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ABSTRACT The rise in popularity of Internet of Things (IoT) devices has attracted hackers to develop
IoT-specific attacks. The microservice architecture of IoT devices relies on the Internet to provide their
intended services. An unguarded IoT network makes inter-connected devices vulnerable to attacks. It will
be a tedious and ineffective process to manually detect the attacks in the network, as the attackers frequently
upgrade their attack strategies. Machine learning (ML)-assisted approaches have been proposed to build
intrusion detection for cybersecurity automation in IoT networks. However, most such approaches focus on
training an ML model using a single view of the dataset, which often fails to build insightful knowledge and
understand each feature’s impact on the ML model’s decision-making ability. As such, the model training
with a single view may result in an incomplete understanding of patterns in large feature-set datasets.
Moreover, the current approaches are mainly designed in a centralized manner in which the raw data is
transferred from the edge devices to the central server for training. This, in turn, may expose the data
to all kinds of attacks without adhering to the privacy-preserving of data security. Multi-view learning
has gained popularity for its ability to learn from different data views and deliver efficient performance
with more distinguished predictions. This paper proposes a federated learning-based intrusion detection
approach, called MV-FLID, that trains on multiple views of IoT network data in a decentralized format to
detect, classify, and defend against attacks. Themulti-view ensemble learning aspect helps in maximizing the
learning efficiency of different classes of attacks. The Federated Learning (FL) aspect, wherein the device’s
data is not shared to the server, performs profile aggregation efficiently with the benefit of peer learning. Our
evaluation results show that our proposed approach has higher accuracy compared to the traditional non-FL
centralized approach.

INDEX TERMS Internet of Things, IoT security, federated learning, neural networks, multi-view classifi-
cation, intrusion detection system.

I. INTRODUCTION
There has been a sharp growth in the usage of Internet
of Things (IoT) devices in recent years. They intercon-
nect with other digital and physical devices, which enables
information exchange and service delivery [1]. Flexible IoT
devices are currently used for inter-connecting knowledge
of cyber-physical systems in healthcare [2], [3], transporta-
tion [4], smart homes [5], and smart cities [6], to name a
few. IoT-aided devices are very ubiquitous nowadays due
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to their massive adoption in various sectors. Even though
these devices play a prominent role in our everyday lives,
many security complications are involved while using these
devices. The security measures [7] play a key role in the
trustworthiness of these IoT devices and their services. Poor
security measures will make these devices vulnerable to
a variety of cyber-attacks such as data leakage, Denial of
Service (DoS) [8], which may disrupt the normal func-
tionality of the end device. Several lightweight protocols
have been introduced [9] for effective communication within
networks, one such protocol is Message Queuing Teleme-
try Transfer protocol (MQTT) [10]. MQTT protocol is
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mainly designed for communication between devices with
low bandwidth, making it an ideal solution for communica-
tion between IoT devices. The MQTT protocol’s publish and
subscribe communication style helps to exchange informa-
tion in client-server communication through messaging. The
network data collected during information exchange from IoT
devices using MQTT protocol can be used to detect intruders
in the network.

Intrusion detection is crucial in an IoT network as the
intruders can attack and take over the IoT devices and
the other devices connected to the IoT network. Intrusion
Detection System (IDS) techniques can be classified into
main categories: Signature-based and Anomaly-based Intru-
sion Detection. In the signature-based intrusion detection,
there are a set of pre-defined malicious patterns of attacks,
the device detects an attack when it encounters any of
the known patterns, whereas the IDS using anomaly-based
depends on the deviations of normal behavior for detect-
ing malicious activity. Signature-based detection performs
better than anomaly-based in terms of efficiency due to
known attacks’ information availability but fails to detect new
attacks. In contrast, anomaly-based detection is more capable
of detecting new attacks based on the traffic deviations com-
pared to normal behavior. Adapting machine learning algo-
rithms for anomaly-based detection techniques will increase
the self-learning process and help develop more intelligent
systems for detecting attacks in IoT environments.

Recent advancements in network intrusion detection have
shown that having knowledge on multiple view behavior of
an attack will achieve better performance rather than a single
view feature set [11].Multi-View learning is a new paradigm
in which a distinct function is used to model a particular
view and combines all functions to exploit redundant views
of input data. In multi-view, the data is trained alternately
to increase mutual agreement on two distinct views of input
data. Learning tasks in a multi-view strategy is done with
abundant information. Learning from the training of multiple
views can be combined to have an efficient outcome. As we
can consider network data into multi-view form, the same
way, the attack information can also be analyzed as multiple
views. The behavioral information of attacks can be varied
from one view to the other.

