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ABSTRACT Fifth-Generation (5G) networks have adopted a multi-tier structural model which includes
femtocells, picocells, and macrocells to ensure the user quality-of-service (QoS). To meet these
QoS demands, the system requires optimization of different resources in different network dynamics
carefully. However, if ignored, this will lead to long processing delays and high computational burdens.
To avoid this, we proposed Deep Learning (DL) based resource allocation (RA) as a promising solution to
meet the network requirements. DL is an effective mechanism where neural networks can learn to develop
RA techniques. Thus, an optimized RA decision can be achieved using DLwithout exhaustive computations.
Further, DL uses DL to achieve solutions for joint RA and remote-radio-head (RRH) association problems in
multi-tier Cloud-Radio Access Networks (C-RAN). Initially, a summary of existing literature on DL-based
RA techniques is provided, followed by a deep neural network (DNN) description, its architectures,
and the data training method. Then, a supervised DL technique is presented to solve the joint RA and
RRH-association problem. An efficient subchannel assignment, power allocation, and RRH-association
(SAPARA) technique are used to generate the training data for the DNN model using the iterative approach
where the seed data for the SAPARA technique is taken using a uniform power allocation and path-loss
based association (UPA-PLBA) model. After training the DNN model, the accurateness of the presented
model is tested. Simulation outcomes demonstrate that our proposed scheme is capable of providing an
efficient solution in the considered scenario.

INDEX TERMS Deep learning, resource allocation, RRH-association, multi-tier networks, cloud-radio
access networks, 5G networks.

I. INTRODUCTION
To day Internet of Things (IoT) and the 5th-Generation
(5G) cellular networks are envisioned to handle numerous
evolving applications and integrated devises which demand
high Quality-of-Service (QoS) with low latency rate [1], [2].
To ensure the QoS demands of various types of applications,
many resource allocations (RA) techniques have been devel-
oped which maximize network sum-rate, energy-efficiency
(EE), or spectrum efficiency [3], [4]. However, in practical
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5G cellular networks, two main challenges are countered
while applying existing RA optimization techniques. First,
QoS limitations of some services, such as low-latency, ultra-
reliable, and delay-sensitive services, may lack closed-form
representation. To implement RA optimization techniques,
the QoS achieved by a certain policy needs to be evaluated
by the system via extensive simulations, and consequently
suffers from a high processing burden [5]. Next, even if
the closed-form representation is achievable in certain cases,
the problems are generally non-convex [4], [5]. The sys-
tem also requires RA updating through these non-convex
problems that result in a high computational burden.
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Even for some convex optimization problems solvable by cer-
tain efficient techniques, e.g., interior-point algorithm (IPA),
the computational burden is still very high for real time
deployment [6]. Deep learning (DL) is a capable methodol-
ogy [7] to perform real time optimal RA [8]–[10]. The main
objective is to deploy a Neural Network (NN) to estimate the
RA strategy that maps states of the systems to the optimal RA.
To this end, the system initially trains theNNoffline through a
huge number of labeled data samples. Then for any specified
input, the optimal RA can be achieved from the network
output. As the theory of universal approximation stated that if
the optimal policy is a continuous function and deterministic,
then, as the neurons number tends to infinity, the approxima-
tion errors tend to zero [11]. It should be clear that the use
of DL in wireless systems is not a simple task. Performing
the optimization of certain variables, e.g., antennas count,
subchannels, and user-association, the NN estimation can be
incorrect owing to the variable’s quantization. Consequently,
the achieved NN results cannot completely ensure the QoS.
Furthermore, labeled training samples will be required in
large number by theDLmodel. To attain labeled training sam-
ples, an optimization technique should be designed first for
the optimization problem solution. Even if training samples
are achieved in large numbers, the trained NN is not precise
due to the dynamic nature of the wireless system. Such as,
the service types and channel itself in the system may change
with time. These varying parameters which are not con-
tained within the NN inputs are called hidden variables [12].
While training the model, hidden variables are supposed to
be fixed, but, practically, they drift over time. The authors
in [12] showed that hidden variables could be malicious in the
DL model.

