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ABSTRACT Time delay estimation is an essential step in sound source localization and beamforming
systems, and an extensive amount of research has been performed on this subject. This task entails the
accurate estimation of the relative time delay between two microphone signals originating from the same
source. To overcome the limitations of the existing methods, the adaptive eigenvalue decomposition (AED)
algorithm was developed for time delay estimation in reverberant acoustic environments in the early 2000s.
This paper attempts to improve delay estimation performance using autoregressive model-based prefiltering
for the AED algorithm. The proposed method establishes an autoregressive model of the room impulse
response beforehand. Then, the model is utilized as a linear prediction filter to remove the reverberation
component from the microphone signals, which improves the estimation capability of the algorithm. Monte
Carlo experiments are performed to demonstrate the improved performance for various reverberation levels
and signal-to-noise ratios. Provided that the noise level is moderate, the proposed method is shown to greatly
increase the accuracy of the conventional approach in a highly reverberant room.

INDEX TERMS Time delay estimation, adaptive eigenvalue decomposition, autoregressive prefilter, source
identification, model-based prefiltering technique.

I. INTRODUCTION
Time delay estimation (TDE), as an essential step for sound
source localization and beamforming systems, has attracted
an extensive amount of research interest [1]–[3]. This task
entails the accurate estimation of the relative time delay
between two microphone signals originating from the same
source. It has many applications in various fields, including
radar, sonar, seismology, geophysics, ultrasonics, commu-
nications, and more. Other recent applications involve per-
forming tasks in room environments, such as localizing and
tracking the active speaker in a teleconference system.

One of the most widely used techniques for TDE is gener-
alized cross correlation (GCC), proposed in a landmark paper
by Knapp and Carter [4]. The delay is given by the time lag
at which the cross-correlation function between two received
signals is maximized. This method fairly works well in the
presence of moderate noise. However, its performance suffers
when reverberation occurs in the room; it is prone to fail even
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in the presence of a weak echo. Although there exist a variety
of GCC family methods, they cannot handle reverberation
appropriately. This limitation can largely be attributed to the
fact that most of these methods assume an ideal propagation
model without reverberation, i.e., only a direct path between
the signal source and the microphones. Recently, a study
was conducted on an improved algorithm based on GCC
using phase transform weights [5], [6], but the method was
observed to be sensitive to noise. In addition, methods [7], [8]
based on various information including microphone signals
have also been studied in order to estimate the correct direc-
tion of a sound source under the assumption that the micro-
phone array can be used, and methodologies [9], [10] for
estimating various sources expected in real situations are the
subject of ongoing research.

A new approach, referred to as adaptive eigenvalue decom-
position (AED), was proposed by Jacob [11]. This method
uses a more realistic signal model to consider reverberation
in the room. Unlike in the GCC-based methods, impulse
responses from the source to two microphones are identi-
fied using an adaptive algorithm that iteratively calculates
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the eigenvector corresponding to the smallest eigenvalue of
the covariance matrix. Then, the time delay is estimated
as the time difference between dominant peaks of the two
identified impulse responses, or as the time lag that maxi-
mizes the cross-correlation function between the two impulse
responses. It is emphasized that the focus of the AED
method lies in the estimation of the relative time difference
between the main peaks (direct path) of the acoustic impulse
responses, not in the exact estimation of the acoustic impulse
response. As follow-up research, many studies have also
been conducted to improve the robustness of TDE, adopt-
ing methods to reflect spatial diversity using two or more
microphones [12]–[14], improving performance using GCC
weightings [15], and using blind channel estimation [11],
as well as considering reverberation and correlated noise
fields [16]. Very recently, a performance improvement study
using a sub-band approach [17] to improve TDE for speech
sources using a multichannel sparse linear prediction algo-
rithm [18] has been conducted. In addition to studies on
source localization usingAED and studies seeking to improve
the robustness of these methods, research is continuously
being conducted on related topics in various fields, including
tracking the desired sound from microphone signals while
removing noise from the measured signals [19], improving
the computational speed of the adaptive algorithm to perform
signal processing more quickly [20], [21], and performing
TDE for watermarked audio signals [22].

