identify the most influential link in the grid.
Fig. 5(A) comparesP(%) for all metrics in IEEE57, IEEE118,
IEEE300, 200-I, 1354-ETS and 2868-VHV (see Table 3).
Although electrical betweenness works perfectly in IEEE57,
Net-ability shows the best performance in networks with
rather large sizes. The Performance of the efficiency and the
betweenness measures are nearly the same.

TABLE 3. Information about case studies.

A similar study is performed considering the number of
lines that become overloaded because of a line failure. Here,
the ground truth contains the number of overloaded links
caused by a failure in a specific link. Then, the prediction

of the metric is compared with the maximum possible num-
ber of overloaded links to calculate the accuracy L(%). For
example, if a metric suggests removal of a particular link
causes overload in 4 other links while the maximum possible
number of overloaded links in the ground-truth is 5, then
the accuracy of this centrality metric is L = 4/5 = 80%.
Fig. 5(B) compares the accuracy of all centrality metrics
in the same networks as Fig. 5(A). Here, net-ability works
perfect regardless of the grid size. Once again, the efficiency
and betweenness measures show almost the same precision.
However, the performance of electrical betweenness is not
consistent.

FIGURE 5. Accuracy of different metrics in finding the link which failure
causes (A) the minimum total line margin, and (B) the maximum number
of overloaded links in the following networks for Scenario 1: (1) IEEE57,
(2) IEEE118, (3) IEEE300, (4) 200-I, (5) 1354-ETS and (6) 2868-VHV.

Pearson correlations ρ between rankings obtained by the
centrality metrics and the ground-truth ranking for the case
of total line margin is shown in Table 4. The p-value less than
0.05 means the correlation is significant. It shows that the
ranking based on net-ability is more correlated to the ground
truth than those based on other centrality metrics.

To further study rankings obtained by different centrality
metrics, we measure the impact of a sequential link failure
on the total line margin. Links are first removed based on the
ranking obtained by each centrality metric. Then, a DC load
flow analysis is performed to update the total line margin.
Fig. 6 shows the variation of the total line margin when
the top-lf (%) of links of the grid are sequentially removed
using different metrics. Once again, net-ability works more
precise in large networks (panels C and D) resulting in the
highest reduction. However, no consistent result performance
is shown in small networks.
Scenario 2 (Line Failure Happens When Overload Protec-

tions of Lines Are Active): In the real world, power trans-
mission lines are protected against getting overloaded. If an
overload remains on a line for more than a specific (short)
time, then the protection system isolates it from the grid.
This may result in further overload on other lines, potentially
leading to a cascade of failures and large-scale blackout.
To compare the performance of different centrality metrics,
the top-1% of links suggested by each metric is first removed
and a DC load flow is performed. The overloaded lines are
removed, and the DC load flow analysis is repeated. This
process continues until no further line overload happens.
Finally, the total number of overloaded lines (that are tripped)
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FIGURE 6. Reduction of the total line margin of the grid when lf (%) of
the top-ranked links based on different metrics are failed. Grids are
(A) IEEE118, (B) IEEE300, (C) 1354-ETS and (F) 2868-VHV.

FIGURE 7. Cascading failure caused by the failure of the top lf (%) of links
ranked by different metrics. Grids are (A) IEEE118, (B) IEEE300, (C)
1354-ETS and (D) 2868-VHV.

is obtained. This process is then repeated for top-2% links,
top-3% links, up to top-lf% of links. Fig. 7 compares the
percent of lines T (%) failed because of this sequential line
removal based on different metrics. It shows that in large
grids, net-ability works more precisely than others. For exam-
ple, in 2868-VHV (panel D in Fig. 7), failure of top-6%
of links proposed by the net-ability metric results in 100%
of power lines being tripped, i.e. a total blackout. However,
the failure of even the top-10% of links sorted by electrical
betweenness does not have such a disruptive impact. In small
networks, no consistent performance can be seen.

FIGURE 8. Accuracy of different metrics in finding the bus which failure
causes (A) maximum reduction in total line margin, and (B) the maximum
number of overloaded links in the following networks for Scenario 1:
(1) IEEE57, (2) IEEE118, (3) IEEE300, (4) 1354-ETS and (5) 2868-VHV.

From the results of our study in scenarios 1 and 2, we con-
clude that net-ability can often identify vulnerable links in the
large network more precisely than other metrics.
Scenario 3: Generator failure happens, the reference bus

compensates for lack of supply (i.e., no load shedding is
required), and overload protections of power lines are active.

In this scenario, buses are ranked using five node cen-
trality measures: Geodesic node vulnerability, node between-
ness, electrical node betweenness, node degree centrality and
entropic degree. To achieve the ground truth, a DC load flow
analysis is repeated once after removing each bus. Then,
the buses are ranked with those resulting in the highest reduc-
tion in the total line margin on top. The above node centrality
metrics are also applied to rank these buses and identify the
most critical ones. Figure 8(A) compares the precision P of
rankings obtained by each metric. For example, the entropic
degree shows a precision of almost 90% for 2868-VHV.
It means that if the highest-ranked node by the entropic degree
is failed in this network, the amount of reduction in the total
line margin will be 90% of the maximum possible reduction
that can happen because of failure in a single bus. Fig. 8(A)
shows that the entropic degree performs precisely in large
networks while geodesic node vulnerability works better in
small ones. For further analysis, we also consider the number
of overloaded links when a bus is failed. Again, we find the
ground truth by performing consecutive DC load flow anal-
ysis to rank buses based on the number of overloaded links
which failure cause. Then, the bus that each metric suggests
as the most vulnerable one is compared with the maximum
possible case to derive L(%). Fig. 8(B) shows L for different
metrics, where again the entropic degree and geodesic node
vulnerability show better precision in predicting the most
vulnerable bus.

