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ABSTRACT Road boundary estimation is an essential task for autonomous vehicles and intelligent driving
assistants. It is considerably straightforward to attain the task when roads are marked properly with indica-
tors. However, estimating road boundary reliably without prior knowledge of the road, such as roadmarkings,
is extremely difficult. This paper proposes a method to estimate road boundaries in different environments
with deep learning-based semantic segmentation, and without any predefined road markings. The proposed
method employed an encoder-decoder-based DeepLab architecture for segmentation with different types
of backbone networks such as VGG16, VGG19, ResNet-50, and ResNet-101 while handling the class
imbalance problem by weighing the loss contribution of the model’s different outputs. The performance
of the proposed method is verified using the ‘ICCV09DATA’ dataset. The method outperformed other
existing methods and achieved the accuracy, precision, recall, f-measure of 0.9596±0.0097, 0.9453±0.0118,
0.9369±0.0149, and 0.9408±0.0135 respectively while using RestNet-101 as a backbone network and Dice
Coefficient as a loss function. The detailed experimental analysis confirms the feasibility of the proposed
method for road boundary estimation in different challenging environments.

INDEX TERMS Augmentation, class imbalance, deep learning, DeepLabV3+ architecture, road boundary,
semantic segmentation, transfer learning.

I. INTRODUCTION
Nowadays, autonomous vehicles [1] are getting popular
worldwide, and are considered to be driver-less, effec-
tive, and crash avoiding perfect automobiles of the future.
Autonomous vehicles must be able to see their surroundings
to comprehend where they can and can’t drive, recognize
other vehicles on the street, and brake for pedestrians. It is
anticipated that there will be around 20.8 million autonomous
vehicles in operation alone in the United States by 2030 [2].
Autonomous vehicle in high-level automation (where vehi-
cle drives on its own) requires ideal road conditions, which
are not always possible. They are driven by AI and collect
data through sensors. Sensors used in autonomous vehicles
include LiDAR, Cameras, GPS, etc. enabling the vehicle to
see and sense any adverse condition on the road. AI decides
on steering, accelerating, and braking based on the data
provided by various sensors so that the vehicle can drive
safely, detect obstacles or other vehicles on the road, and
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deal with any unforeseen road conditions. Figure 1 provides
a high-level view of the physical system of an autonomous
vehicle where the visual road information from the front
camera is fed into a neural network architecture for road
boundary estimation.

Autonomous vehicles require the perception of the road
for safe driving. The most crucial piece of information
the autonomous vehicle needs is a complete understand-
ing of the road it is driving on, including knowledge of
the lane, lane/road boundary, lane markers, etc. so that it
can perform multiple maneuvers such as lane switching,
collision avoidance, overtaking, stopping, and so on. Very
often road boundaries are broken, not clearly or perfectly
defined, or sometimes not marked at all. Furthermore, var-
ious conditions like road bending, poor road marking, decay
of painted indicators, blurred frames, background clutter,
varying lighting conditions, occlusions, etc. make it chal-
lenging for the autonomous vehicle to detect the exact
road boundaries. All of these factors have motivated us to
develop a method that can accurately estimate road bound-
aries despite non-uniform road shapes, changing illumination
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FIGURE 1. High-level view of the physical system.

conditions, and, most importantly, the absence of road
markers.

Twomain approaches have been used to solve this problem
in the past decade. The first approach is the pre-defined
feature extraction [3]–[5], where it uses lane markings and
road boundaries. The disadvantage of the pre-defined features
is that it may not work for all roads due to environmental dif-
ferences, lighting conditions, and scalemismatch. The second
is the model-based techniques [6], [7] where different models
are employed to determine curves and straight lines from the
edge features.

Our foremost goal is to design an intelligent method to
detect road boundaries suitably in different environmental
and weather conditions so that the vehicles are safe on
roads and secured from accidents. To achieve this objective,
we used deep learning-based image segmentation method to
detect the drivable region. In digital image processing, image
segmentation is an important task. In this work, we have
employed semantic segmentation [8] to estimate the road
boundary. The aim of semantic segmentation is to classify
each pixel and label them according to a predefined class.
It is used to classify different objects in the image. It can
also be used for various disease and physical injury detection
[9], [10] from medical images. Fully Convolutional Network
(FCN) [11], ENet [12], U-Net [13], SegNet [14], DeepLab
[15] are the most popular algorithms for semantic segmenta-
tion that don’t need features in advance and can discover rel-
evant features from the training data. In this work, we applied
the DeepLabV3+ architecture for the segmentation.
Previous research such as Mana et al. [16] did not address

the class imbalance problem which led to poor performance
on precision, recall, and f-measure. Our proposed method not
only handles the class imbalance problem but also considers
the size of the dataset to develop a better model. The major
contributions of this research are summarized as follows:
• Use of different types of augmentation techniques in
the preprocessing phase of the method to deal with data
shortage and overfitting problems.

