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ABSTRACT Electric vehicle (EV) charging is considered as one of the main issues that face EV drivers.
Thus, there should be a facility to suggest the best charging station based on the customer requirements.
However, the routing process of EVs in most of the literature was generally implemented centrally based
on the charging station/operator perspective. On contrary, this paper proposes a smart charging strategy that
routes EVs drivers to the best charging station based on their priorities. In the proposed smart strategy,
various charging stations will cooperate through a virtual charging system (VCS) to serve all EVs charging
requests with a high satisfaction level. The drivers’ requirements are achieved through a new scoring criterion
which ranks the participating charging stations based on EV driver’s perspective. Then, the EV driver will
select individually the charging station based on his priorities. The data required for the scoring criterion
are computed through two stages: offline (day-ahead) and online stages. The expected waiting time at each
charging station within the VCS is computed during the offline stage based on the forecasted arrivals. The
integration between offline and online stages aims to reduce the data flow, calculated data, and finally
the communication bandwidth during the online stage. Different case studies are introduced to evaluate
the significance of the proposed strategy. The results demonstrate the superiority of the proposed strategy in
achieving EVs requirements.

INDEX TERMS Smart Charging Strategy, Virtual Charging System (VCS), Customer Perspective, Operator
Perspective, routing of EVs.

NOMENCLATURE
SETS AND INDICES
I The set of all participating charging stations.
j The index of charging stations.
T The set of time segments.
t The index of time segments.

The set of customers.
ν The index of customers.

PARAMETERS
Ncs The total number of participating

charging stations in VCS.
Nt The total number of time segments

throughout the day.

The associate editor coordinating the review of this manuscript and

approving it for publication was Miadreza Shafie-Khah .

Nv The total number of EVs’ requests.
wf (j), wc(j), wi(j) The weight matrices for charging sta-

tion j used in LSTM network.
bf (j), bc(j), bi(j) The bias vectors used in LSTM net-

work.
µ The average service rate at each charg-

ing station.
s The specific number of servers (bays)

in each charging station.
k The total station occupancy.
l(j,v) The percentage of customer v loyalty to

charging station j.
SOCv The current/present SOC of the cus-

tomer v at request time.
ε1 The price score offset value.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 117993

https://orcid.org/0000-0001-5626-3545
https://orcid.org/0000-0001-5134-0601
https://orcid.org/0000-0003-1500-1260
https://orcid.org/0000-0003-0172-0686
https://orcid.org/0000-0003-1691-5355


M. Mokhtar et al.: Customer-Centered Smart Charging Strategy Considering VCS

ϕ1 A constant related to the price score.
d(j,v,t) The distance from the current location of the

customer v to the charging station j during
time segment t .

ε2 The traveling score offset value.
ϕ2 A constant related to the traveling score.
ε3 The waiting score offset value.
ϕ3 A constant related to the waiting score.
α1, α2, α3 constants.

VARIABLES
x(t,i) The actual historical EVs’ arrivals at charg-

ing station j during time segment t .
ya(t,j) The actual EVs’ arrivals at charging station

j during time segment t .
yp(t,j) The working memory of LSTM neural

network which represents the predicted EV
arrivals.

c(t,j) The memory cells of long short-term mem-
ory (LSTM) neural network.

ρ The occupancy rate at each charging station.
P0 The probability that the system is ideal.
Lq The expected number of customers on the

queue.
Ls The expected number of EVs in the system.
Tw The expected whole waiting time.
PV2V(v) The probability that the customer v selects

the V2V charging criteria.
Sr(j,v,t) The price score obtained by charging station

j for the customer v during time segment t .
r(j,t) The charging price offered by the charging

station j during this time segment t in
$/kWh.

r (t) The average price during this time segment
t .

ST (j,v,t) The travel score obtained by charging sta-
tion j for the customer v during time segment
t .

Aj(t) The average speed from the current location
of customer v to the charging station j
considering the road conditions.

Ttr(j,v,t) The traveling time from the current location
of the customer v to the charging station j
during time segment t .

T̄tr(t) The expected average traveling time during
request time segment t .

Sw(j,v,t) The waiting score obtained by charging
station j for the customer v during time
segment t .

Tw(j,v,t) The expected waiting time of customer
v at charging station j during this time
segment t .

T̄w(t) The expected average waiting time during
request time segment t .

u(j,v) A binary variable indicating serve customer
v at charging station j.

I. INTRODUCTION
Electric vehicles (EVs) are the emerging trend for the future
of transportation systems. They play a vital role in reducing
greenhouse gas emissions. Roadmaps have been published
by many countries to promote the adoption of EVs on the
road [1], [2]. In addition, EVs have become cost-competitive
with conventional vehicles due to the decline in the price
of batteries in the last few years [3]. Despite the explosive
growth of EVs, they suffer from long charging periods and
limited infrastructure, where existing charging facilities can’t
satisfy the enormous demands of a significantly growing
number of EVs [4]. Moreover, they have many negative
consequences on the distribution network like increasing
peak demand, thermal overloading, voltage deviations, and
power imbalance [5]–[9].