Although the AED algorithm demonstrates the best per-
formance among the available TDE techniques, including
the GCC-based method [23], its validity holds only for mild
reverberation conditions, and breaks down if the reverbera-
tion becomes severe. Thus, the current investigation attempts
to improve the TDE performance of AED by adopting the
relatively simple prefiltering approach, using known sound
field information, unlike previous studies. More specifically,
the reverberation structure is first estimated by performing
autoregressivemodeling of the room impulse response. Using
the model as a linear prediction filter eliminates the reverber-
ation from the microphone signals, leaving the direct com-
ponent in the residual. Working with the residual rather than
the original signal assists the AED in determining the direct
path signals. Using AR modeling to determine the impulse
response functions constitutes a task that is completely dif-
ferent from that which AED performs. As detailed in the
next section, the AED algorithm was designed to highlight
direct paths only, whereas the AR model describes the entire
reverberation structure as faithfully as possible using the
received signal.

The notion of prefiltering is not new; it is frequently
exploited in the fault diagnosis of rotating machinery such
as bearings and gears [24]–[27]. In such applications, an AR
model is employed to predict the deterministic sinusoidal
data or sharp spectral peaks corresponding to the rotational
components and their harmonics. A fault signal (usually a
series of impulses) is then extracted by removing the deter-
ministic part, and can be further enhanced with subsequent

post-processing. Likewise, the signal in a reverberant field
can be regarded as being corrupted by the room resonance.
Thus, we anticipate that the resonant components in in the
microphone signal can be described well through the AR
modeling of the room impulse response. That is, prefiltering
using the AR model can also be applicable for the removal
of room reverberation. In fact, some studies [28], [29] have
claimed that dereverberation for the enhancement of speech
signals can be achieved efficiently using the ARmodel rather
than themoving-average (MA)model. Thus, the present work
offers the distinct contribution of adopting theAR prefilter for
the performance enhancement of AED, an approach that has
not been attempted in previous studies.

The remainder of the paper is organized as follows. The
next section first introduces the AED algorithm, as previously
proposed by Jacob [11], then suggests an AR prefiltering
method to improve the performance of the AED algorithm.
Additional discussion on the parameter selection for the AED
is provided as a complement of this work in Section II.A. The
AR prefiltering method is further developed in Section II.B
together with the selection of an appropriate order to optimize
performance. Numerical experiments reported in Section III
elucidate the benefits of the proposed method considering
various room environment conditions and arrangements of
microphones and sources. Finally, Section IV concludes this
paper.

II. PROPOSED METHOD
A. OVERVIEW OF ADAPTIVE EIGENVALUE
DECOMPOSITION METHOD
A simple propagation model for the TDE problem is given by

xi(n) = αis(n− τi)+ wi(n), (1)

where xi(n) (for i = 1, 2), is the signal output of the i-th
microphone at time index n (= 0, 1, . . . ,N-1), αi is the atten-
uation factor along the propagation path, s(n) is the source
signal, τi is the time it takes to reach the i-th microphone
from the source, and wi(n) is the zero-mean, uncorrelated,
and stationary Gaussian noise component added to the i-th
microphone. It is assumed that the spectral component of s(n)
is fairly broad-banded. Our aim is to estimate accurately the
relative delay between the two microphone signals, i.e., τ =
τ2 - τ1, using the finite sets of observation samples of x1(n)
and x2(n).
Equation (1) deals with an ideal situation in which the

signal propagation from the source to each microphone takes
place along a single direct path, and is no longer valid for
an actual acoustic environment where the effect of room
reverberation should be considered. A more realistic model
for the microphone signals would be

xi(n) = gi ∗ s(n)+ wi(n), (2)

where ∗ denotes the convolution operation, and gi is the chan-
nel impulse response function between the source and the
i-th microphone. In the AED method, the impulse response
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is assumed to be a finite impulse response (FIR) filter gi with
length M (< N ) as follows:

gi =
[
gi,0 gi,1 · · · gi,M−1

]T
. (3)

where T denotes the transpose.
For a noiseless case, wi(n) = 0, the following relation

xT1 (n) g2 = xT2 (n) g1, (4)

holds with

xi(n) = [xi(n) xi(n− 1) · · · xi(n−M + 1)]τ (5)

representing the vector of M signal samples arranged in a
reverse order, since x∗1g2 = (s∗g1)∗g2 = (s∗g2)∗g1 = x2∗g1.
If we define the 2M × 2M dimensional covariance matrix R
of vectors x1(n) and x2(n),

R =

[
E[x1(n)xT1 (n)] E[x1(n)x

T
2 (n)]