A. RELATED WORK
Researchers have broadly considered efficient RA. The
authors in [13] considered QoS as the objective and jointly
optimized the RA and antenna configuration in multi-tier
cellular systems. Effective capacity was implemented for
resource optimization techniques in [14], [15] to ensure
the queuing delay bound. In low-latency and ultra-reliable
communications, to decrease transmission delay, the basic
relation of probability decoding error to block-length was
formulated in [16]. The relation in [16] was utilized for
RA optimization in low-latency and ultra-reliable commu-
nications [4], [17]. The QoS limitations lack closed-form
representation for many of these works, and the RA tech-
nique will not be implementable in real-time. Estimating
RA strategies with NNs are studied in [8], [18]. It is shown
in [7] that a power control technique in multi-tier systems can
be correctly estimated through fully connected NN. In [10]
and [18], convolutional NN are implemented to approximate
content delivery and power control policies, respectively.
To enhance EE, [14] presented an online DL model for
the EE and power control approximation technique acquired
from the fractional-programming model [19]. Due to the
unavailability of an optimum RA optimization technique,

unsupervised DL was implemented in [20], where the
NN parameters are trained to fulfill the Karush-Kuhn-Tucker
optimization conditions. However, the Karush-Kuhn-Tucker
conditions do not exist when integer variables are not speci-
fied for a close set. Considering the highly dynamic nature of
wireless networks, NNs trained off-line are unable to attain
the required performance in varying networks. To deal with
this problem, deep transfer learning was implemented by
some researchers. Such as, when the traffic patterns [22],
data-arrival processes [21], or the network size [23] vary, deep
transfer learning could be implemented in order to fine-tune
the NNs.

B. CONTRIBUTION
With the DL model for RA in an outsized cellular system,
a multi-tier NN mechanism can be established to which the
appropriate input training samples can be given, and then the
RA solution can be acquired as outputs without exhaustive
computations [3].Moreover, the introduction of cloud storage
technologies made it possible to handle the training of the
DL model as well as the computation, analysis, and storage
of big data. This paper studies the use of DL for RA in
multi-tier cellular systems. Initially, a summary of existing
literature on DL based RA techniques is provided. Then,
a NN, its architectures, and the data training method are
briefly discussed. Furthermore, a supervised DL technique is
presented to solve the joint RA and RRH-association prob-
lem. An efficient Power allocation, subchannel assignment,
and RRH-association (SAPARA) technique are used to gen-
erate the training data for the DNN model using the iterative
approach where the seed data for the SAPARA technique is
taken using uniform power allocation and path-loss based
association (UPA-PLBA) model. After training the DNN
model, the performance of the presented model in estimating
the RA solutions is tested.

C. PAPER STRUCTURE
The remaining sections are structured as follows.
Sections II and III contain a brief overview of a DNN and the
considered system model, respectively. Section IV includes
the proposed supervised DL technique. Section V is about
simulated results, while Section VI concludes the paper.

II. AN OVERVIEW OF DEEP LEARNING
DL is a multi-layered feed-forward technique that is used
to build and train NNs. A basic DL technique allows the
transformation of input data and feature extraction. In the
following subsections, first, a deep neural network (DNN)
is briefly discussed, and then the architecture of relevant
DNN is presented, followed by its data training method.

A. DEEP NEURAL NETWORK
A DNN consists of three layers: input, output, and hidden
layers, as shown in Figure 1. Each layer contains multiple
elements called neurons which perform a non-linear process
on the input data. First, calculation of the input weights
summation is performed followed by the addition of a bias
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FIGURE 1. Illustration of a Deep Neural Network (DNN).

value to this sum before becoming the input of an activation
function, such as Sigmoid function given as below

ϕ(x) = 1/1+ ex (1)

where x represents the input. The purpose of the activation
function is to set a non-linear input-output association [1].
Figure 1 shows the illustration of a single neuron that contains
two vectors: weight and bias. If x represents the input of i-th
hidden layer, its output is then hi = ϕi(wix + bi), where ϕi,
(wi and bi) represent the activation function, the weight vec-
tor, and the bias vector of i-th hidden layer, respectively.