In the conventional ML-based approach, the entire data is
considered a single feature set and it requires more training
time to find any deflections in few features of input data
for detecting an attack. Whereas in the multi-view approach,
we consider a set of features in multiple views rather than
a single feature set. As the features set can be reduced in
multi-view, the training can be more efficient, which leads
to detection of attack with more accuracy. Having such
view-level intelligence can be helpful in the better learning
process of attacks and detect abnormal behavior in any view
of network data. Most of the existing works use centralized
ML techniques for intrusion detection [12]–[14]. Typically,
IoT devices in the real world are placed far away from the
location of the central server. The traffic logs generated by

these IoT devices are tremendous. Sharing network logs data
of IoT devices with the central server for intrusion detec-
tion at every point of time is a cumbersome process and
can be subjected to various attacks. Though the centralized
approach can detect attacks with good accuracy, the main
overhead is the cost associated with transmitting IoT network
data to the server. The process takes more time because IoT
devices and the central server (intrusion detection system)
are geographically isolated. Moreover, there will be instances
where the data contains sensitive information that needs to
be secured; therefore, sharing such data over the network
will make data prone to various attacks, leading to critical
consequences. The centralized methodology does not ensure
user data privacy, and the latency cost is high in this paradigm.
The edge computing paradigm solves latency by bringing the
data and computational resources close to the end device,
but this does not provide any privacy-preserving methods
for data. Knowledge sharing is not supported in such edge
computing manner, i.e., information of new attacks or change
of behavioral information of existing attacks that any device
encounters is not shared with latter devices.

Federated Learning (FL) [15] is an ideal solution for
performing on-device training while maintaining privacy-
preserving methods using decentralized data. In recent years,
FL became a widely adopted solution for ensuring privacy
[16]–[19] of the end-user data and updates with low latency.
This technology addresses the limitations of centralized and
edge-computing paradigms and marks it as an outstanding
ML technique for maintaining data privacy while sharing
knowledge among peers. FL uses an exceptional strategy
[20] in which a trained ML model will be shared between
multiple devices in the network, and devices that download
the shared base ML model will train it with its local data and
computational resources that are available with that device.
After training, the devices share the updated local model
parameters back to the server for performing aggregation
of their locally computed parameters. Considering privacy
measures, the aggregation process is made, so the server
has no access to devices’ training data. Using this paradigm,
in this work, we are proposing an intrusion detection tech-
nique called Multi-view Federated Learning based Intrusion
Detection (MV-FLID) that uses decentralized data for per-
forming training and inference procedures at the device’s
end. The device’s data is not being shared with the central
server or any other external devices, thereby maintaining
the security and privacy of the device’s data. FL aggrega-
tion [21], [22] will be done at the server end by collect-
ing all trained models of devices that participate in the FL
process. Following is a list of contributions we made in this
research:

1) Proposing an intrusion detection approach with
multi-view information of IoT network data using
federated learning methodology.

2) Integrating Grey Wolves Optimization mechanism for
extracting optimized feature sets in the proposed
approach.
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3) Devising an ensemble-based method for detecting
attacks from multiple views in the proposed approach.

4) Obtaining high accuracy results in detecting attacks
compared to traditional machine learning approaches
that use a single feature-set of attack information in a
non-decentralized manner.

The remaining of the paper is structured in the following
manner. Section II gives the related work. Section III presents
the proposed approach and illustrates the underlying archi-
tecture with implementation details. Section IV presents the
dataset, metrics, and evaluation results and summarizes our
findings. Finally, Section V concludes the paper.

II. RELATED WORK
Intrusion Detection has become a foremost thing to be con-
sidered while utilizing IoT devices [13]. Many research
works have been carried out on Intrusion detection using
ML methodologies. In this section, we discuss some of
the recent advancements proposed for Intrusion detection
techniques.

The researchers in [23] used a supervised artificial neu-
ral network which is based on multi-level perceptron for
training and testing threat patterns in an IoT Network. They
have achieved 99.4% accuracy in detecting Denial of Service
(DoS) / Distributed denial of service (DDoS) attacks.