• Employment of customized loss functions such as Dice
Coefficient loss, Jaccard Index loss, and weighting the
loss contribution of the model’s various outputs based
on the number of samples of different classes for solving
the class imbalance problem.

• Employment of different backbone networks, that take
the advantage of transfer learning to extract useful fea-

tures from images, in the encoder and decoder part of
DeepLabV3+ architecture to address the issue of small-
sized dataset.

• Improvement of different evaluation parameters such
as accuracy, precision, recall, and f-measure over other
existing techniques to verify the robustness of the pro-
posed method.

The rest of the paper is organized as follows: Section II
describes the related works that have been conducted pre-
viously in this field. In Section III, the concept of the
DeepLabv3+ architecture and the methodology of this work
are demonstrated in detail. Section IV illustrates the exper-
iments and presents the result analysis of the proposed
method. The conclusion is drawn in Section V.

II. RELATED WORK
Road boundary estimation has drawn attention recently due
to the rapid advancement of autonomous vehicles around
the world. Light Detection and Ranging (LiDAR) is one
of the most popular methods for road boundary detection.
Several papers [17]–[19] used this approach to detect road
boundaries.

Satti et al. [20] applied a machine learning approach for the
detection and tracking of road boundaries. Initially, ConvNet
merged with 3×3 Sobel filters are utilized to identify edges.
The outputs of this process were fed to a line detection
module where the Hough transform is used to recognize
lines. Finally, the Kanade-Lucas-Tomasi method tracks the
lines. Mana et al. [16] employed U-Net architecture for road
boundary estimation. They used particle filters to handle the
occasional boundary detection failures problem and gener-
ated a more consistent prediction. However, their model is
only effective for the unbranched roads and strives to detect
boundaries for other types of roads such as intersections and
acutely curved roads.

Yadav et al. [21] proposed a novel approach based on
CNN and the color lines model for unmarked road segmen-
tation. The pre-trained SegNet model is used to discover
the road texture effectively. In addition, they applied the
conditional random field-based graphical model to deal with
varying illumination situations. Chiu and Lin [22] suggested
a color-based segmentation approach for lane detection in a
complex environment. First, they determined the threshold
from the region of interest, and then the threshold is used to
recognize potential road boundaries. Their approach requires
lower computation power and memory. Hernandez et al. [23]
proposed a combination of color-based and texture line detec-
tor approach to detect boundaries for unstructured roads.
In the color-based detector, a white balance algorithm is
utilized to reduce the impact of illuminationswhile the texture
line detector combines the Canny edge detector with Hough
transform to identify parallel boundaries of the road. Their
system used the Unscented Kalman Filter (UKF) which fil-
ters the noise and is able to recognize the boundaries when
the roads are occluded. Chiku and Miura [24] suggested a
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FIGURE 2. Illustration of atrous convolution with kernel size 3× 3 for
different dilation rates.

multi-sensory road estimation framework for autonomous
navigation which includes piecewise-linear road models,
state transition, likelihood evaluation, resampling, and result
estimation. Their system considered various shapes of the
roads and can switch between different road models so that it
can accurately calculate the boundaries.

In [25], Rakotondrajao and Jangsamsi assumed that at the
time of image acquisition most of the 2D images contain
perspective distortion which makes the lane detection quite
difficult. Hence, they try to automatically recognize four
points for executing Inverse Perspective Mapping (IPM) to
minimize the distortion effects. As in numerous urban and
rural areas, there is hardly any road markings, Kühnl and
Fritsch [26] suggested a vision-based system for detecting
road boundaries where road markings are not expected. Their
system includes obtaining SPatial RAY (SPRAY) features,
Boundary vicinity classification, Boundary extraction and
finally applying partial linear regression to filter out the
outliers. Nishida and Muneyasu [27] used both conventional
and hyperbolic road models for the detection of road bound-
aries however, their proposed algorithm is computationally
expensive.

For developing an occlusion-free road segmentation sys-
tem, Yan et al. [28] proposed a LiDAR-based LMRoadNet
network where the network is trained using a weighted loss
function. Using a 1/4 scale feature map, they can perform
road ground height prediction and road topology detection
simultaneously with reduced complexity, and their fusion
strategy can expand the field of view of the autonomous
driving system. Perng et al. [29] demonstrated a system for
detecting road boundaries, that takes into account a variety
of road types (structured, unstructured) and conditions (day-
time, nighttime, rainy day). A convolution autoencoder first
removes unwanted objects from the image, leaving just lane
markers to be fed to a hyperbolic model, and then the lanes
are tracked by a particle filter. However, their system strug-
gles to distinguish boundary features from the background
especially at night time.