E[x2(n)xT1 (n)] E[x2(n)x
T
2 (n)]

]
, (6)

together with the 2M × 1 dimensional vector u by concate-
nating the impulse response functions,

u =
[

g2
−g1

]
, (7)

then Equations (4)–(7) immediately yield Ru = 0, meaning
that the vector u is in the null space of the covariance matrix.
Equivalently, u is the eigenvector of R corresponding to the
zero eigenvalue. Therefore, the two impulse responses (g1
and g2) can be found by determining this eigenvector. Then,
the time delay estimate τ̂ is given by the time difference
between their dominant peaks, or by the difference between
the two direct paths, that is,

τ̂ = argmax
k

∣∣g1,k ∣∣− argmax
k

∣∣g2,k ∣∣ . (8)

The existence of noise regularizes the covariance matrix,
soR no longer has a zero eigenvalue. Noting thatR is positive
definite rather than positive semi-definite, the alternative is
to find the smallest eigenvalue and its associated eigenvec-
tor. For the latter, Benesty has proposed an iterative way to
minimize the estimation error:

e(n) =
uT (n)x(n)
||u||2

, (9)

where || · || is the l2-norm of a vector, and x(n) =[
xT1 (n)x

T
2 (n)

]T is a (2M × 1)-dimensional vector. Further-
more, an efficient adaptation (or update) rule was developed
as follows:

u(n+ 1) =
u(n)− µe(n)x(n)
||u(n)− µe(n)x(n)||2

, (10)

where µ (> 0) is the step size. Afterward, the estimation of
eigenvector u is attainable after convergence.
Bear in mind that the goal of AED is not to estimate (even

approximately) the impulse response functions, but rather to
estimate the time delay by simply reading the index difference
of their peaks. In this regard, a heuristic initialization for

the elements ui(n) of vector u(n) at n = 0 plays a vital role
in accomplishing this task. To allow a positive or negative
relative delay, Equation (10) starts with a vector u(0) with
only one nonzero element in the middle of its first half. That
is,

uk (0) =

{
1 for k = M/2
0 for k 6= M/2,

(11)

the peak at k = M/2 is always dominant in comparison with
other components in the first half of u throughout the iteration
process. Such an invariant peak is related to the direct path of
the impulse response g2. Another (negative) peak appearing
in the last half of u would designate the direct path related to
the impulse response −g1. Hence, it should be emphasized
that the initial configuration of Equation (11) signifies the
direct paths only, and in turn hinders a faithful description
of the reverberation.

In addition, AED presumes a proper choice of the parame-
tersµ andM , a factor which was not discussed in the previous
studies. In treating the first item, it is worth mentioning
that the update rule in Equation (10) was derived using the
least-mean-square (LMS) algorithm, behaving just like the
steepest-decent algorithm. It is well known that the stability
of the steepest-decent method is governed by the eigenvalues
of the covariance matrix R [30]. Accordingly, the step size
µ needs to obey the following relationship to ensure the
convergence of the algorithm:

0 < µ <
1
λmax

(12)

where λmax is the largest eigenvalue of R.
There seems to be no specific guideline for the filter length

M.As long as the initialization scheme in Equation (11) is fol-
lowed, however, theminimum requirement can be established
as follows:

M
2
> |true delay|, (13)

explaining the appearance of the (negative) peak of −g1
in either side of uM/2(n). However, some trial and error is
inevitable, as the true delay information is unavailable in gen-
eral. A more practical approach is to begin with a sufficiently
large M , and gradually reduce it until the estimated delay
approaches a certain value.

By letting the true delay to 30 samples with reference
to channel 2, some examples are presented in the upper
row of Figure 1 for demonstration purposes. In an anechoic
environment (T60 = 0.0 s), the index difference between the
peaks of two impulse responses is in exact agreement with the
assumed delay. However, an increase in reverberation induces
the appearance of spurious peaks in the estimations of g1, and
eventually leads to anomalous delay estimates.

B. AUTOREGRESSIVE (AR) MODEL-BASED LINEAR
PREDICTION PREFILTERING
The previous result implies that AED may fail when the
room is subject to more reverberation. The results inevitably
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FIGURE 1. Examples of eigenvector u estimation: (a) (upper row) conventional AED, (b) (lower row) AED with AR prefiltering. Problem: Case A, SNR:
20 dB, True delay: 30 samples (Reference: microphone 2).