Similarly, authors in [24] proposed an intrusion detec-
tion approach using Feed-forward neural networks and
multi-class classification for detecting attacks like DoS/
DDoS, reconnaissance, and information theft attacks in IoT
networks. This method involves collecting data from raw
network packets using an analyzer tool. The analyzer tool
captures all the generic features of the raw network traffic.
The Pre-processed data is then used to train a Deep Neural
network, which is used as a classifier for new incoming packet
data. The classifier then labels the malicious packet into a
specific category of attack.

Authors in [22] presented a comprehensive design of the
FL system. Unlike traditional ML architecture, FL utilizes a
decentralized approach. A variety of FL techniques have been
proposed in the field of cybersecurity and also for intrusion
detection in IoT networks.

For example, the authors in [25] proposed a Self-learning
anomaly detection system using an FL approach for detecting
compromised IoT devices in the network. It utilizes Long
Short Term Memory (LSTM) and Gated Recurrent Units
(GRU’s) for building the proposed model. It constantly
monitors the devices’ network traffic and detects anomalous
deviations from given communication profiles of devices’
without human intervention. It has achieved an accuracy
of 98.2% and can detect 95.6% of attacks in 257ms with less
false alarm rate.

Likewise, research work in [26] presents a deep learning
model by combining NIDS and HIDS to detect cyberat-
tacks. They assessed multiple stages of attacks and evaluated
machine and deep learning algorithms on various NIDS and
HIDS datasets. The best-performed algorithm is chosen for

the list, and it was further evaluated on other multiple datasets
for efficiency.

Researchers in [27] presented an Intelligent Intrusion
detection using FL approach and Long Short Term Mem-
ory (LSTM) recurrent neural network. LSTM networks have
cell state and memory state within to hold required informa-
tion on long inputs of data. This model does compare the
efficiency of the proposed algorithmwith conventional neural
networks using Adam optimizer and achieves an accuracy
of 99.21% and an F1 score of 99.21. It used the supervised
learning mechanism while performing training procedures.

On the other hand, the authors in [28] put forward a
deep anomaly detection framework for sensing time series
data using the FL approach on distributed edge devices for
Industrial IoT. It also incorporates a CNN-LSTM model
for extracting fine-grained features of historical observa-
tions sensing time series data and uses LSTM modules for
time-series predictions, thereby preventing memory loss and
gradient-dispersion problems.

Most of the works were carried out using a single view
of network data for detecting attacks of the aforementioned
proposed approaches. There have been advancements in
intrusion detection techniques using the multi-view informa-
tion of attacks. Authors in [11] proposed a semi-supervised
co-training approach using multi-view nature of attacks.
In this approach, attack behavior will be maintained in mul-
tiple views, and attack detection will be done using the pre-
dictions done by ML models of multiple views of an attack.
They have used a centralized approach for implementing
their research and had an active labeling procedure for label-
ing unknown attacks by experts. Researchers in [10] have
introduced multi-view features of MQTT data and evaluated
features using centralized ML algorithms. Authors in these
works have proposed their methodologies in a centralized
approach. In our work, we proposed a Federated Learning
methodology (MV-FLID) to train network data segmented
into three views in IoT devices. We used an ensembler at
the end of deep learners for detecting attacks based on their
occurrence.

To abridge, most of the research works have been carried
out on a single feature set of data using a centralized mecha-
nism and lags in using decentralized approaches for effective
communication and intrusion detection in IoT environment.
Our approach considers the limitations of existing works and
proposes a multi-view decentralized approach for intrusion
detection.

III. PROPOSED APPROACH
This section presents our proposed approach called
MV-FLID, which integrates base classifiers trained on mul-
tiple views of network data to detect various attacks in IoT
devices. The list of acronyms used is given in Table 1.

A. ARCHITECTURE
Our proposed approach is depicted in Figure 1 inwhichmulti-
ple virtual IoT instances are connected to Security Gateways,
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FIGURE 1. High level architecture of the proposed approach.

TABLE 1. Acronyms.

which are distributed at different sites. The MQTT protocol
in the session layer of these IoT devices will share network
data with the security gateway (middle agent) for further
processing. Published traffic data of these devices will be
monitored by an intrusion detector installed on the security
gateway. Having such on-site intelligencewill make gateways
independent from the traditional server-device mechanism,
in which the traffic data will be shared with the server every
time for detecting intrusions. Such on-site intelligence will
also expedite detection time by performing analysis on shared

network data. The gateways are placed in the federated setup.
For every selected amount of time, the ML models of mul-
tiple views that get trained on local network data of IoT
devices participate in a server-based aggregation process. The
aggregation process creates a more sophisticated intrusion
detection model with aggregated and optimized all device
models’ parameters.