EVs’ drivers can charge their vehicles at parking lots
at either homes or workplaces where they stay for long
hours [10], [11]. Furthermore, they can charge their vehicles
at charging stations, which are becoming more attractive
for EVs’ drivers. Commercial charging stations purchase
electricity from the wholesale power market at a lower
rate compared to residential homes (e.g., the electricity
rate for a commercial entity is 30 % less compared to
residential) [12], [13]. Thus, charging stations can offer
lower charging prices after adding their profit. Moreover,
batteries of EVs may run out of charge during the trip, and
hence, this will make charging at public stations inevitable.
Charging infrastructure are divided into three classes, which
are level 1, 2, and 3. Level 1 and 2 chargers are mainly ac
charging while level 3 is dc charging [14], [15]. Nowadays,
utilities focus on installing sufficient numbers of charging
stations with lower charging time to encourage customers to
use EVs [7].

Most of the existing research focuses on reducing the
charging time and offering different charging options for
EVs’ drivers to facilitate their charging process. The authors
in [4] presented a price strategy for charging EVs to utilize
renewable energy generation while considering the traffic
flow. The authors in [7] proposed a routing strategy for EVs’
drivers to the most suitable charging station that satisfies
the minimum charging time, traveling distance, and charging
cost. However, this routing process was based on the opera-
tor’s perspective, which didn’t ensure satisfying the customer
requirements. The work in [14] introduced a dynamic pricing
model that aimed at reducing the demand of EVs during
peak load hours by shifting the charging of EVs during this
period, which can be enforced by setting different tariffs. The
work in [16] studied the impact of charging/ discharging price
variations on the operation cost of microgrid. Furthermore,
an optimization technique is presented in order to find the
optimal price such that minimizing the operation cost. The
Authors of [17] proposed charging scheduling strategy for
both private EVSs and taxis in order to determine the optimal
load charging profile and thus, to reduce their charging
impacts on the power system. In [18], the routing problem
of the integrated electric and transportation systems based
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TABLE 1. The advantages of the proposed strategy over the other strategies.

on the social coordinator perspective to optimize the driving
route for EVs’ drivers was analyzed. A strategy for routing
EV drivers to the fast-charging station that minimizes the
charging cost and the whole time of the charging process
was proposed in [19]. Furthermore, the traffic flow and
level of distribution network loading were considered in the
proposed strategy where they were reflected on both the
traveling time and the charging price offered by each fast-
charging station, respectively. A routing process based on
time of use (TOU) electricity price was presented in [20],
which was formulated similar to the traveling salesman
problem. The introduced strategy aimed to minimize the
charging cost and the cost of battery degradation due to
the fast-charging process. The work in [21] considered the
impact of waiting time on the drivers’ decisions in the price
competitive game where EVs’ drivers select the charging
station based on the charging price, the traveling distance,
and finally the waiting time. Queueing theory was used to
compute the waiting time at each charging station despite
it is assumed that the EV drivers weren’t aware of other
drivers’ decisions as a result of the absence of communication
between them. The authors of [22] solved the routing process
by considering multiple options such as partial charging
(there is no need for battery full charging) and battery
swapping option for EVs drivers. The work in [23] proposed
a list of options for customers, where optimal pricing and
routing schemes were presented with a focus on motivating
EV drivers to charge at the specific charging stations.
On the other hand, the authors assumed that the EVs drivers
cannot select the charging station; instead, the Charging
Network Operator (CNO) is responsible for routing EV
drivers to the charging station. In the same context, the work
in [24] presented an optimization framework to determine the
optimal charging prices and charge scheduling considering
the EVs drivers’ behavior through offering multiple options
for EVs drivers: Charging-Flex, Charging ASAP, and leave.
In the first option, EV drivers can control the charging
schedule and charging rate. However, in the second option,
EV driver has no access to set the charging rate or schedule
(uncoordinated charging). Finally, if the EV driver did not
accept the charging price, he will select the third option.

From the aforementioned discussion, most of the existing
research focuses on routing EVs to the most suitable charging

station centrally based on the charging station/system oper-
ator perspective without considering customers’ priorities.
However, routing the EV from an operator’s perspective
does not guarantee that customer satisfaction is achieved.
For example, The EV may be routed to the nearest charging
station for achieving less time in the charging process
despite the high charging price. However, the priority for
this customer may be the price, even if he waits longer.
Thus, the EV routing criterion should be modified to consider
customer requirements which increase customers satisfaction
and motivate customers toward EVs. Table 1 summarizes the
advantages of the proposed strategy.