B. DEEP LEARNING ARCHITECTURE
DL takes advantage of the convolutional NNs, unsupervised
pre-trained NNs, recursive NNs, and recurrent NNs architec-
tures. The DL model can be implemented with three models:
unsupervised learning, supervised learning and reinforce-
ment learning. In an unsupervised model, due to the absence
of a supervisor, the data set does not have a pre-defined out-
come; therefore, the main objective is to assume the outputs
appropriately for a specific unlabeled input dataset. In super-
vised learning, a supervisor assists the model in learning the
features from the given dataset. Therefore, for each input,
the dataset provides the target. Supervised learning is suitable
for regression and classification problems. In reinforcement

learning, a software agent is there that interacts with the
environment for learning. The agent decides an action after
sensing its existing state and the state of the environment.
There is a possible result of every move, i.e., the agent either
gets a reward or penalty for a right move or bad move, respec-
tively. The agent’s main responsibility is cumulative reward
maximization. This paper emphasizes a type of unsuper-
vised pre-trained NNs [4] named Auto-Encoder (AE), which
reproduces the inputs at the outputs. This way, the unlabeled
dataset feature space is leaned by theAE. It generally involves
three types of layers, i.e., input, output, and hidden layers.
The neurons should be the same in number at both the input
and output layers. AE involves an encoder, a decoder that
performs input data to a hidden code conversion, and hidden
code to input conversion. AE has various types: stacked AE,
denoising AE, variational AE, and sparse AE [5].

C. DATA TRAINING PROCEDURE
Suppose that we have to learn y where y is a target function
expressed by y = f ∗(x). Here, x and y are the input and
output vectors, respectively. Thus, the DL model is repre-
sented by y = f (x; q), where q represents weights and
biases. The main objective is to accurately learn q so that
the presented and original models can be closed in perfor-
mance. For this purpose, various techniques (e.g., Momen-
tum, Stochastic Gradient, AdaGrad, Adam, and RMSProp)
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FIGURE 2. Illustration of multi-tier C-RAN.

can be implemented [24]. A dataset comprised of inputs
values and outputs values are used for the training of the
model. To this end, first, the weights and biases are arbitrarily
initialized and then fed to the input layer, whereas the output
from this layer is provided to the hidden layer as an input.
Furthermore, a cost function is implemented to find themodel
quality by computing the error between the target value and
the predicted value. Then the backward pass is performed
where the following error is transmitted backward to updates
the values of weights and biases at every layer. This training
lasts until the error rate approaches a threshold value. One
complete round of a forward pass and backward pass is
known as an epoch or a training cycle. A maximum number
can be set for training cycles upon reaching which the training
practice can be ended. Such a NN is called a feed-forward,
and back-propagation NN is utilized in our presented
DL model.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
The UL of a SC-FDMA-based multi-tier 5G C-RAN is
considered a total of 3 communication tiers, as shown
in Figure 2. A three-tier infrastructure is divided as follow,
tier 1 is served by microcell, tier 2 is looked by picocell-
RRHs, while tier 3 is cared by femtocell-RRHs. In addi-
tions, we have total of M RRHs including three tier RRHs.
Also, (M − 1)/2 femtocell-RRHs and the same number
of picocell-RRHs are underlaid in the microcell. Our pre-
sented multi-tier C-RAN consists of a BBU pool, a group of
RRHs, cloud and core network. The first two are intercon-
nected through fronthaul links, and the last two are connected
through a backhaul link. In present infrastructure MBS-RRH

TABLE 1. List of symbols.

and small cell RRHs are responsible for transmitting con-
trol signal to C-RAN and data transmission respectively.
Moreover, SC-FDMA is considered a UL multiple access
techniques in our presented multi-tier C-RAN.

In addition, we assumed total K randomly deployed users.
Based on this total bandwidth is orthogonally sub-divided
into N sub-channels. Each RRH reuses the available set
of all sub-channels independently of all other RRHs in
the system. As all the RRHs share the same set of sub-
channels, the associated users of different RRHs transmit on
the same channel, resulting in interference. The sub-channel
adjacency and exclusivity constraints of SC-FDMA ought
to be fulfilled, wherein only an adjacent couple of
sub-channels can be assigned to a user. A sub-channel can
be assigned to one user at a time respectively. Different
symbols used in this chapter and their description are listed
in Table 1.
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It is anticipated that a user can be linked to only one RRH
and a user could be allotted several subchannels if∑

nεNm
k

pk,n ≤ pmaxk , ∀k, pk,n ≥ 0 ∀k, n, (2)

where Nm
k , pk,n and Pmaxk indicate the subchannels of user

k linked to m-th RRH, the power transmitted by k-th user
on n-th subchannel and the maximum transmit power of
k-th user, respectively. The subchannel exclusivity and adja-
cency restrictions are satisfied. The full channel information
availability to every user is also considered.