Sharing intrusion detection MLmodels with the server and
aggregation of theMLmodels enable generating amodel with
global intelligence perception that helps in the detection of
attacks with higher amounts of accuracy. The server shares
a global optimized model back to security gateways and
assists in increasing knowledge among gateways. Sharing
the aggregated model to security gateways leads to a better
learning process. It empowers devices to detect intrusion
based on behavior learned by other devices participating in
the aggregation process.

1) DATA PRE-PROCESSING
The network connection between the source and destination
consists of a sequence of TCP packets, which have a n number
of features for each packet. As the packets contain IoT device
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network logs information, in this module, based on their
nature we consider packet information into three views such
as Bi-Directional Features (Bi-flow view), Uni-Directional
Features (Uniflow view), and Packet-Features (Packet view).
The multi-view features of packet are listed in Table 2.

2) GREY WOLVES OPTIMIZATION
Feature Selection using Grey Wolves Optimization (GWO)
[29] technique is a hunting kind of mechanism which can
be implemented for generating optimal feature set from the
given list of features in the training data. This heuristic
approach attains the best feature set based on the accuracy of
the features obtained at multiple iterations of the features list.
Therefore, the final features set obtained after implementing
the GWO mechanism will have more accuracy. The GWO
mechanism works on a strategy that has four different cate-
gories of wolves called alpha, beta, gamma, and delta. The
wolves have a strict dominance hierarchy wherein Alpha (α)
is considered as the leader of the group who is conscientious
and responsible for making decisions. The next category of a
wolf in the hierarchy is the beta (β) wolf which is subordinate
to the Alpha (α). Sometimes beta (β) wolves will find the
best fitness and acknowledge α about the positions. The other
lower-ranking wolves are called omega (ω) and delta (δ).
α is considered as the best fitness solution. β and δ are
considered as the next fitness for the sub-optimal solution.
All these categories of wolves will be scattered into n number
of dimensions and collectively tries to find the best solution
for the given features on multiple iterations.

The wolves hunting process at a given point of time can be
described in the below equations.

G = |C .Fprey(t)− Fwolf (t)| (1)

F(t + 1) = Fp(t)− A.G (2)

A = 2ar1 − a (3)

C = 2r2 (4)

In Equations 1 and 2 G is the wolves current position
for the current time iteration t , whereas F represents the
position vector and Fprey denotes current position vector of
the prey(target). A & C are the coefficients calculated using
variable in Equations 3 and 4. r1, r2 are random vectors that
lie in the interval [−1.28, 1.28] and a is an arbitrary variable
that linearly decreases from 2 to 0.

3) VIEW SPECIFIC ML MODELS
Referring to the architecture, in this module, a feed-forward
Artificial Neural Network based on a back-propagation train-
ing algorithm is used for training procedures. The structure
of the proposed neural network consists of an input layer,
hidden layers, and an output layer. The number of inputs
was determined by the input features set. As we are dealing
with the multiple views of the network data, in this module,
we design neural network ML models for the three views,
i.e., for Uniflow features, Biflow features, and Packet features
of data shared by MQTT protocol. The ML models will be

trained on the patterns of different kinds of attacks and a
soft-max function is employed at the end of the network to
classify network traffic into attack categories. The feature sets
extracted in the pre-processing data phase were given as input
to the classificationmodels wherein theMLmodels will learn
the temporal information of these feature sets, and the ML
models get trained on the given knowledge.

We consider this set of ML models as the base ML models
of the corresponding views, and the trained ML models will
be shared with IoT devices for inference of the attacks on the
real-time network data of the device.