In this paper, with the customer’s needs in mind, we pro-
pose a smart charging strategy by offering multiple charging
options including different charging prices and different
waiting times. We assume that different charging stations
with different chargers’ ratings will cooperate through a
virtual charging system (VCS) to offer these charging options
for EV drivers to opt between them. Moreover, the routing of
EVs in the proposed strategy is implemented centrally based
on the EV driver’s perspective, not the operator’s perspective.
Therefore, the proposed strategy, based on the EV driver’s
perspective, guarantees a high level of customer satisfaction.
The required data for the proposed strategy are computed
through two stages, which are the online stage and offline
stage. The suggested framework aims to reduce the data
needed to be transferred, as well as computational effort, and
to eliminate the need for communications with the charging
stations during the routing process. This leads to reducing the
required communications bandwidth and thus the capital cost.
The main contributions of the paper can be summarized as
follows:
• Multiple charging options for EV drivers including
charging prices, charging times, and traveling distances
are taken into consideration, which are decided through
cooperation between different charging stations through
a VCS.

• A new scoring criterion is proposed to route EV drivers
to the suitable charging station based on the customers’
priorities.

• The framework of the proposed strategy focuses on
reducing the communication data during the routing
process.
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FIGURE 1. Structure of the proposed strategy.

The rest of the paper is organized as follows: a smart
charging strategy is presented in Section II. The details of the
offline stage and online stage are explained in Section III and
Section IV, respectively. Results and multiple case studies are
presented and discussed in Section V. Finally, the conclusions
are presented in Section VI.

II. SMART CHARGING STRATEGY
Charging stations with different ownerships participating in
VCS will cooperate rather than compete in a conventional
charging system to act as one charging station for EV drivers.
This cooperation will benefit both participating charging
stations by increasing their profit through serving all EVs’
requests and EV drivers by satisfying their requirements.
However, coordination betweenmultiple VCSs can be existed
to maximize the profit gained by each VCS as well as
minimize the cost incurred by the customer besides the whole
charging time. In this paper, different charging stations with
different chargers’ ratings will cooperate through a VCS
to offer various charging options for EV drivers including:
different charging prices, different traveling times and various
waiting times at these charging stations. The VCS will route
the EV centrally to the most suitable charging station by

ranking the participating charging stations based on the
driver’s priorities. This allows the EVs to select individually
the most suitable charging stations according to their
requirements. Therefore, the proposed strategy guarantees a
high level of customer satisfaction compared to the methods
introduced in the literature since the routing process in the
proposed strategy is based on customer’s perspective and
not based on the operator’s perspective. Moreover, the smart
charging strategy proposes another option for EVs, which
is Vehicle-to-Vehicle (V2V) charging mode at their location
with a higher charging price. This option will be inevitable
if the current state of charge (SOC) isn’t sufficient to
reach the nearest charging station. The required data for the
routing process is computed through two stages: offline stage
and online stage as shown in Fig. 1. The offline stage is
implemented day ahead by the virtual charging system (VCS)
operator while the online stage is occurred for each customer
once the EV driver sends a charging request. The details of
the two stages are explained in the following sections.

A. ASSUMPTIONS
It is assumed that various charging stations with different
owners are cooperated together to offer different charging
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options for EVs drivers to facilitate the charging process
from the EV driver’s perspective. The participated charging
station will form a system called VCS and it is responsible for
routing EV drivers based on their priorities. These stations are
assumed to be fast-charging stations with different charger
rates so that they offer different charging prices.

III. PROPOSED OFFLINE STAGE
The offline stage is a day-ahead stage that is responsible for
computing the expected waiting time at each charging station
within the VCS during the next day. This stage is integrated
with the online stage to reduce both the communications
and the required data to be collected or calculated during
the online stage. Furthermore, it eliminates the need to
communicate with the participating charging stations during
the online stage by transferring waiting time calculations
from the online stage after receiving EV requests to the
offline stage. This will result in reducing the running time of
the routing process starting with receiving EV requests until
selecting the proper charging station. Further, it will aid in
reducing the investment for the bandwidth communications
incurred by the charging stations. On contrary, in case of the
absence of an offline stage, the operator will communicate
with all participating charging stations during the online
stage after receiving the charging request to collect the vital
data regarding the status of bays at each charging station.
Moreover, the waiting time and the charging time at each
charging station will be computed online after receiving
the vital data. Finally, the operator will communicate
with both the EV’s driver to inform him of the selected
charging station as well as the selected station to devote
a bay for this customer. The offline stage consists of two
substages: a forecasting substage and a queueing substage.
The forecasting substage is responsible for predicting the
expected arrivals at each charging station during the next day.
Then, the outcomes from the forecasting substage are fed
to the queueing substage to determine the expected waiting
times at each charging station participating in the VCS during
each time segment. Finally, the outcome of the queueing
substage is stored in the database to be used during the online
stage. The required data to be used during the offline stage
are stored in the database, which includes the number of bays
available at each charging station, the mean service time, and
the total occupancy/capacity of the charging stations. Each
charging station shares its information due to the absence
of competition between the charging stations participating in
VCS.