FIGURE 2. Conceptual diagram of AR model-based prefiltering.

become worse in the presence of strong noise. As mentioned
previously, one possible explanation might be that AED is
not concerned with precise modeling of the room impulse

response. For example, Figure 1(a) confirms again that all
the identified impulse responses have no consecutive ringing
immediately after the direct path component.
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Hence, it is desirable to remove the echoes from signals
using an appropriate filter before performing AED. If we
assume that the reverberationmainly comes from the resonant
behavior of the room, it can be regarded a type of determinis-
tic random process, which is described well by the ARmodel.
Once the dereverberation is done, that is, the deterministic
part is eliminated from the microphone signal by using the
model as a linear prediction filter, the direct path component
plus noise is left intact in the residual. Then, feeding the resid-
ual, rather than the original, into the AED algorithm would
enhance the algorithm’s TDE performance. The proposed
concept is illustrated in Figure 2, where the AR model-based
prefiltering is conducted for both microphone signals.

As stated, the linear prediction model employs the AR pro-
cess in order to synthesize the deterministic (or predictable)
part of a signal. More specifically, the i-th (i = 1,2) micro-
phone signal is modeled as a weighted sum of p past values:

xi(n) = −
p∑
j=1

ai,jxi(n− j) + εi(n), (14)

where the first part of the RHS denotes the AR part describing
the deterministic component (produced by the reverberation),
and the latter denotes the residual (direct path component
with noise). ai,j denotes the model coefficients with |ai,j|< 1
(i = 1, 2 and j = 1, 2, . . . , p). These coefficients satisfy the
Yule-Walker equation in the following:

rxixi (k) = −
p∑
j=1

ai,jrxixi (k − j) for k = 1, 2, . . . , p

rxixi (0) = −
p∑
j=1

ai,jrxixi (−j)+ σ
2 for k = 0, (15)

where σ 2 is the variance of the residual, and rxixi is autocor-
relation function whose estimate is given by

rxixi (k) =
1
N

N−1∑
n=0

xi(n)xi(n− k). (16)

The classical Gaussian elimination method is plausibly
effective for solving the above matrix equation, but computa-
tionally inefficient. Instead, the recursivemethod proposed by
Levinson–Durbin [31] is more common for the determination
of ai,j and σ 2.
Upon the completion of AR parameters, Equation (14) is

z-transformed to yield

Xi(z) =
Ei(z)
Ai(z)

, (17)

where
1

Ai(z)
=

1

1+
∑p

j=1 ai,jz
−j

(18)

is often referred as the all-pole filter, because no zero appears
in its numerator. Intuitively, from Equation (17), the output
Xi(z) is produced by the system transfer function 1/Ai(z)

together with the input Ei(z). Then, the discrete time version
of the residual can be computed from the following convolu-
tion property:

εi(n) = Z−1[Ai(z)] ∗ xi(n), (19)

where Z−1 denotes the inverse z-transformation. As men-
tioned, we anticipate that in εi(n), the direct path component
can be recovered while reducing the strength of room rever-
beration as much as possible.

The most important step in AR modeling is the
proper selection of model order p—that is, determining how
many previous values of xi should be taken into account.
A model with an excessively small order yields a biased pre-
diction that underfits the signal, whereas an excessively large
order overfits the signal and fails to generalize the prediction.
Depending on the application, a number of different criteria
for resolving the optimum order have been devised [32].
If the residual signal can be assumed to be stationary white
noise, as in the present study, using the Akaike information
criterion (AIC) [33] is a standard approach. In this method,
the following function is considered:

AIC(p) = N ln σ 2(p)+ 2p. (20)

The variance σ 2(p) representing the approximation error is
computed by Equation (15), and generally decreases with an
increase of p. The term 2pwas introduced to impose a penalty
for selecting a high order. Thus, the optimum model order is
chosen by minimizing AIC(p).