For off-road scene understanding, Gao et al. [30] proposed
a contrastive learning technique that employs contrasting
positive and negative samples in a self-supervised pipeline
to gain discriminative representations. Their system can pro-

FIGURE 3. Illustration of Atrous Spatial Pyramid Pooling (ASPP). One
1 × 1 convolution, three 3 × 3 atrous convolutions with rate
parameters 6, 12, 18, and image pooling are applied to generate
the ASPP feature map.

duce fine-grained semantic results that deliver rich infor-
mation for robots traversing difficult off-road environments.
Their system, on the other hand, sometimes fails to differen-
tiate against unseen category samples, which might lead to
erroneous predictions. Abdollahi et al. [31] applied MUNet
which is a modified version of U-Net in the generative
section of the Generative Adversarial Network (GAN) to
generate high-resolution segmentation output. Before feeding
the image to the network, Laplacian filtering is used as a
pre-processing step. The accuracy of their proposed system
is slightly lower compared to the other evaluation metrics
such as precision, recall, f1-score, etc. For the estimate of
road boundaries, Dewangan and Sahu [32] suggested an
encoder-decoder-based system using U-Net, Seg-Net, and
Fully Convolutional Network (FCN). They concluded that
U-Net architecture with dice coefficient can predict better
results compared to other models. A brief summary of the
related work is presented in Table 1.

III. METHODS AND MATERIALS
A. DeepLab FOR IMAGE SEGMENTATION
DeepLabv3+ [41] is an encoder-decoder based network for
semantic segmentation. This network is based on the concept
of Atrous Convolution and Atrous Spatial Pyramid Pooling
(ASPP).

1) ATROUS CONVOLUTION
In Atrous convolution, the active field of view of the convo-
lution is managed by a rate parameter. The generalized form
of atrous convolution can be presented as follows:

y[i] =
∑
k

x[i+ r · k]w[k] (1)

where w is the filter, i represents each location of output y,
x is the input feature map and r represents the atrous rate
which corresponds to the stride. In a regular convolution
layer, the kernel size restricts the area on which the operation
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TABLE 1. Brief summary of the related work.

is to be performed. Hence, a larger area demands a large
kernel. However, working with a large kernel is operationally
expensive and time-consuming. This problem can be solved
by using atrous convolution [42]. It decides the working area
with the size of the kernel as well as the dilation factor. Stan-
dard convolution is a particular case of atrous convolution
where dilation rate r = 1. Depending on the dilation rate,
the kernel expands and then the rest of the positions are filled
with zeros. As a result, an atrous convolution with kernel size
3×3 and dilation rate r = 2 works as a regular convolution
with a kernel size of 5×5. A convolution with kernel size 3×3
and dilation rate r = 3 works as a convolution with kernel
7×7. Figure 2 illustrates this concept. In general, a k×k
kernel with an atrous dilation rate r will produce a kernel
ke = k + (k − 1)(r − 1) and introduces r − 1 zeros within
consecutive filter values. This process helps to secure denser
features without the cost of learning any extra parameters.

2) ATROUS SPATIAL PYRAMID POOLING (ASPP)
To retrieve information on a different scale, several atrous
convolution layers can be applied to the image. The ASPP

can capture multi-scale data efficiently with several atrous
rates. The ASPP includes (a) one convolution with kernel
size = 1×1 and three convolutions with kernel size = 3×3
and dilation rates (6, 12, 18) respectively (b) the image-level
features with image pooling. As shown in Fig. 3, the resulting
features from the five branches are concatenated together and
passed through a 1×1 convolution.

DeepLabv3 works as an encoder and extracts useful fea-
tures at arbitrary resolution. Besides, the ASPP can explore
the convolutional features at various scales with differ-
ent dilation rates. Hence, the rich semantic information
can be found from the output feature map of the encoder
networks which generally contains 256 channels and is
32 times smaller compared to the resolution of the input
image.

The rich encoded features from the encoder networks are
upsampled bilinearly with a factor of 4 and then concatenated
with the lower level features that come from a backbone net-
work with the same shape. As the lower-level features include
a substantial number of channels, they are reduced using
1×1 convolution before the concatenation so that they can-
not outweigh the encoded features. After the concatenation,
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FIGURE 4. Different types of augmentation techniques applied in the
method during training phase.

the features are passed through a few 3×3 convolutions and
finally experienced another bilinear upsample by a factor of 4.