A. FORECASTING SUBSTAGE
The forecasting substage is the first step during the offline
stage. This substage is fed by historical arrivals to the
charging stations participating in VCS. The outcome from
this substage is the predicted EV arrivals at each charging
station. Time series forecasting method based on long short-
term memory (LSTM) neural network is proposed to predict
the EVs arrivals at a certain charging station. LSTM is a

FIGURE 2. Structure of LSTM neural time series used for forecasting.

sequence-based model, capable of establishing the temporal
correlations between past and present information [25], [26].
The LSTM consists of three parts: memory cells c(t,j) which
represents the candidate output, working memory yp(t,j)
which represents the predicted EV arrivals at charging station
j ∈ J during time segment t ∈ T , and three gates as
shown in Fig. 2. The parameter t , T = {1, 2, . . . ,Nt } are
the indices and the set of time segments respectively, and
j, J= {1, 2, . . . ,Ncs} are the indices and the set of charging
stations respectively.

The three gates are input, output, and forgetting gates,
which are not static and act as binary gate. These gates
are used to determine whether the data will be updated or
ignored. This will make the network converge faster and
overcomes the main disadvantage of recurrent neural network
(RNN), which mainly relies on the gradient [25], [26]. First,
the forgetting gate will determine which part of information
of the memory cell at the previous time step (c(t−1,j)) will be
discarded (reset to zero) in the current cell state c(t,j). This
data will be determined according to the current input x(t,i)
and the predicted output at the previous time step yp(t−1,j)
which can be expressed as follows [25], [26]:

f(t,j) = σ
(
wf (j)

[
yp(t−1,j), x(t,j)

]
+ bf (j)

)
(1)

where σ () is the Sigmoid activation function.
After discarding part of the information, the current state

should learn to predict new information using the current
input, which is achieved through the input gate. This gate
consists of two layers: tanh and sigmoid layers. The first
layer is utilized to create new candidate values ĉ(t,j) while
the second layer is used to determine which information from
the first layer will be updated and added to the current cell
state, which can be expressed as follows:

ĉ(t,j) = tanh
(
wc(j)

[
yp(t−1,j), x(t,j)

]
+ bc(j)

)
(2)

i(t,j) = σ
(
wi(j)

[
yp(t−1,j), x(t,j)

]
+ bi(j)

)
(3)

c(t,j) = f(t,j).c(t−1,j) + i(t,j).ĉ(t,j) (4)

where tanh() is the hyperbolic tangent activation function
and it is used here as it distributes the gradients and hence,
prevents vanishing or exploding.

Finally, the updated memory cell c(t,j) is used to determine
the output value at the current time segment. The working
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memory yp(t,j) is used as the output and the output gate o(t,j)
is used to determine the portion of the current memory cell
state c(t,j) to be written to the output as follows:

o(t,j) = σ
(
wo(j)

[
yp(t−1,j), x(t,j)

]
+ bo(j)

)
(5)

yp(t,j) = o(t,j).tanh(c(t,j)) (6)

To assess the accuracy of the prediction, Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) can be determined.
RMSE is the residuals between the actual data and the
predicted data while MAE is the average of absolute
residuals. MAPE is the ratio of error to the true value in
percentage. These indices can be expressed as follows:

RMSE =

√
1

NtNcs

∑
j∈I

∑
t∈T

(
yp(t,j) − ya(t,j)

)2 (7)

MAE =

∑
j∈I
∑

t∈T

∣∣yp(t,j) − ya(t,j)∣∣
NtNcs

(8)

MAPE =
1

NtNcs

∑
j∈I

∑
t∈T

∣∣yp(t,j) − ya(t,j)∣∣
ya(t,j)

× 100% (9)

B. QUEUEING SUBSTAGE
The outcomes from the forecasting substage are fed to the
queueing substage to determine the expected waiting time
at each charging station during the next day. However, these
times are determined based on the predicted arrivals, which
may differ from the actual arrivals. Therefore, to provide a
reliable operation that can lead to a higher level of customer
satisfaction, the waiting times under a percentage increase
in EVs’ arrivals than the predicted arrivals are determined
during queueing substage and stored in the offline database.
These times will be used during the online stage based on
an updating signal triggered by the correction stage, which is
explained in the following sections when the actual arrivals at
a certain charging station during this time segment reach the
predicted arrivals at this station. The queueing theory is used
in the queueing substage to estimate the waiting time. We use
M/M/s/k/FCFS model where [7]:
• The first M refers to Markov where the EVs’ arrivals
are assumed to follow Markovian or exponential distri-
bution.

• The secondM refers also to Markov where the charging
time is assumed also to followMarkovian or exponential
distribution.

• s indicates that there is a specific number of
servers (bays) in each charging station.

• k refers to the total station occupancy (the total number
of EVs that the charging station can accommodate at one
time segment).

• FCFS refers to first come first served.
We assume that each EV arriving at the charging station

will be served immediately according to FCFS if there is
an available bay in this charging station; otherwise, the EV
will wait in a queue until there is an available bay. All EVs

arriving at the charging station will be served by s servers
or bays. The service time is assumed to be exponential with
an average service rate µ. Furthermore, the arrivals pattern
at a specific charging station is assumed to follow a poison
distribution with an average arrival rate λ. The service rate is
set based on the chargers’ rating available at each charging
station. Whereas, the average arrival rate during each time
segment through the day is set according to the outcomes
from the previous forecasting substage. Assuming that the
occupancy rate is ρ = λ/(sµ), then the stationary probability
of n EVs in the system (Pn) can be determined as follows [7]:

Pn =


1
n!