Let |hmk,n|
2 and Imk,n be gain of the channel, and interference,

respectively, of k-th user to m-th RRH on n-th subchannel,
and σ 2 be the noise. Then, SINR on n-th subchannel from
user k to m-th RRH, is shown as follows:

γmk,n =
pk,n|hmk,n|

2

σ 2 + Imk,n
, (3)

where

Imk,n =
∑
l 6=k

pl,n|hml,n|
2 (4)

The k-th user possible data-rate is denoted as follows:

Rmk,n = W |Nm
k | log2

(
1+

1
|Nm

k |

∑
nεNk

(γmk,n)
)

(5)

The EE is designated as the transmitted bits per unit energy
consumption at the source side, which is shown as follows:

ηmk =
Rmk
PkT

(6)

where PkT shows the energy consumption of user k and com-
prises of two quantities: the collective transmit powers on all
its subchannels

∑
nεNm

k
pk,n and the static and dynamic circuit

energy consumption of k-th user represented by Psk and εR
m
k ,

respectively. PkT can be represented as follows:

pkT =
∑
nεNm

k

pk,npsk + εR
m
k (7)

where ξ and ε show the reciprocal of the power amplifier’s
drain efficiency and dynamic power consumption per unit
data rate, respectively [6].

Besides, thematrix for RRH-association ismolded asαk,m)
where

αk,m =

{
1, if a user is connected to RRH m
0, otherwise

(8)

and the optimization problem is formulated as follows

max
M∑
m=1

K∑
k=1

αk,mη
m
k (9)

s.t. C1 :
∑
nεNm

k

pk,n ≤ pmaxk , ∀k, pk,n ≥ 0, ∀k, n (10)

C2 :
M∑
m=1

αk,m = 1, ∀k, αk,mε
{
0, 1

}
, ∀k,m (11)

C3 : Nm
k ∩ N

m
j = ∅, ∀k 6= j, ∀m (12)

C4 :
{
n ∩

(
k
∪

j=1,j 6=k
Nm
j

)
= ∅|

nε
{
n1, n1 + 1, . . . , n2 − 1, n2

}}
, ∀k,m (13)

C5 :
M∑
m=1

αk,m Rmk ≥ R
min
k , ∀k (14)

where n1 = min(Nm
k ), n2 = max(Nm

k ) and R
min
k indicates the

minimum rate condition of k-th user. Objective function is
represented in Equation (9). Equations (10) and (11) indicate
transmit power bounds and RRH association restrictions of
a user, respectively. Two Equations (13) and (12) showing
subchannel exclusiveness and adjacency restrictions, respec-
tively. Equation (14) showing minimum rate condition of
k-th user.

IV. A SUPERVISED DEEP LEARNING TECHNIQUE FOR RA
AND RRH-ASSOCIATION IN A MULTI-TIER NETWORK
We propose a DL technique that can predict optimal joint
RA and RRH-association solutions in a multi-tier C-RAN.
Mainly, this DL technique takes the K ,N ,M , and pmax as
input and guesses the power and sub-channel assignments
and RRH-association as output. The technique continues in
the following stages.

A. DATA GENERATION
To achieve the optimal solution for joint RA and
RRH-association problem, a mixed integer non-liner pro-
gramming (MINLP) problem, one approach is to perform the
exhaustive search. The subchannel adjacency constraints in
Equations (12) and (13) imposed by the SC-FDMA lead to
vast search space, e.g., even for a secure power allocation
and RRH-association, the optimal subchannel assignment
lonely is extremely hard. For example, if there are 24 sub-
channels and 10 users, then for a fixed power allocation and
RRH-association, a search across 5.26 ∗ 1012 subchannels
assignments will be required to achieve the optimal result,
which indicates that the solution of (9) to (14) is extremely
hard and time consuming through exhaustive search method.
Therefore, the three stages iterative SAPARA technique [3]
is used for training and test data generation for our presented
DNN model.