B. IMAGE AUGMENTATION AND SCALING
Semantic segmentation is one kind of classification. To per-
fectly classify each pixel of the test set, the model should
learn to classify on a different scale. So we randomly applied
20% zoom on the training dataset. Horizontal flip is applied
randomly to rearrange the position of the road in the image.
Different types of augmentation techniques are illustrated
in Fig. 4. All the images are resized to 256×256. Images in
the dataset are in the RGB color model so, it contains values
of the pixels between (0−255) in three different channels.
We divide it by 255 to maintain the range between (0−1).
Then the train set of the dataset is divided into two parts:
training and validation set.

C. BackBone NETWORKS
It’s common to train a ConvNet on a dataset that is consid-
erably large, and then use the ConvNet in initialization or as
a fixed feature extractor for the task at hand with the help of
transfer learning.

Transfer learning [43] concentrates on storing experiences
while solving one problem and applies that experience in
resolving other related problems. In deep neural networks,
initial layers extract general features. Hence, it is beneficial
to apply the weights of a pre-trainedmodel, trained on a larger
dataset, for training other models with a small dataset to get
better performance. Some popular datasets for pre-trained
models are ImageNet [44], MNIST [45], CIFAR [46]. All
of those datasets contain a large number of images. Back-
bone networks are used for feature extraction from images.
Deep Convolutional Neural Network (DCNN) based back-
bone networks can extract high-level features and also down-
sample images from the input. Generally, a DCNN based
backbone network includes Convolution, pooling, activation
function, etc. We tried with 4 different state-of-the-art DCNN
based backbone network architectures i.e. VGG16, VGG19,
ResNet-50 and ResNet-101 for our method.

1) VGG
VGG16 and VGG19 architectures were introduced by
Simonyan and Zisserman [47] for large scale image recogni-

TABLE 2. Architecture of VGG16 and VGG19. The parameters of the
convolutional layer are shown as ‘‘conv〈receptive field size〉-〈number of
channels〉.’’

tion back in 2014. VGG16 is based on VGG architecture with
16 layers. It consists of 5 convolution blocks and some fully-
connected layers. The First 2 convolution blocks have 2 con-
volution layers each and the other 3 convolution blocks have
3 convolution layers each. The convolution operation uses a
kernel of size 3×3. Those convolution layers automatically
extract features from images. After each convolution layer,
a rectified linear unit (ReLU) is used as an activation function.
There is a max-pooling layer after each convolution block,
so a total of 5 such layers. Each pooling operation is done by
a kernel of size 2×2 with a stride of 2 and no padding. At the
end, there are three fully-connected layers. First, two of them
have 4096 channels each and the last layer has 1000 channels.

VGG19 is another variant of VGG architecture that con-
tains 19weight layers. It also has 5 convolution blocks and the
same fully-connected layers. However, the last three convolu-
tion blocks contain an extra convolution layer each compared
to VGG16. Details are presented in Table 2.

2) ResNet
The residual network [48] is quite appropriate for the train-
ing of deeper networks. The ResNet introduced the idea
of ‘identity shortcut connection’ as shown in Fig. 5. Deep
Neural Networks suffer from vanishing gradient problem as
the gradient can easily shrink to zero. In ResNets, gradients
can flow through skip connections and backpropagate to the
earlier layers. A residual building block can be defined as

y = F(x, {Wi})+ x (2)
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FIGURE 5. Building block of residual learning with skip connection.

TABLE 3. Architecture of ResNet-50 and ResNet-101. The building blocks
for these architectures are shown in brackets, with the numbers of blocks
stacked.

where the x, y represent the input and output vectors and
F(x, {Wi}) depicts the residual mapping. For Fig. 5, F =
W2σ (W1x) where σ is the ReLU activation function. For
changing dimensions, a linear projection Ws needs to be
performed to adjust with the dimension.

y = F(x, {Wi})+Wsx (3)

Therefore, we can inject shortcuts to produce a residual
version of a deep network. When the input and output have
the same dimension, the identity shortcuts can be inserted
using Eq. (2) and for matching the dimensions, a projection
shortcut can be employed using Eq. (3). Residual networks
with 50 layers are called ResNet-50. ResNet-101 also works
with the same idea as ResNet-50. ResNet-101 has 101 layers
so it can go deeper than ResNet-50 and extract more advanced
features. Table 3 illustrates the detailed architecture for the
ResNet-50 and ResNet-101.