(
λ
µ

)n
P0 n < s

1
s!sn−s

(
λ
µ

)n
P0 s ≤ n ≤ k

(10)

P0 =
[∑s−1

n=0

1
n!

(
λ

µ

)n
+

∑k

n=s

1
s!sn−s

(
λ

µ

)n]−1
(11)

P0 can be rewritten using the occupancy rate as follows:

P0 =
[∑s−1

n=0

(sρ)n

n!
+

1
s!

(
λ

µ

)s 1− ρk−s+1
1− ρ

]−1
(12)

Based on the probability function, the expected number of
customers on the queue Lq and the expected number of EVs
in the system Ls can be determined as follows:

Lq =
∑k

n=s
(n− s)Pn (13)

Ls = Lq +
λ(1− Pk )

µ
(14)

Lq and Ls can be rewritten using the probability in (10) and
occupancy rate as follows:

Lq =
ρ(sρ)s

s!(1− ρ)2

(
1−ρk−s+1−(1−ρ) (k − s+ 1) ρk−s

)
P0

(15)

Ls = Lq + s− P0
∑s−1

n=0

(s− n)
n!

(
λ

µ

)n
(16)

Finally, based on little law, the expected whole waiting
time spent at the charging station during this time segment
based on average arrival rate can be determined as follows:

Tw =
Ls

λ(1− Pk )
(17)

IV. PROPOSED ONLINE STAGE
The second stage in smart charging strategy is the online
stage, which is responsible for routing EVs to the most
suitable charging station within the VCS based on customer-
centered decision perspective. It consists mainly of two
substages: routing substage and correction substage. The
routing substage focuses on routing each EV in contract
with the VCS individually based on its priorities. On the
other hand, the correction substage starts after selecting the
charging station through the routing substage and it aims to
provide corrective action when the actual EVs’ arrivals at a
certain charging station exceed the predicted arrivals at this
station.
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A. ROUTING SUBSTAGE BASED ON THE CUSTOMER
PERSPECTIVE
The routing substage is responsible for routing EVs to the
most suitable charging station according to EV’s perspective.
It starts when the EV sends a request to the operator. This
request includes the current location, weighting coefficients
regarding the charging price, the traveling time, and the
waiting time. Then, the operator will read the data from the
offline database, which includes mainly the average waiting
time, and the broadcasted charging price. Finally, the operator
of the routing substage will introduce two optimal charging
options for each EV, which include: 1) rank the charging
stations according to the EV priorities and 2) charging the
EV at its location through V2V mode. The EV will opt for a
suitable option according to the current SOC of the battery.
The formulations of the two options are explained in the
following subsections.

1) V2V OPTION
In this subsection, we propose a V2V option for EVs with
a higher charging price. The distance to a specific charging
station must be less than or equal to the maximum distance
that the EV can travel based on the current SOC to make sure
that the battery of the EV will not run out of charge before
arriving at the charging station. Therefore, if the distances to
all charging stations are higher than this maximum distance,
no charging station can be selected for the routing process
and this option will be inevitable. In this case, we assume
that the charging stations participating in VCS offer a V2V
charging option. Where the nearest charging station will send
a vehicle owned by this station equipped with a fully charged
battery to the location of the EV to be used to charge the
depleted battery with a higher charging price. The probability
that the customer is forced to select V2V charging criteria can
be expressed as follows:

PV2V(v) =


1 SOCv ≤ SOCc1

exp
(
SOCv−SOCc1
SOCv−SOCc2

)
SOCc1 ≤ SOCv ≤ SOCc2

0 SOCv > SOCc2

(18)

There are two critical SOC in (18), the first SOC (SOCc1)
represents the minimum SOC that is sufficient to reach the
nearest charging station. If the current SOC is less than
this value, this means that the distance is higher than the
maximum distance and thus the battery will run out of charge
before reaching the charging station. Therefore, in this case,
selecting the V2V option will be inevitable. The second SOC
(SOCc2) represents a higher SOC compared to (SOCc1),
which means there is no probability that the EV’s driver will
select the V2V charging option.

2) NEW SCORING CRITERION
We propose a new scoring criterion during the online stage.
The scoring stage aims to rank the charging stations according
to weighting coefficients (set by the driver) regarding
charging price, traveling time, and waiting time. Each EV

will send a charging request to the operator associated with
his weighting coefficients according to his priorities. For
example, a customer may prefer charging at a station that
offers the highest charging price to minimize the entire time
of the charging process. On the contrary, another customer
may choose to charge at a charging station that offers the
lowest charging price and wait more time. The scoring
criterion used to rank the charging stations is composed of
three scores determined independently: price score, traveling
score, and waiting score. Then, the three scores are combined
together according to the weighting coefficients set by each
individual EV’ driver to determine the final score obtained by
each charging station.