III. PERFORMANCE EVALUATION VIA NUMERICAL
EXPERIMENTS
A. SETUP AND PROCEDURE
The purpose of these experiments was to validate the effec-
tiveness of AR prefiltering in enhancing AED. Hence, rever-
berant environments with room dimensions of Lx = 3.0 m,
Ly = 4.0 m, and Lz = 2.5 m were numerically simulated by
employing the image source method [34], [35]. According to
Eyring’s formula [36], the acoustic property of a room with
volume V and total surface area S is characterized by the
reverberation time, viz.,

T60 =
0.163V

−S ln(1− γ )
, (21)

where the flat surfaces (walls, ceiling, and floor) are assumed
to possess a uniform absorption coefficient γ without any
dependence on the frequency and/or the incident angle. The
key parameters for the simulation were as follows:

• Reverberation time, T60: varied from 0.0 s (anechoic
condition) to 0.6 s, step size 0.1 s (total 7 steps)

• Signal-to-noise ratio (SNR): varied from 20 dB to 0 dB
(0, 5, 10, 20 dB, total 4 steps)

• Speed of sound: 343 m/s
• Sensor positions: microphone 1 at (x, y, z)= (1.00, 2.00,
1.43) m and microphone 2 at (2.30, 1.20, 1.00) m

VOLUME 9, 2021 118447



Y.-H. Shin, J.-H. Lee: Prefiltering Approach of AED Method for Improved TDE in Room Environment

FIGURE 3. Arrangement of two microphones and the source in a room
with Lx = 3.0 m, Ly = 4.0 m and Lz = 2.5: (a) Case A, (b) Case B. For the
sampling frequency of 8 kHz, the true delay was 30 and 32 samples for
Cases A and B, respectively.

• Source position: omnidirectional source at (1.001, 3.00,
1.60) m for Case A, and at (0.565, 3.50, 1.60) m for
Case B

• True delay between direct paths with reference to micro-
phone 2: +30.0 samples for Case A, +32.0 samples for
Case B

For generalization purposes, the simulation was subjected
to variations in the reverberation as well as in the noise level.
The SNR is defined as follows:

SNR = 10 log10
(
σ 2
x /σ

2
n

)
, (22)

where σ 2
x is the variance of an uncontaminated signal and

σ 2
n is the additive noise. Two cases of source positions were

considered, as illustrated in Figure 3. The latter (Case B)
posed a more difficult problem, as the source was moved
to the corner of the room. Note that these source positions
were finely adjusted to ensure the assumed true delay was
an integral multiple of the signal samples for the specified
sampling frequency 8 kHz, thus avoiding the necessity of
further treatment dealing with resolution issues (for instance,
interpolation between the samples).

For the given reverberation time, room impulse responses
between the source and two microphones were computed
by Lehmann’s MATLAB code [37], an improved version of
Allen and Berkley’s implementation [34] of the image source
method. A white Gaussian source was convolved with the
simulated impulse responses to generate microphone signals.
Finally, mutually independent random noise was superim-
posed on the clean signals to vary the SNR. The length of
the used signals was N = 5000 samples (= 0.625 s) for all
experiments.

Parameter selection scheme for the AED was performed
according to the method explained in Section 2. The step size
µ was automatically determined by setting µ = 1/(10λmax),
which is sufficiently smaller than the allowable limit in Equa-
tion (12). Besides, the length of the adaptive eigenvector u

FIGURE 4. Evaluation of Akaike information criterion [33] as a function of
the AR model order p. The results are for the impulse response between
the source and microphone 1 in Case A (SNR = 20 dB).

TABLE 1. Optimum Orders of AR model (Case A, SNR = 20 dB).

was determined as L = 2M = 200 according to the relation in
(13). This made the number of iterations (N - M) excessively
large. Fortunately, the AED method converges very quickly.
Therefore, even though the full number of iterations was not
completed, the algorithmwas terminated once the normalized
error defined in Equation (9) dropped below the specified
tolerance, i.e., 1× 10−3.

B. RESULTS: EFFECTS OF REVERBERATION AND NOISE
The outputs of Case A are presented first. Some of these
results were already observed in Figure 1(a), wherein the
delay estimate using the conventional AED deteriorates
according to the increase in reverberation. As the earliest step
for applying AR prefiltering, the optimum order of the AR
model is of primary interest. Thus, AIC was evaluated as
a function of the order p for different levels of the rever-
beration time T60. As shown in Figure 4 and summarized
in Table 1, the optimum order where AIC is minimized
generally increases along with T60. Fewer poles (past values
of xi(n)) would be necessary to describe the impulse response
in a shorter room, whereas a longer reverberant decay would
require a higher order for approximation. Therefore, it is
concluded that the model orders for different levels of T60
have been identified reasonably well.