The correlation between rankings of the node centrality
metrics with the ground-truth is shown in Table 5. It shows
that entropic degree performs better than others in finding
the most influential bus in large grids. In a complementary
study, a consecutive failure scenario on busses is performed.
The generation buses are failed one after another according
to the ranking obtained by each metric. After each failure,
the number of tripped lines (due to being overloaded) is
calculated from a DC load flow analysis. Figure 9 shows
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FIGURE 9. Percent T of failed links caused by the failure of the top Bf (%)
of busses ranked by different metrics. Grids are (A) IEEE118, (B) IEEE300,
(C) 1354-ETS and (D) 2868-VHV.

TABLE 4. Pearson correlation ρ between results of link centrality
measures and the ground truth. data is in ρ [p-value].

TABLE 5. Pearson correlation ρ between results of bus centrality
measures and the ground truth. data is in ρ [p-value].

how the number of the tripped line increases when the top-
Bf (%) of the generation buses are removed based on different
metrics. In the European transmission system, failure in less
than top-10% of buses ranked by either entropic degree or
geodesic node vulnerability results in 100% of lines to trip
and a total blackout. In the high voltage French transmission
system, removing buses based on entropic degree or node
electrical centrality degrades the network performance faster
than other metrics. Therefore, the entropic degree performs
more precisely in large networks which support the correla-
tion shown in Table 5.

VI. CONCLUSION AND OUTLOOK
Power grids are among critical infrastructures which have
supported us towards the current modern lifestyle. Although
they have shown to be rather resilient against unexpected
events, the paradigm shift towards distributed generation has
increased sources of attacks and failures in the grid, and thus
makes the vulnerability analysis important once again. The
structure of modern power grids is considerably more com-
plicated than before and requires advanced tools for vulner-
ability study. In the paper, different approaches for this anal-
ysis was reviewed. Among different approaches, complex
networks and centrality analysis have shown promising per-
formance in the study of distributed generation grids. As pure
topological centrality metrics do not cover the dynamical
nature of power grids, this paper mainly reviewed those met-
rics extended for power grid applications. We compared the
performance of these metrics by applying them on bench-
mark and real power grid networks. Simulation results show
that net-ability can often identify vulnerable links in large
power grids more precisely than other line centrality metrics.
To identify the most vulnerable busses, ‘‘entropic degree’’
showed better results.

Developing precise models, using either model-based or
data-driven approaches, is the key step towards analysis
and control of future power grids, especially for reliability
and resilience studies. These models should consider the
intermittence and uncertainty of renewable units, dynami-
cal behaviours of power grids, and practical limitations and
constraints. Although CN-based modelling approaches can
manage large-scale power grids, they mainly focus on the
topology of the grid. On the other hand, CPS and MAS
models normally target dynamical behaviour of the grid and
have difficulties in modelling large systems. Therefore, there
is a lack of a comprehensive model which addresses the
dimension problem, dynamics, and real-world constraints of
power grids simultaneously.

Modelling electricity distribution networks is also impor-
tant because the future smart grids will likely include local
energy trading over medium- or low-voltage networks. The
emergence of disruptive DERs, such as batteries, photo-
voltaics, and electric vehicles, hasmade the planning and con-
trol problems complicated, which indeed require appropriate
models. Despite the efforts in modelling these systems as a
small-world CN [34] or a MAS [122], the management of
several unpredictable and uncertain parameters in the future
distribution grids requires a comprehensive modelling frame-
work to be developed.

Human decisions and errors play important roles in reli-
ability of power grids. Therefore, the CPS models should
be leveraged to Cyber-Physical-Human ones [125] in which,
actions of system operators and consumers’ behaviours are
also augmented. This is crucial for reliability analysis specif-
ically, since people’s decisions in future power grids, with
a huge amount of uncertainties and unpredictability, can be
more disruptive than that in conventional ones.
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Resilience against extreme weather events and cyberat-
tacks has attracted a lot of researchers during recent decades.
With the advancement of sensor and communication tech-
nologies, a huge amount of data from different parts of a
power grid is now available with a high resolution. This data
can be used for different applications, such as vulnerability
study, for which, advanced data-drive and AI-based algo-
rithms are should be developed. A review of this field in the
paper showed that it is still a young field of research and a lot
of progress is expected in the future.

On the other hand, the vulnerability study has been mainly
focused on the generation and transmission levels of a power
grid. However, changing the nature of distribution power
grids with the emergence of DERs makes their resilience
study very important since they were not originally designed
to face local generation units. Data-driven algorithms can
also be applied to problems in distribution power grids, espe-
cially in residential areas, thanks to the huge amount of con-
sumption data collected by smart meters through Advanced
Metering Infrastructure (AMI). This can be done using either
time-series analysis techniques [123] or machine learning
classification approaches [124]. This revolution makes the
resilience analysis in distribution power grids in the presence
of DER a very hot research topic.

Finally, we require to update resilience and reliability mea-
sures and make them appropriate for future power grids.
Flow-based metrics, which are based on load-flow studies,
are precise, but computationally expensive. In contrary, easy
to calculate CN-based measures have not been well cus-
tomised for future power grid applications yet. Therefore,
developing computationally efficient metrics which simulta-
neously address dynamical performance and practical con-
straints of power grids is a subject of further research. Particu-
larly, these metrics should appropriately consider limitations
of renewable energy resources, such as limited availability,
minimum/maximum rate and level of supply and their limi-
tations in VAR control.
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