The first vital parameter that has a great impact on the
EV’s decision is the charging price offered by each charging
station participating in VCS. The following nonlinear model
is considered to determine the price score for each charging
station [4]. This nonlinear model is selected to represent the
EVs drivers’ behavior in the real world where the EV does not
select another charging station to charge at it due to a small
difference in the charging price.

Sr(j,v,t) = l(j,v) −
1

exp
(
−f

(
r(j,t) − r (t)

)) + ε1 (19)

f
(
r(j,t) − r (t)

)
= ϕ1

(
r(j,t) − r (t)

r (t)

)
(20)

The second parameter that affects the driver’s decision is
the travel time to the charging station. This time depends
on the distance from the current EV location to the charging
station and the traffic flow at the request time. This time can
be computed by dividing the distance by the average speed.
The travel score obtained by each charging station can be
determined as follows:

Ttr(j,v,t) =
d(j,v,t)
Aj(t)

(21)

ST (j,v,t) = l(j,v)

−
1

exp
(
−f

(
Ttr(j,v,t) − T̄tr(t)

)) + ε2
(22)

f
(
Ttr(j,v,t) − T̄tr(t)

)
= ϕ2

(
Ttr(j,v,t) − T̄tr(t)

T̄tr(t)

)
(23)

The third vital parameter is the waiting time at each
charging station. The outcome from the offline stage is used
to determine the waiting score. The nonlinear model used in
computing both the price score and traveling score is used
here to determine the waiting score. This score depends on the
deviation of thewaiting time at a certain charging station from
the average waiting time at all charging stations as follows:

Sw(j,v,t) = l(j,v)−
1

exp
(
−f

(
Tw(j,v,t) − T̄w(t)

))+ε3
(24)

f
(
Tw(j,v,t) − T̄w(t)

)
= ϕ3

(
Tw(j,v,t) − T̄w(t)

T̄w(t)

)
(25)
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Finally, the three scores are combined to determine
the total score obtained by each charging station S(j.v.t)
based on weighting coefficients as expressed in (26). The
weighting coefficients (wr ,wT ,ww) are set individually by
each customer according to his priorities. All scoring factors
are normalized to unify the range of different scoring factors
as shown in (26).

S(j.v.t) = wr
Sr(j,v,t)∑

j∈I
Sr(j,v,t)

+ wT
ST (j,v,t)∑

j∈I
ST (j,v,t)

+ ww
Sw(j,v,t)∑

j∈I
Sw(j,v,t)

(26)

B. CORRECTION SUBSTAGE
As mentioned earlier, the waiting time in the proposed
strategy is computed offline based on the predicted EVs’
arrivals at the charging station, not based on the actual
arrivals. In the real world, the EV drivers’ real-time behavior
can’t be predicted. This could result in an error in the
expected waiting times that are utilized in the routing process
where the number of EVs’ drivers who select a certain
charging station may be higher than the predicted number.
Therefore, a correction action should be applied during this
substage to ensure that the data is reliable as shown in Fig.
1. We assume that each customer’s operator will send a
signal to the operator of the correction substage. This signal
includes only the charging station number, which is selected
by the EV’s driver. If the number of EVs who select a certain
charging station ya(t,j) is less than the predicted arrivals at this
station yp(t,j), no action is triggered where the worst waiting
times based on the forecasted arrivals are utilized as shown
in Fig. 1. Otherwise, an updating signal will be triggered by
the operator of the correction substage to the offline database
to use the updated waiting times. The updated waiting times
are determined during the offline stage while considering
an increase in EV requests with a specific percentage as
mentioned in section III. This procedure is repeated during
each time segment.

V. RESULTS AND DISCUSSIONS
In this section, two case studies are presented and discussed.
These cases are formulated and solved using MATLAB
software. The first case study is dedicated to evaluating the
performance of each stage of the smart charging strategy
based on the customer perspective. Whereas the second case
study represents a comparison between results of the routing
process obtained from the smart charging strategy based
on the customer-centered decision perspective proposed
in this paper and the same charging strategy but based
on operator perspective. This comparison aims to assess
the superiority of the proposed strategy in satisfying the
customers’ requirements. In all the case studies, we consider
an hourly time segment during the offline stage as it is the
day-ahead stage while both online and correction stages are
executed instantly once an EV request is received. In all the
case studies, we consider an hourly time segment.

In the smart charging strategy, three charging stations
under different ownership will cooperate through a VCS
to act as one charging station for EVs. The participating
charging stations will offer different charging prices due to
different chargers’ ratings available at each charging station
as shown in Table 2. Thus, the VCS will offer different
charging options for EVs: different charging prices as well
as different waiting times.

TABLE 2. Charging stations specifications [27]–[29].