B. JOINT SAPARA ALGORITHM
Our presented joint SAPARA algorithm is provided in Algo-
rithm 1, while its step by step explanation is given below.
Step 1: To provide the initial input data for SAPARA

algorithm, we supposed the initial RRH-association vector
and power allocation vector as α0 and p0, respectively, such
that α0

= α01 .α
0
2, . . . . . . α

0
k and p0,n = pmaxk /|Nm

k |,∀k, n,m.
We perform initialization by UPA-PLA algorithm where
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Algorithm 1 SAPARA Algorithm

1: Initialization K ; N ; M; K̃ = {1, . . . ,K };
2: Ñm = {1, . . . ,N }; M̃ = {1, . . . ,M}; Nm

k = φ, ∀ kεK̃ ,
3: ∀mε M̃;Nm,f

k = Ñm, ∀kε K̃ ; Rmink , ∀k;Rmk = 0,∀k, m
4: while M̃ 6= φ do
5: while Ñm 6= φ do
6: ∀ kεK̃m
7: ∀ nεNm,f

k ∪ Ñ
8: ηmk = f (ηk ), Nm

k ∪ n
9: k∗, n∗ = arg maxk,n ηmk
10: Nm

k∗ = Nm
k∗ ∪ n

∗

11: Ñm\n∗

12: Nm,f
k = {min(Nm

k∗ )− 1, max(Nm
k∗ )+ 1} ∩ Ñm

13: Rmk∗ = W |Nm
k | log2

(
1 +

1
|Nm
k∗ |

∑
n ε Nm

k∗
(
pk∗,n |h

m
k∗,n|

2

σ 2 + Imk∗,n
)
)

14: while (Rmk∗ < Rmink∗ and Nm,f
k∗ 6= φ) do

15: 4ηmk∗ = f (ηk∗ ,Nm
k∗ ∪ n)− f (ηk∗ ,N

m
k∗ ), ∀ nεN

m,f
k∗

16: n∗ = arg maxn ε Nm,f
k∗
4ηmk∗

17: Repeat steps 10 to 13
18: end while
19: K̃\ k∗

20: end while
21: M̃\ m
22: end while

p0k,n = pmaxk /|Nm
k |,∀k, n,m and ∀k: α0k,m̄ = 1 for m̄ =

argmin dk,m; α0k,m = 0, ∀m 6= m̄. dk,m) indicates the distance
between m and k . In addition, Nm

k is set to empty, as ini-
tially there are no subchannels assigned to user k , therefore,
Nm
k = φ, and N

mf
k which shows the achievable subchannels

set for k-th user connected to m-th RRH is set to has all the
subchannels are available initially therefore, Nmf

k = N .
Step 2: After initialization in the first step, the SAPARA

technique picks one RRH, calculates the EE of all its users
on each subchannel, and then allots the subchannel to a
user based on maximum EE achievement (Lines 8-9). This
user-subchannel pair is symbolized by (k∗, n∗). After allot-
ting n∗ to k∗, Nm.f

k , and Nm
k∗ are updated (Lines 10-12).

Line 13 find the possible data rate of user k∗ on its updated
subchannels set allotted to it. Then, an additional subchannel
is allotted to that user from the Nm,f

k∗ till the Rmink∗ is fulfilled
(Lines 14-18). In these lines, primarily the growth in the
EE indicated by 4ηmk∗ is found for each extra subchannel
such that nεNm

k (Line 15), which indicates the difference
between the EE of k∗ when the subchannel n is added to
its allotted subchannels set and its EE without the addi-
tion of subchannel n. Line 16 chooses the most advanta-
geous subchannel in terms of EE. In Line 17, the sequences
listed in Lines 10-13 are re-performed to update Nm.f

k ,Nm
k∗ ,

and Rmink∗ . Line 19 updates the set of users without sub-
channels. The practice is re-performed until M goes empty

(Lines 5-21). We named this subchannel assignment as an
individual subchannel assignment (ISA) technique given
in Table 1.
Step 3: After attaining Nm

k∗ by carrying out subchannels
assignment in the first step and for given α = αi, pk,n is
calculated using IPA [25], which is an efficient solver of
linear and non-linear problems.
Step 4: We perform RRH-association using the integer

relaxation technique [26]. The suggested technique links k
with m, which provides peak EE to k . We symbolize this
solution by αI+1 and then (i + 1) − th iteration starts. The
presented technique is re-performed until convergence.
Step 5: Steps 1-4 are repeated until a significant quan-

tity of data is attained to train our DNN model. To end,
the pre-trained DNN model is used to forecast joint RA and
RRH-association. This forecast will be executed online.