4) FL TRAINING PROCESS
The FL process is implemented with the available number
of virtual instances. Each instance has its training data using
which the shared view specific ML models get trained, and
shares updated parameters with the central server for aggre-
gation purposes. The information presents in network data of
IoT devices is segmented into three views and segmented data
is considered for training. In our work, we used three deep
learning ML models for training data present in three views.
The communication rounds in the FL process are the number
of times the aggregation procedure is being implemented for
locally trained ML models of three views in IoT devices. The
steps underlying this process are as follows:
Step 1: The initial ML models of three views are shared

with the virtual IoT devices.
Step 2: After getting base ML models of three views from

the server, the ML models will undergo a re-training process
using local network data of the device.
Step 3:View-specific features information of network data

is given as input to Biflow, Uniflow, and Packet View ML
models to predict the class of an attack. All three classifi-
cation ML models will predict the attack class based on the
training parameters set in the initial model.
Step 4: From the list of different probabilities of attack

classes by output layer, the ML model gives an attack class
that has the highest probability from the list of predicted
attacks as output.
Step 5: After training the ML models for several epochs

locally on the device data, view-classification models of
all IoT devices are sent to the server for performing FL
Aggregation of the corresponding view-classification ML
models. All the parameters of the view-classification ML
models of multiple IoT devices are aggregated, and a Global
ML model is created for a corresponding view-classification
model.
Step 6: After completion of FL Aggregation, Global mod-

els are shared back to IoT devices, and the current classifica-
tion models in the IoT devices are replaced with shared global
models, and the training and inference procedure continues
on local data.
Step 7 : An ensembler is engaged and the attack predictions

of all view-classification models are sent to the ensembler for
selecting the class based on the majority predicted class from
the trained classifiers.
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5) FL AGGREGATION
Federated Aggregation is a computation algorithm in which
a group of devices connected to a network hold private net-
work data and collaborate in computing an aggregated model
without revealing any sensitive information of the device
and sharing only the locally-computed parameters of the
device models for performing aggregation. Each device trains
its models of three views locally for a selected number of
epochs before sharing its updated parameters with the central
server. This process limits the communication overhead of the
device because of sharing only the trained models of views
rather than view specific information of local data.

Fk (w) =
1
nk

∑
i∈Pk

fi(w) (5)

f (w) =
K∑
k=1

nk
n
Fk (w) (6)

In Equation 5 K denotes total number of clients, k is
index of client, nk is the number of data samples that are
available during training of client k , taking fi(w)= l(xi, yi w)
which is Loss of prediction of sample (xi, yi) and Pk is set
of indices of data samples on client k . Equation 5 estimates
the weight parameters of all devices based on the loss values
that encountered across data points they have trained with.
Equation 6 performs scaling of the parameters and adding up
all in a component-wise manner.

6) ENSEMBLER
We have used an ensemble-based technique in our work to
predict the attack based on the predicted values of classifi-
cation models of three views. For achieving better accuracy
rates, we used Random Forest Classifier [30] to perform an
ensemble process on the model’s outcomes. For the given
input of network data, the models of three views will pre-
dict the probabilities of a possible attack. The outcomes of
these models will be sent to ensembler, which combines the
predictions of three views and gives a single attack based on
its probability and its occurrence. The process of ensembler
is outlined in Figure 2 and its functionality is illustrated in
Algorithm 1.
The Algorithm 1 formalizes the whole procedure of

our proposed approach. Splitting the dataset into train set
for training procedures and test set for evaluation pur-
poses. The order of functions in the algorithm specifies
the functioning of our approach. Starting with Feature
Engineering(featureEngineering_GWO) of data presented in
views, using Grey Wolves Optimization technique and resul-
tant data is being forwarded to training procedure(flTraining)
for a selected number of rounds. Next, followed by the
Averaging of computed parameters of models using FLaverage
function. Finally, the EnsemblerLogic function consists of
logic for predicting the attack using test data of views that
are passed to corresponding trained view models.

The following steps will elucidate more about the working
procedure of our architecture.

Algorithm 1: FL Process
Input: Train and Test Data of MQTT Dataset
Output: Intrusion Detection in Multi−

view Network Data
Data: mqtt_dataset

1 mb, mu, mp /* ML models for three Views */

2 Reading Input data of three views
3 Views = Db, Du, Dp /* data for three views */

4 d = d1, d2 . . . d10 /* Initiating Virtual Devices

*/

5 Function featureEngineering_GWO(Views):
6 for view in Views do
7 while max_iterations do

/* Set Random Positions of Wolves

*/

8 α, β, γ , δ = random_positions
update(current position of wolves)

9 calculate fitness of α, β, γ , δ
10 update(α, β, δ)