The charging price offered by each charging station j
during the time segment t is composed of two components
which are a fixed price due to charging service (z(j)) and
a time-varying price due to purchasing the electricity from
the grid as illustrated in (27). The fixed price differs from
one charging station to another according to the rating of
the charger available at this station which is assumed (5,
6.25, 10 cent/kWh for each charging station, respectively).
Whereas the time-varying component is assumed to be fixed
for all charging stations participating in VCSwith an increase
δ over the grid price offered during this time segment (G(t)).
The Hourly Ontario Energy Price (HOEP) [30] is used for
real-time pricing in this work. Fig.3 illustrates the charging
price offered by each charging station and the grid.

r(i,t) = z(i) + δG(t) (27)

FIGURE 3. Hourly-based charging price offered by participating charging
stations.

A. CASE STUDY 1: SMART CHARGING STRATEGY BASED
ON CUSTOMER-CENTERED DECISION PERSPECTIVE
In this section, the outcomes from the proposed smart
charging strategy based on the customer’s perspective will
be discussed to assess its performance. Hence, this section
is dedicated to illustrate the outcomes of the two stages.
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FIGURE 4. Hourly-based input to forecasting substage for charging
station # a)1 b)2 c)3.

FIGURE 5. The outcomes from forecasting substage and routing substage
for scenario (A) for charging station # a)1 b)2 c)3.

First, the actual arrivals to parking lots in Toronto, Canada,
obtained from Toronto Parking Authority (TPA) for a period
of four days is shown in Fig. 4. These data are used as an
input (historical data) to the forecasting substage/offline stage
to predict the EVs’ arrivals at each charging station during
the next day. Fig. 5 illustrates the predicted arrivals at the
three charging stations participating in the VCS obtained
by the forecasting substage. Then, the outcomes from the
forecasting substage are fed to the queueing substage to
compute the expected waiting time during each time segment
based on the predicted arrivals as well as a 30% increase
in hourly-based arrivals for the next day as an example.
Fig. 6 shows the expected waiting time for the next day
during each time segment. The expected waiting time at
each charging station varies due to the different arrivals at
each charging station during each time segment computed by
the forecasting substage. The outcomes from the queueing
substage will be stored in the offline database to be used by
the EV’s operator for the routing process during the next day.

The actual/real arrivals hourly based time segment to the
same parking lots for the next day are used as the actual

FIGURE 6. The outcomes from queue substage based on predicted
arrivals.

FIGURE 7. The actual requests to customers’ operators.

EV requests during the online stage/ running day, which are
shown in Fig. 7. The hourly-based arrivals are distributed over
the hour using the Poisson distribution. When the EV sends a
charging request to the operator associated with its weighting
coefficients regarding the charging price, traveling time, and
the waiting time, the operator will read the day-ahead stored
data. Then, it will rank the participating charging stations
based on EV driver’s priorities. In this case study, we consider
only one scenario. We assume that all EV requests to their
operators have equal weighting coefficients as described as
follows:
• Scenario (A): all EVs’ drivers are assumed to set equal
weighting coefficients (wr = wT = ww = 33.33%).

The outcomes from the routing substage considering
equal weighting coefficients are illustrated in Fig. 3. The
percentages of EVs requests selecting to be charged from
the three charging stations are 24.29%, 33.21%, 40.89%,
respectively. Whereas 1.61% of EVs’ drivers are forced
to select V2V mode due to SOC’s status. An example of
the signal sent by the operator to a specific EV is shown
in Table 3. The three scores obtained by each charging station
are combined using weighting coefficients set by this EV
to rank the charging stations according to their priorities as
shown in Table 3.

To assess the performance of the forecasting substage,
the outcome of the routing substage which represents the
actual EVs’ arrivals at each charging station will be compared
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TABLE 3. An example of the outcome from the routing substage.

with the predicted arrivals to compute the performance
indices of the LSTM forecasting technique. LSTM succeeds
to achieve accurate estimation for EVs’ arrivals at the three
participating charging stations with an average RMSE =
1.291, MAE = 0.917, and MAPE = 12.32%.
It is worth mentioning that the number of EVs who select

to charge at each charging station will vary depending on
the values of weighting coefficients that are individually set
by each EV’s driver according to his priorities for charging
price, the traveling time, and the waiting time. The impact
of weighting coefficients’ variations will be illustrated in
the next case study to show the superiority of the proposed
strategy based on the customer’s perspective to satisfy EV
requirements compared to the methods used in the literature.

B. CASE STUDY 2: ROUTING BASED ON OPERATOR’S
PERSPECTIVE (CENTRALIZED OPERATOR)
Most of the methods introduced in the literature for routing
EVs’ drivers are based on the operator’s/charging station’s
perspective. The operator may route the EV without consid-
ering customers’ priorities. For example, the operator may
route the EV to the nearest charging station with the lowest
charging price, however; the EV owner may prefer to charge
at a farther charging station with a higher charging price to
wait less time. Thus, this section is devoted to compare the
results obtained from the proposed smart strategy based on
the customer’s perspective and those obtained from the same
strategy with the same framework but based on the operator’s
perspective. The same assumptions/data used in the first case
study are considered here to have a fair comparison.