In this work, we employed VGG16, VGG19, ResNet-50,
and ResNet-101 as pre-trained models and used ‘Imagenet’
weight in those models. First, a deep neural network-based

model is pre-trained where some generalized features are
extracted from different layers of that network. These features
are fed to the encoder and decoder of DeepLab architecture
based on their depth to enhance the performance of the
method. Eventually, we fine-tuned our proposedmodel on the
segmentation dataset while using augmentation techniques to
reduce the overfitting.

D. CLASS IMBALANCE
Multi-class classification expects all classes to be equally
distributed.Whenmembers of some class (minority class) are
much lower than the members of other class or the number
of elements of some class (majority class) is strictly higher
than the members of other class or classes, then a class imbal-
ance problem occurs. With this problem, the model is biased
towards the majority class. Sometimes it may neglect some
classes if the amount of training data is too low compared to
the majority class. Semantic Segmentation also expects that
pixels of all classes should be equal in quantity.

For solving the class imbalance problem, we applied dif-
ferent customized loss functions such as the Dice coefficient
and the Jaccard index in our method and analyze their effect
on the performance of the system. The Dice coefficientD and
Jaccard Index J between two volumes p, q can be written as

D(p, q) =
2

∑N
i piqi + ε∑N

i p
2
i +

∑N
i q

2
i + ε

(4)

J (p, q) =

∑N
i piqi + ε∑N

i p
2
i +

∑N
i q

2
i −

∑N
i piqi + ε

(5)

where ε is a small positive number which is added to
avoid divide by zero error. To formulate the loss function,
we employed 1−D(p, q) and {1− J (p, q)}× ε in the method
as Dice Coefficient Loss and Jaccard Index Loss respectively.

Secondly, we try toweigh the loss contributions of different
model outputs using Eq. (6). The final loss used by the model
is the weighted sum of all the individual losses.

wi =
samplesT

classT × samplesi
(6)

where wi is the weight for i class, samplesT represents the
total number of samples in the dataset, classT is the total
number of unique classes and samplesi denotes the total
number of samples in class i.

E. MODEL ARCHITECTURE
In this work, we applied an encoder-decoder based network
which resembles the DeepLabV3+ [41] architecture for seg-
mentation. According to Fig. 6, we extract two different
layers Le and Ld from the backbone network for the encoder
and decoder respectively. The detailed information about
different layers and their respective shapes are illustrated
in Table 4. The method utilized VGG16, VGG19, ResNet-50,
and ResNet-101 as backbone networks. The ASPP of the
encoder applied different dilation rates r = (6, 12, 18)
for capturing multi-scale information. After concatenation,

VOLUME 9, 2021 121065



S. Das et al.: Estimation of Road Boundary for Intelligent Vehicles Based on DeepLabV3+ Architecture

FIGURE 6. Architecture of DeepLabV3+ with backbone network.

TABLE 4. Detailed information about various layers extracted from different backbone networks and employed in the encoder and decoder of
DeepLabV3+ architecture.

the features are fed through an 1×1 convolution and upsam-
pled by a factor of 4 so that it can again be concatenated
with the features of the decoder. In the last state of the
decoder, the features are again upsampled by a factor of 4
and fed through an 1×1 convolution before giving the final
output.

As semantic segmentation requires substantial spatial
information, feature maps with the smaller resolution are not
very effective for this kind of task. The atrous convolution of
the encoder of our method can maintain spatial resolution by
using different dilation rate at different blocks of the ASPP.
Therefore, the size of the feature map is not reduced and the
architecture provides better result at segmentation.

IV. EXPERIMENTS
A. DATASET
We used the ‘ICCV09DATA’ dataset [33] for evaluating our
method. This dataset, also known as ‘The Stanford Back-
groundDataset’ introduced inGould et al. [33] for evaluating
models for semantic scene understanding is very suitable for

FIGURE 7. Detailed visualization of the ICCV09DATA [33] and the 3 class
segmentation used in the experiments.

our research as we applied semantic segmentation-based deep
learning to estimate the road boundary. It contains images
with approximately 320-by-240 pixels. The pixels are divided
into 8 different classes: sky, tree, road, grass, water, build-
ing, mountain, and foreground object. Figure 7. shows those
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TABLE 5. Performance comparison of different methods with respect to various loss functions. Values of the metrics are based on the mean ± the margin
of error at 95% confidence interval.

TABLE 6. Performance comparison of different backbone networks in the DeepLabV3+ architecture over Dice Score, Dice Score Loss, Jaccard Index, and
Jaccard Index Loss.

classes [8 colors with their corresponding class]. We keep the
road portion of the images and make others as background.
Then we create a border between road and background which
creates 3 classes: background, road, and road boundary. This
dataset contains 715 images. We kept 100 images randomly

as the test set and used the other 615 images for training
purposes.