11 return α EndFunction

12 Function flTraining(communication_rounds):
13 while di in d do
14 mwb = train(data in Db)
15 mwp = train(data in Dp)
16 mwu = train(data in Du)

17 return mwb, mwp, mwu
18 EndFunction

19 Function flAverage():
20 Mwb = FLaverage(mwb) /* Averaging parameters

of Biflow view models of all devices */

21 Mwp = FLaverage(mwp) /* Averaging parameters

of Packet view models of all devices */

22 Mwu = FLaverage(mwu) /* Averaging parameters

of Uniflow view models of all devices */

23 Function ensemblerLogic(Mwb, Mwu, Mwp):
24 biflow_viewdata, packet_viewdata, uniflow_viewdata

predictions = Mwb(biflow_viewdata),
Mwp(packet_viewdata), Mwu(uniflow_viewdata)
Attackprediction = Ensembler(predictions)

1) The features extraction using Grey Wolves Optimiza-
tion (GWO) [31] method for extracting the optimal
feature set from the list of available features for three
views, i.e., Uniflow, Biflow, and Packet features.

2) The server initializes the base Artificial Neural Net-
work models for these three views using the optimal
feature sets obtained for corresponding views in the
feature extraction process. The structure of these ML
models and their hyper-parameters are defined at this
stage. The defined neural network models perform an
initial training round with available training data with
different categories of attacks.
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3) The ML models produced in step (2) are shared with
Security gateways that are participating in the FL
process.

4) Once the security gateways download intrusion detec-
tion models of the server’s corresponding view,
the learning parameters of theMLmodels are enhanced
based on IoT devices’ local network data.

5) As the ML models were trained with a certain number
of attacks at the server, they will detect and identify
the abnormal behavior in network traffic of IoT devices
that assists in detecting attacks.

6) Only parameters of updated models are shared to the
server for aggregation process instead of sharing sen-
sitive information of network traffic data and creating
scope for data theft.

7) The server aggregates the weights obtained from dif-
ferent gateway models and creates new sophisticated
and updatedmodels for corresponding views, which are
communicated back to security gateways after success-
ful aggregation.

8) Each security gateway uses an updated model on new
upcoming traffic data.

The above steps (5), (6), and (7) will be repeated to enhance
the learning process, improve models’ accuracy and keep the
global ML up-to-date with the latest data.

IV. EVALUATION RESULTS
In this section, we discuss the environment setup, the dataset,
and its views segmentation used for implementing our pro-
posed approach. Then we walk through the evaluation met-
rics used for analyzing the performance of our proposed
approach. In the final part, we present our experimental
results and provide discussion.

A. EXPERIMENTAL SETUP
For evaluating our proposed approach MV-FLID, we have
used the Tesla V100-SXM2-16GB GPU server that was
hosted as a backend for the Google Colab Pro environment.
We have implemented the FL approach using PySyft [32]
deep learning framework, which is based on Pytorch deep
learning framework.

B. DATASET
To evaluate our approach, we have used a lightweight MQTT
protocol dataset [10], which simulates realistic IoT device
communication. The MQTT dataset consists of five recorded
scenarios of 1 normal operation and 4 attack scenarios.
It has both common network scanning attacks and brute-force
attacks. MQTT protocol communication datasets are widely
adopted [33], [34] for building an effective Intrusion Detec-
tion model for IoT devices.

The processed features of the MQTT dataset can be cate-
gorized into Unidirectional, bi-directional, and packet-based
features. The features of corresponding groups are listed
in Table 2. The distribution of attacks in each view are illus-
trated in Figure 3

TABLE 2. Dataset features.

C. EVALUATION METRICS
In our approach, we use Accuracy, Precision, Recall, and
F1-score as our metrics for measuring the performance of
classification models.
True Positive (TP): The total number of attack records that

were correctly classified as an attack.
True Negative (TN): Total number of normal records that

are accurately classified as normal.
False Positive (FP): Total number of normal records that

were incorrectly classified as an attack.
False Negative (FN): Total number of attack records that

were incorrectly classified as benign.

1) PERFORMANCE METRICS
a: ACCURACY
It is defined as ratio of correctly classified records to the total
number of records.

Accuracy =
TN + TP

TN + FP+ TP+ FN

b: F1-SCORE
It is the Harmonic mean of Precision and Recall.

F1− score = 2 ∗
Recall ∗ Precision
Recall + Precision

c: PRECISION
The ratio of Truly Positive to the Total number of results
predicted positive.