In this case study, the routing process of EVs’ drivers to the
most suitable charging stations within VCS is implemented
centrally to minimize the charging price r(j,t), traveling time
Ttr(j,v,t), and waiting time Tw(j,v,t). The routing process starts
with receiving the EV driver’s charging request, then the
centralized operator will implement the decision-making
process to route the EV’s driver to the most suitable charging
station which minimizes the following objective function:

min
∑

j∈I

(
α1r(j,t) + α2Ttr(j,v,t) + α3Tw(j,v,t)

)
u(j,v),∀v ∈

(28)

u(j,v) ∈ {0, 1} (29)∑
j∈I

u(j,v) ≤ 1, ∀v ∈ (30)

u(j,v) is a binary variable as expressed in (29). u(j,v) = 1means
that the EV’s driver v will be routed to the charging station j.

In (30), each EV will be assigned to only one station, if it will
be served.

The same EVs’ requests in the first case study are
considered here. The centralized operator will route the EV
driver to the suitable charging station from its perspective
to minimize (28). The percentages of the EVs charging at
the three stations participating in VCS based on centrally
routing based on the operator’s perspective are 24.11%,
31.79%, 42.5%, respectively compared to 24.29%, 33.21%,
40.89% based on the customer’s perspective under equal
weighting coefficients for scenario (A). The scoring criterion
is based on customers’ priorities which vary from one
customer to another. Where some customers may care about
time and the other customers may be interested more in
the cost. Therefore, we consider different scenarios. The
results obtained by the smart charging strategy based on
the customer’s perspective are replicated with different
weighting coefficients to demonstrate the superiority of the
proposed strategy in satisfying customers’ requirements.
These scenarios can be described as follows:
• Scenario (B): all EVs’ drivers are assumed to set a higher
weighting coefficient for the price (wr = 50%,wT =
ww = 25%)

• Scenario (C): all EVs’ drivers are assumed to set a higher
weighting coefficient for the traveling time (wT =
50%,wr = ww = 25%)

• Scenario (D): all EVs’ drivers are assumed to set a
higher weighting coefficient for the waiting time (ww =
50%,wr = wT = 25%).

• Scenario (E): the weighting coefficients are generated
randomly.

TABLE 4. Comparison between results obtained based on customer’s and
operator’s perspective.

The results for all previous scenarios are illustrated
in Table 4. The results show that the proposed smart charging
strategy based on customer’s perspective allows EVs’ drivers
to opt between the participating charging stations by ranking
these charging stations based on the EV’s priorities. Thus,
the customer will select the suitable charging station for his
priorities with full cognizance of all the data. For example,
if EV’s driver sends a request with 80%, 10%, 10%weighting
coefficient regarding the charging cost, the traveling time,
and the waiting time, respectively, the operator will rank
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the charging stations according to the obtained score. The
charging stationwhich ranked first, may not have the cheapest
price but it has the highest overall score compared to the
station with the cheapest price. Where, the cheapest station
may be far from this customer and has a high waiting time.
Therefore, the number of EVs charging at each charging
station varies at each scenario. As illustrated in Table 4, when
the weighting coefficient regarding the price is higher than
the other weighting coefficients as in scenario (B), the total
charging cost paid by all EVs is reduced through routing EVs
to the available cheapest charging station. However, if the
priority of customers is adjusted to be the waiting time as
in scenario (D), the EVs are routed to the available charging
station with less waiting time and thus the total waiting
time spent by all EVs is reduced. On contrary, the routing
process based on operator’s perspective doesn’t consider
customer’s priorities and thus, the number of EVs charging at
each charging station didn’t change with variations of EVs’
priorities.

VI. CONCLUSION
This paper proposes a smart charging strategy where various
charging stations can cooperate through a VCS to serve all
EVs’ charging requests and thus, obtaining more profit. This
cooperation offers multiple charging options for EVs’ drivers
to opt between them. Moreover, the routing process through
the proposed strategy is based on the customer’s perspective,
not the operator’s perspective. This will ensure routing the
EV’s driver to the most suitable charging station which
satisfies his requirements. The expected waiting time at each
charging station during each time segment is determined
day-ahead through the offline stage based on the forecasted
EVs’ arrivals. The online stage is dedicated to routing EVs’
drivers to the most suitable charging station via ranking
the participating charging stations according to the obtained
scores regarding price, traveling time, and charging time
as well as the EV driver’s priorities. Two case studies are
simulated and discussed to assess the performance of the
proposed strategy in satisfying customers’ requirements. The
results show the superiority of the proposed strategy based
on the customer’s perspective in satisfying the customers’
requirements compared to the results obtained by a similar
strategy but based on the operator’s perspective. In the
proposed strategy based on the customer’s perspective,
the number of EVs’ arrivals at each charging station varies
with variations of customers’ priorities. On contrary, the pro-
posed strategy based on the operator’s perspective doesn’t
depend on the customers’ priorities. Finally, the structure of
VCS, the criterion of computing both the waiting time as well
as the charging time using deterministic model considering
full and partial charging, the benefits of cooperation between
the participating charging stations through VCS rather than
the competition between them, the methodology of sharing
the profit between the participating charging stations are
considered as future work.
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