C. TRAINING AND TESTING STAGE
The training dataset contains input data and target data.
A stacked AE is used to initiate the biases and weights for
the hidden layers. Like so, our model is pre-trained, and then
a SoftMax layer is added, which allocates probabilities to
every class such that the probability sum must be 1. The
AE encoder part is stacked with the SoftMax layer, and the
model is fine-tuned with the labeled training dataset. Once
the training process is completed, the model is tested on a
different dataset, and the model accuracy is calculated. Our
considered DNN model is provided in Figure 3.

D. COMPLEXITY OF THE JOINT SAPARA ALGORITHM
To analyze the complexity of our SAPARA Algorithm,
the iterations of middle and innermost while loops are con-
sidered in SAPARA Algorithm. In Algorithm 1, the section
containing these two loops will run for M number of times.
This complexity comes from steps 8 and 15 in which ηmk
and 4ηmk∗ are computed. The complete iteration of middle
while loop will require O(NK ) operations to compute ηmk .
This complexity reduces due to subsequent iterations as the
number of users and sub-channels will be less than K and N ,
accordingly. Also, the first complete iteration of another loop
i.e., innermost while loop requires O(|N f

k |) operations to
compute 4ηmk∗ . However its worst case complexity will be
O((N − 1)|N f

k |). The complexity reduces for the subsequent
iterations of innermost while loop as the number of the
sub-channels will be less than (N − 1). Because there are
N middle iterations which will run for M number of times,
the worst-case complexity of the algorithm cannot exceed
O(M (N (NK + (N − 1)|N f

k |))).

V. SIMULATED RESULTS
A multi-tier C-RAN is assumed in the UL comprising a
macrocell RRH tier with 1000 meters radius, a picocell
RRH tier containing two RRHs, and a picocell RRH tier
containing two RRHs. Besides, the system’s bandwidth is
9 MHz, which is divided equally among the N subchannels.

118362 VOLUME 9, 2021



S. Ali et al.: DL Based Joint RA and RRH Association in 5G-Multi-Tier Networks

FIGURE 3. Our proposed DNN model.

The bandwidth of every individual sub-channel is 200 kHz
and demoted by W . The channel gain involves two con-
stituents, i.e., a large-scale path-loss and a small-scale
Rayleigh fast-fading, where the Cost-Hata model [27] is used
to calculate the large-scale path-loss. Furthermore, there are
K arbitrarily positioned users, pmaxk = 1 watt, while the noise
power spectral-density is 174 dBm/Hz.

A. INPUT DATA GENERATION
Primarily, the data is generated to train the DNN model
utilizing our presented SAPARA Algorithm. To verify the
precision of the solutions achieved from the SAPARA algo-
rithm,we compare it with the EPESDR technique and optimal
algorithms [3], [6], as shown in Figure 4. In the Optimal
algorithm, the branch and bound (B&B) method is used to
perform RRH-association and sub-channel assignment, and
interior point algorithm (IPA) is used for power allocation.
While in EPESDR algorithm, a distance-based RRH asso-
ciation is executed, the subchannels of a RRH are equally
divided among its users, and power allocation is executed
using an equal power distribution algorithm, which can be
mathematically expressed as below

pk,n = pmaxk /|Nm
k |, ∀k, n (15)

The simulation outcomes in Figure 4 show that our pre-
sented SAPARA algorithm outclasses the EPESDR, and is
closed in performance to the Optimal algorithm in terms of
EE against different parameters, e.g., different values of k, n
and pmaxk . The SAPARA algorithm is better due to its lesser
complexity and lesser run time. Therefore, we use our pro-
posed SAPARA Algorithm for data generation. We generate
about 22000 samples, of which 80% is used for training of
our DNN model and the leftover for testing.