We have also tested 14 images containing different shapes
of roads. These images are collected from ‘The Geographr

Britain and Ireland Project’ [49].
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TABLE 7. McNemar’s test on different methods with respect to DeepLabV3+(ResNet-101, pre-trained on imagenet, Dice Coefficient with Weight Loss).

FIGURE 8. Illustration of contingency table for McNemar’s test.

B. EXPERIMENTAL SETTING
The method is implemented on a Windows 10 PC which has
a RAM of 16GB, an Intel Core i7 processor, a CPU speed
of 3.60 GHz, and an Nvidia GeForce GTX 1050Ti graphical
processing unit (GPU) (768 Nvidia Cuda cores). We used
Python 3.6 and ‘Keras’ API to build the proposed model.

C. EVALUATION METRICS
Accuracy, precision, recall, and f-measure are utilized for the
quantitative evaluation of the segmentation task. The metrics
are computed according to Eqs. (7)−(10) where Tp, Tn, Fp,

Fn are the number of true positives, true negatives, false
positives, and false negatives at the pixel level, respectively.

Accuracy =
(Tp + Tn)

(Tp + Fp + Tn + Fn)
(7)

Precision =
Tp

(Tp + Fp)
(8)

Recall =
Tp

(Tp + Fn)
(9)

F-measure = 2×
(Precision× Recall)
(Precision+ Recall)

(10)

McNemar’s Test or within-subjects chi-squared test is a
non-parametric statistical test that signifies the predictability
of models. The McNemar’s test uses a contingency table that
tabulates the outcomes of two different models as described
in Fig. 8. The McNemar test statistic (sometimes known as
the ‘‘chi-squared’’) is calculated as follows:

χ2
=

(b− c)2

(b+ c)
(11)

When the total of the b and c cells is considerably large,
χ2 follows a one-degree-of-freedom chi-squared distribution,
and we can estimate the p-value assuming that the null
hypothesis is true after setting a significant threshold, such
as α = 0.05. Another often used variety of the McNemar
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FIGURE 9. Loss versus Epochs graphs during training and validation phases with respect to different loss functions.

statistic, the continuity corrected version, can be calculated
as follows:

χ2
=

(|b− c| − 1)2

(b+ c)
(12)

D. PROCEDURE
In the proposed method, we applied different types of
pre-trained models such as VGG16, VGG19, ResNet-50, and
ResNet-101 with the ‘imagenet’ weight for the initial fea-
ture extraction. We have taken the output from two different
layers (Le,Ld ) with two different depths from each of those
backbone networks for the encoder and decoder respectively.
For the encoder, we applied ‘block5_conv3’, ‘block5_conv4’,
‘conv4_block6_2_relu’, ‘conv4_block23_2_relu’ as Le and
for decoder, ‘block3_conv3’, ‘block3_conv4’, ‘conv2_b
lock3_2_relu’, ‘conv2_block3_2_relu’ layers are extracted

as Ld from VGG16, VGG19, ResNet-50 and ResNet-
101 respectively. The details of these layers can be found
in Table 4.

The last column of Table 4 represents the total number
of trainable parameters for each of the backbone networks.
In the training phase, these parameters are adjusted by the
optimizer after backpropagation was employed for gradient
computation which means the ResNet-101 with a total train-
able parameter of 30,838,115 will need a substantial amount
of computation during the training process.

In the model, we have employed two types of activa-
tion functions. ReLU [50] activation function for internal
layers and Softmax [51] activation function in final layer
for the multi-class classification. For upsampling, we uti-
lized Bi-linear Interpolation to estimate the necessary val-
ues. We used Dice Coefficient Loss, Jaccard Index Loss and
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FIGURE 10. Accuracy versus Epochs graphs during training and validation phases with respect to different loss functions.

Categorical Cross-Entropy separately as loss functions and
the ‘adam’ optimizer while compiling the model. As most
of the pixels of our dataset are in the background, it creates
a class imbalance problem. That’s why we applied the Dice
Coefficient, Jaccard Index as loss functions to deal with the
problem and weighted the model’s loss contribution accord-
ing to Eq. (6).

E. RESULT ANALYSIS
The trained models are tested on the 100 images which
are different from the training dataset. We also tested the
proposed model on some of the other images from ‘The
Geographr Britain and Ireland Project’ [49] to verify the
robustness of the model.