Precision =
TP

FP+ TP

d: RECALL
It is the percentage of predicted positive to the total positive.
It is also called as True Positive Rate (TPR)

Recall =
TP

FN + TP

D. RESULTS
We have conducted our experiments using the Pysyft deep
learning frameworkwith 10 virtual IoT devices in a Federated
setting to evaluate our approach. We have implemented ten
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FIGURE 2. Prediction using Ensembled method.

FIGURE 3. Distribution of attacks data in multiple views.

FIGURE 4. Evaluation metrics of training rounds in proposed approach.

rounds of aggregation of models that are trained using local
data of the corresponding device. Figure 4 shows the device’s
accuracy trends after every round of Federated Aggregation.
We have distributed training and test data with devices to
enable a self-learning process. We have achieved signifi-
cant accuracy (as shown in Figure 4) after each round of
communication while preserving the privacy of the data.
Federated Learning methodology has spurred the efficiency
of the knowledge-sharing process regards to diverse behavior

of attacks among devices. The deep learning models in these
devices get trained with much information of attacks in every
round of communication, increasing our accuracy.

1) COMPARISON WITH NON-FL APPROACH
We implemented the non-FL version of our proposed
approach using the Pytorch deep learning framework to com-
pare its evaluated results with the FL version.
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FIGURE 5. Training results for individual models in non-FL setup.

In the FL method, there are ten rounds of communication
has been carried out. In every round of communication, any
change in behavior of attack information encountered by any
device during training is being shared with latter devices at
the time of aggregation. Whereas in the Non-FL implemen-
tation, knowledge sharing is not happening. Also, the amount
of data used for training in a centralized approach is huge
compared to the amount of data used in the decentralized
methodology. The procedure of implementing Non-FL ver-
sion are as follows:

1) We performed Data Pre-Processing techniques on view
datasets and extraction of valuable features set.

2) We have defined attack classification models for three
views i.e., Biflow View, Packet View, and Uniflow
View.

3) Next, we carried out training procedures for three-view
for a given number of epochs.

4) As this procedure comes under a centralized approach,
there is a single round of training for view classification
models.

The results of the training round are shown in Figure 5. As can
be seen from the figure, the Biflow and Uniflow view deep
learners yielded more accuracy than that of the packet flow
view. The same tendency continues with the loss values of
models. The packet view deep learner has taken more steps
for reaching an optimal minimum. The training accuracy in
packet view is less in the Non-FL approach and required
more information to identify abnormal behavior in packet
view. Improving parameters of packet view deep learners
by knowledge sharing technique enhances its efficiency in
detecting abnormal behaviors in packet view.

In a side-by-side fashion, we compared the evaluation
metrics of trained models of multiple views from the non-FL
setup with the metrics of trained view-model instances after
completing the 10th round of FL averaging process of the
proposed approach. Figure 6 illustrates the comparison of the
evaluationmetrics for FL and non-FL implementations. Com-
pared to the results of the non-FL approach, our proposed
approach using FL has achieved a higher amount of accuracy
in detecting attack behavior in network data. The proposed
approach has maintained a good amount of accuracy than the

FIGURE 6. Evaluation metrics comparison of our proposed approach and
non-FL approach.

Non-FL approach. Using Federated Learning methodology,
the network data of IoT devices will get trained after every
round of aggregation process. As the aggregation includes
merging deep learning models of multiple views, the knowl-
edge of attack behavior across multiple devices is being
shared, leading to an increase in the efficiency of detection
of attacks. Whereas, In the Non-FL methodology, training
procedure is implemented at the server end and a variety
of attack behavior of IoT devices is not being shared to
the server for global perception. Knowledge sharing, which
the FL method supports, plays the most significant role in
increasing the detection of attacks more efficiently.

2) SECURITY ANALYSIS
The previous results (presented in Figure 4) were mea-
sured with the premise that devices and their traffic data be
legitimate. To further evaluate the security of our proposed
approach in the presence of adversary/malicious traffic in
the network, we considered three devices with malicious
traffic for this analysis. In Figure 7, we have the accuracy
trends of devices that contain legitimate and malicious traffic.
We used devices 8, 9, and 10 with malicious traffic data.
We implemented a poison attack by flipping the training
data labels for infected nodes to analyze the efficiency of
our approach. As shown in Figure 7, the accuracy trends
of infected devices are low compared to other devices with
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FIGURE 7. Accuracy trends of proposed approach with adversary nodes.