B. TRAINING THE DNN
Once the data is generated, the proposedmodel is trained with
our labeled dataset. The labeled training dataset consists of
input and output. To build and pre-train our presented DNN
model, a stacked AE is used. Initially, an AE is trained with
input data. To this end, following parameters are included
in the first AE:L2 weight regularization = 0.004, transfer
function = ‘‘sigmoid’’, sparsity regularization = 4, sparsity
proportion = 0.15, epochs = 1000. The hidden codes of

FIGURE 4. Performance comparison of our proposed joint SAPARA
algorithm with optimal, and EPESDR algorithms.

this AE are then produced by using the training data input
as the AE input. These codes are then utilized for training
the second AE. Using this method, several AEs are pre-
trained, and finally, a SoftMax layer is added. For pre-training
the SoftMax layer, the last AE hidden codes are used as the
input while the output part of the labeled training dataset is
used as a target.

C. RESULTS
1) EFFECT OF THE NUMBER OF HIDDEN LAYERS ON
ACCURACY OF THE PREDICTION
Once the pre-training is done, all the AE encoders are stacked
together with the Softmax layer, and the network is fine-tuned
with our labeled training dataset. After completion of the
training, model accuracy is tested through a labeled testing
dataset. In order to discover the ideal count of hidden layers,
the count of hidden layers is varied, and test accuracy is
computed. Figure 5 illustrates the test accurateness of the
presented model against the hidden layers count. It can be
seen that initially, the accuracy rises as the hidden layers
count increases, and then it begins to drop. A large number of
hidden layers shows that more features can be learned. With
a rise in the hidden layers, the model also begins to learn the
data’s noise. Therefore, the model cannot execute efficiently
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FIGURE 5. Prediction accuracy vs number of hidden layers.

FIGURE 6. Test accuracy vs number of training samples.

on new samples, which deteriorates test accuracy. This brings
overfitting to the training data for the said model.

2) EFFECT OF THE NUMBER OF TRAINING SAMPLES ON THE
TEST ACCURACY
In Figure 6, it can be seen that the test accuracy is in direct
proportion with the training samples count. Accuracy is low
when the training samples count is small, and the accuracy
rises steadily with a rise in the training samples. However,
when the training examples count reaches some specified
value, its saturation begins. The cause is that as we keep
the size of the training sample rising, no new distinguishing
features are there to be learned, and thus accuracy of the
prediction test may not increase anymore.

3) EFFECT OF THE NUMBER OF TRAINING SAMPLES ON THE
TRAINING ACCURACY
In Figure 7, it can be seen that the accuracy of the training
is high for a small sample count, and it drops gradually
with a rise in training examples count. When the number
of training samples is small, the model learns a few distin-
guishing features, which is sufficient to show the input-output
association of the training data. The accuracy of the training

FIGURE 7. Training accuracy vs number of training samples.

is therefore high for a small training sample count. However,
for testing purposes, the learned features are not satisfacto-
rily adequate to correctly forecast the output. With a rise in
training samples, more abstract features are extracted by the
DNN model from the data. Consequently, the DNN model
learns more related to the input-output association. However,
the accuracy of the training drops because the model also
starts learning the noise in data which eventually reduces the
model performance. Ultimately, with a further rise in training
data count, the DNNmodel begins to overfit the data, leading
to decreased test accuracy.

VI. CONCLUSION
This paper proposed a supervised deep learning approach for
a joint RA and RRH-association problem in multi-tier net-
works. Simulation results clarify that the prediction accuracy
goes high with an increase in the number of data samples
and hidden layers. But, a continuous rise in the hidden layers
count will not increase the precision considerably, and in cer-
tain circumstances, the technique may initiate noisy learning
features. Attaining the optimal arrangement of the DL tech-
nique, that is, the input data samples count and hidden layers
count, is a challenging task. Moreover, it is vital to design fast
offline techniques to produce optimum data samples to train
the DNN model. Application of DL in scenarios with large
network links and spatiotemporal correlations because of the
mobility of users and changing channel features would be of
instant significance.
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