To understand the improvement of the proposed method
with ResNet-101 and dice coefficient loss over other

methods, we compared the performance of different meth-
ods in Table 5 in terms of accuracy, precision, recall,
and f-measure. All of the evaluation metrics are pre-
sented with a margin of error at a 95% confidence
interval. Although Mana et al. [16] achieved a notable accu-
racy of 0.955±0.0047, it performs inadequately as it only
managed to produce 0.609±0.0393, 0.552±0.0399, and
0.571±0.0392 for precision, recall, and f-measure respec-
tively. This is also true for other popular segmenta-
tion methods such as U-Net, SegNet, FCN8s, and ENet
where we haven’t applied any pre-trained backbone dur-
ing the training process. We applied four different back-
bone networks (VGG16, VGG19, ResNet-50, ResNet-101),
three different loss functions (Categorical Cross Entropy,
Jaccard Index Loss, Dice Coefficient Loss) and com-
bine them with and without ‘loss weight’ so that we
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FIGURE 11. Comparison of different backbone networks used in DeepLabV3+ architecture with respect to multi-class ROC AUC on
ICCV09DATA.

can analyze their effect on the method. In most cases,
the weighted version performs better than the unweighted
version of the loss functions. Every version of the mod-
els of the proposed method provides satisfactory results
with respect to the four evaluation factors i.e. accuracy,
precision, recall, and f-measure. Our method provides the
best result for ResNet-101 while using the Dice Coefficient
Loss with ‘loss weight’ and achieves accuracy, precision,
recall, and f-measure of 0.9596±0.0097, 0.9453±0.0118,
0.9369±0.0149, and 0.9408±0.0135 respectively which is
very promising compared to Mana et al. [16].
In Table 6, we attempted to evaluate the impact of

Dice Score, Jaccard Index, Dice Score Loss, and Jac-
card Index Loss for the test set. We applied Dice Score
and Jaccard Index in the model to quantify the perfor-
mance of the segmentation method. Again, the weighted
version produces better outcomes than the unweighted
version i.e. Dice_Scoreunweighted < Dice_Scoreweighted ,
Jaccard_Indexunweighted < Jaccard_Indexweighted ,
DS_Lossunweighted > DS_Lossweighted , and likewise
JI_Lossunweighted > JI_Lossweighted .

Specifically, the ResNet-101 outperforms other models as
it achieves a Dice score of 0.9586±0.0086, 0.9601±0.0097,

a Jaccard Index of 0.9579±0.0106, 0.9584±0.0099, a Dice
Score Loss of 0.0414±0.0086, 0.0399±0.0097, and a Jac-
card Index Loss of 0.0421±0.0106, 0.0416±0.0099 for the
unweighted and weighted version respectively.

A non-parametric statistical test such as McNemar’s test
has been carried out on different methods to demonstrate the
statistical significance of the proposed ResNet-101 model.
The details of the experiment are presented in Table 7. Table 7
shows that the p-value of the test is considerably less than
the threshold i.e. 0.05 in both cases, regardless of whether
the continuity correction is used or not which indicates that
we can reject the null hypothesis for both cases and conclude
that the performance of the proposed model is significantly
different from the other methods.

For determining the best loss function for our method,
the effects of different loss functions on the models are
analyzed in Fig 9. Every loss function is expressed with and
without ‘loss weight’. For categorical cross-entropy, the loss
is presented on the scale of (0 ∼ 3) and for other loss func-
tions, a scale of (0 ∼ 0.5) is used. Every subfigure exhibits
the loss vs epochs curve for the training and validation phase
and for each of the backbone networks. According to Fig. 9a,
and Fig. 9b, in categorical cross-entropy, for both versions,
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FIGURE 12. Loss and accuracy plots of the proposed DeepLabV3+(ResNet-101, pre-trained on imagenet) with other popular segmentation networks
(without pre-trained backbones).

FIGURE 13. Segmentation outputs from the DeepLabV3+ architecture based on different backbone networks with various loss functions.

the training loss decreases after each epoch and the validation
loss remain approximately constant after decreasing at a cer-
tain point. For other loss functions i.e. Jaccard Index Loss and
Dice Coefficient Loss, both the training and validation loss
decrease after each epoch. While categorical cross-entropy is
maintaining the approximately same loss for the validation
set, Jaccard Index and Dice Coefficient Loss are assisting
the models to learn significantly on the training and valida-
tion data by decreasing the train and validation loss in each
epoch. Moreover, the loss generated by models with Dice
Coefficient Loss for the training and validation phase is much
lower compared to models with other loss functions. There-
fore, from the graphical representation of loss functions, it is
evident that the models with dice coefficient loss perform

better than the models compiled with other loss functions.
Similarly, we inspected the accuracy vs epochs curves for
every model, as shown in Fig.10 which provides sufficient
evidence that the proposed DeepLabV3+ architecture with
ResNet-101 model compiled with Dice Coefficient loss with
Loss weight is free of overfitting. Table 8 shows the average
time of each epoch during the training process for different
methods, where averages are calculated over 100 epochs.
The DeepLabV3+with ResNet-101 and dice coefficient loss
takes relatively a little bit more time for a single epoch than
other methods.