FIGURE 8. Evaluation metrics results of proposed approach with
adversary nodes.

legitimate traffic. The training models of infected devices
were also considered while performing the aggregation pro-
cess. In the federated learning mechanism, parameters of
on-device trained models of multiple devices will be com-
bined in the aggregation process. It promotes knowledge shar-
ing by averaging the parameters of trained models from all
participating devices, thereby reducing the negative impact
of adversary samples and generating a global optimized
model as an outcome. Though the accuracy trends of infected
devices are less, the global model that we generate after
the federated aggregation process has maintained optimal
performance. Figure 8 shows the evaluation metrics of our
proposed approach with malicious traffic data. Our results
show that the global model obtained after the 10th round of
aggregation has maintained optimal accuracy by the use of
federated learning in detecting attacks.

Considering the current extent of our approach, it is still
possible for an attacker to perform poisoning attacks by

injecting malicious traffic samples through compromised IoT
devices. If the malicious samples were injected at a slow,
gradual pace, deep learners might fails to detect those slight
deviations of network behavior and considers them as normal
traffic. To strengthen our approach, we plan to have a mech-
anism that can forestall poisoning attacks by implementing
a sensitive outlier detection filtering technique. This method
would analyze retrained models of multiple gateways and
eliminate malicious/outlier models from participating in the
aggregation process. Using this technique, we could identify
the compromised devices in the network, and an alert can be
made for intrusion.

E. DISCUSSION
This part discusses the computation capability of nodes used
in the experiment and whether using the proposed approach
with IoT devices in real-time may introduce any signifi-
cant overhead interrupting their normal operations. Second,
we discuss the possible application scenarios of our approach
concerning device type and data.

1) COMPUTATION OVERHEAD
We have created virtual device instances using the Pysyft
deep learning framework to demonstrate the functionality of
our proposed approach. As these devices are virtual, the com-
putational ability is the same as the runtime we used for
executing our approach. On-device monitoring is hardly fea-
sible in real-time IoT devices due to their resource limitation
concerning computational ability, memory, and energy. Our
proposed approach is based on the assumption that an intru-
sion detection system is installed on the security gateways
and these gateways monitor the traffic of IoT devices that are
connected to them. This approach supports most IoT devices
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as it is not required by the devices to be equipped with high
computational power, and the work relying on computation
power will be carried out at the security gateways. Thus,
normal operations of IoT devices will unlikely be get affected
in real-time scenarios.

2) APPLICATIONS
In this paper, we have provided a practical use case
of multi-view learning in the IoT network domain. This
approach can be implemented in the network architectures
where MQTT protocol is used for communication with IoT
devices and other communication protocols such as TCP and
Modbus. This method can be applied to different types of
devices rather than a single type because the device traffic is
considered for performing intrusion detection rather than its
specifications. Different devices have different functionality,
so the data associated with the device and attacks corre-
sponding to a device will also be different. The ideology of
multi-view learning can be followed for most of the proto-
cols. The network data of IoT devices that use any protocol
for communication can be segmented based on the nature
of features that corresponds to an attack. This approach can
be implemented using the security service models that are
available with service providers. FL helps in maximizing the
training process with less data. It can be used irrespective
of the communication protocol and end devices. Federated
learning fosters the idea of Secure Multiparty computation.
It prevents the end device data from being exposed to other
parties and promotes differential privacy of data.

V. CONCLUSION
In this paper, we proposed a federated learning-based intru-
sion detection approach with multi-view ensemble learning.
Our approach enhances the capability of identifying intru-
sions with a higher accuracy rate. Enhanced security and
privacy levels are ensured as the data stays intact on the end
devices. Multi-view learning enables the thorough analysis
and understanding of attack patterns from multiple perspec-
tives. The trained ML models learnings from multiple views
are fused with an ensembler which increases the prediction
accuracy of our approach. Our future research will focus
on exploring unsupervised and reinforcement ML algorithms
that can further enhance intrusion detection by identifying
untrained attacks. In addition, we will focus on a mechanism
that can forestall gradually injected poisoning attacks by
implementing an outlier detection filtering technique. This
method would analyze retrained models of multiple gateways
and eliminate malicious/outlier models from participating in
the aggregation process.
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