In Fig. 11, we present the ROC plot for the different back-
bone networks with Dice Coefficient Loss, where class 0,
class1, and class 2 indicate road, background, and road
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FIGURE 14. Segmentation result comparison between the proposed DeepLabV3+(ResNet-101, pre-trained on imagenet) with other popular
segmentation networks (without pre-trained backbones). These input images are collected from ‘The Geographr Britain and Ireland Project’ [49].

TABLE 8. Average time per epoch for different methods during training
phase along with different loss functions such as Categorical Cross
Entropy (C_Cross), Jaccard Index (Jaccard), and Dice Coefficient (Dice).

boundary respectively. The higher the area, the better the
model is at predicting different classes. Also, a model with a

higher area presents that the model has high-class separation
capability. According to the plot, ResNet-101 performs more
reliably as it maintains a significant area under curve for
every class. Fig.12 illustrates the loss and accuracy graphs of
the proposed DeepLabV3+(ResNet-101, pre-trained on ima-
genet) with respect to other popular segmentation networks
(without any pre-trained backbones). The proposed method
has a lower training and validation loss than other methods,
as demonstrated in Fig.12. Similarly, the training and val-
idation accuracy is higher than the respective training and
validation accuracy of other methods. Furthermore, for both
subgraphs, the proposed method converges in less number of
epochs compared to other methods (without any pre-trained
backbone networks).

To estimate the best model with respect to the loss function,
the segmentation outputs of different models for various loss
functions are illustrated in Fig. 13. The first and second
column present different shapes of roads and their corre-
sponding ground truth values. Later, we offer the results of
each of the input images for different backbone networks
with three different loss functions. After carefully analyzing
the segmentation results, it is apparent that the output gener-
ated by ResNet-101 with dice coefficient loss approximately
resembles the corresponding ground truth values.

Figure 14 compares the segmentation results of the
proposed DeepLabV3+(ResNet-101, pre-trained on ima-
genet) with other popular segmentation methods where no
pre-trained network is applied during the training process.
To verify the robustness of different methods, Fig. 14 uses
different shapes of roads as inputs, and all the models are
trained for 100 epochs. Although the results generated by
U-Net, SegNet, FCN8s are almost good, these models clearly
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need much more number of epochs during training to reach
convergence and the segmentation results of the ENet are
deeply inadequate compared to other methods. On the other
hand, the proposed method accurately identifies the road,
road boundaries, and background for each of the images.
These results clearly show that the proposed method is quite
effective in estimating the boundaries of various challenging
shaped roads.

V. CONCLUSION
The revolution introduced by autonomous vehicles will
transform the traditional transportation system for good.
Therefore, accurate detection of the road boundary can
help to develop intelligent vehicles for future road
transportation.

In this paper, we proposed a method with DeepLabV3+
Architecture and by adopting different pre-trained deep neu-
ral network based models for road boundary estimation.
One of the advantages of the work compared to traditional
feature-basedmethods is that ourmethod does not require any
existing road markings for the estimation of road boundaries.
The atrous convolution of DeepLab preserves the spatial
resolution of feature maps which is quite beneficial for seg-
mentation. The robustness of the model is further accelerated
by transfer learning as it allows our method to use pre-trained
networks, trained on the Imagenet dataset, for the segmen-
tation task. Besides, as the number of background pixels
is considerably high compared to road and road boundary,
we applied customized loss functions i.e. Dice Coefficient
loss and Jaccard Index loss as they consider overlap while
estimating loss function and weighted the loss contribution
of the model’s different output. Analyzing the outputs of
the method, we can conclude that the proposed method with
ResNet-101 and Dice Coefficient Loss is quite adequate for
challenging environments such as the different shapes of
roads and various brightness situations as the method out-
performed other networks regarding the accuracy, precision,
recall, and f-measure.

For uniform and straight roads, our method is capable of
determining the road boundary. Although the overall bound-
ary estimation for crossroads and roads with bending is com-
paratively good, it requires further improvement. Very often
potholes and damaged roads are the cause of road accidents.
In the future, we also plan to develop models that can detect
potholes and road damages alongwith road boundaries so that
undesired accidents and mishaps can be prevented.
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