Figure 1(b) shows the eigenvector u estimation with the
use of AR prefiltering, in which the trend is similar to that
of the case without AR prefiltering. That is, the method is
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FIGURE 5. Microphone signals for impulse excitation (upper row) and the residual after AR prefiltering (lower row). The results are for
microphone signal 1 in Case A (SNR = 20 dB).

FIGURE 6. Histograms of TDE (a) without and (b) with AR prefiltering. The dotted red line denotes the true delay. The results are for
Case A (SNR: 20 dB).

still unable to prevent the growth of erroneous peaks along
with T60, and even may fail for very strong reverberation.
However, as the contrast of the main peak becomes much
clearer, the application of prefiltering significantly enhances
the performance of AED. These examples can be regarded
as direct evidence supporting the usefulness of the proposed
method.

Nevertheless, it would be appropriate to study the effect of
reverberation in more detail. If the AR prefiltering perfectly
removes the reverberation, the residual should be identical
to the source signal except for a time shift. For an impulse
excitation, for which we obtain the room impulse response,
the delta function is expected as an ideal residual. In other
words, the effectiveness of AR filtering can be assessed in
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FIGURE 7. Comparison of percent hits at the true delay for various levels of T60 and SNR: (a) Case A, (b) Case B.

FIGURE 8. Arrangement of two microphones and the source in a room, Lx
= 3.0 m, Ly = 4.0 m and Lz = 2.5: (a) Case C, (b) Case D. Sampling
frequency is 8 kHz; source location is fixed in (a) and sensor locations are
fixed in (b).

terms of how close the residual obtained for an impulse source
is to the ideal delta function. To check this, the response for
an impulse excitation (i.e., the impulse response) and the
corresponding residuals were investigated. Figure 5 shows
that AR filtering for a less echoic environment achieves a

closer approximation to the original excitation. However,
an increase in T60 accentuates the reverberant energy in the
residual. Such deviations from the ideal delta function imply
the degradation of TDE performance in the subsequent AED
analysis.

To perform further validation, Monte Carlo simulations
of 1000 independent trials were carried out for each test
condition; here, reverberation from 0 (anechoic) to 0.6 s was
considered as the key variable under the assumption of 20 dB
SNR. Figures 6(a) and (b) show histograms of the delay esti-
mates without andwithAR prefiltering, respectively. The true
delay is depicted with a dotted line. The conventional AED
method suffers from poor estimation capability for a high
reverberation level, whereas the AR filtering relieves such
degradation remarkable well. When T60 = 0.6 s, for example,
the prefiltering enhanced the delay estimation performance
by approximately 50%.

In the above, the impact of reverberation on the time
delay estimation was investigated, for which a high SNR
was assumed. However, we need to deal with not only the
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effects of reverberation, but also the noise. Thus, the second
experiment also involved a set of data obtained in noisy
environments, but gathers the percent hits at the true delay
rather than the histogram. In summary, there were a total
of 56,000 numerical experiments according to various SNR
values and amounts of reverberation. As illustrated in Fig-
ure 7(a), it is clear that lowering the SNR degrades the esti-
mation performance. For the worst case wherein very strong
reverberation and noise prevail, the improvement obtained
fromAR prefiltering does not exceed a few percent. However,
such severity is rarely encountered in practical applications
such as teleconferencing and robot audition systems. When
the noise level is moderate, the method is considered to be
valid even in a highly echoic room.

Experiments using the same variations of T60 and SNR
were conducted for Case B (Figure 7(b)). As the source
moves toward the corner of the room, the reverberation struc-
ture becomes more complex, eventually making it harder to
identify them. Compared to Case A in Figure 7(a), the results
are worse. However, improvement is still attainable, and the
trends are consistent with those of the previous case. This
verifies that the prefiltering treatment is not substantially
influenced by the source position.

C. RESULTS: EFFECTS OF SOURCE AND MICROPHONE
LOCATIONS
Additional experiments were performed to more clearly con-
firm the effectiveness of the proposed prefiltering methodol-
ogy. The performance of the proposed method was reviewed
by changing the position of the source while the positions of
the sensors were fixed, and by changing the positions of the
sensors while the position of the source was fixed. The sce-
narios in which performance was examined are summarized
as follows:
Case C:

• Reverberation time, T60: 0.6 s
• Signal-to-noise ratio (SNR): 20 dB
• Sensor positions (microphones 1 & 2): random genera-
tion (500 trails)

• Source position (omnidirectional source): (1.001, 3.00,
1.60) m, same as in Case A

Case D:

• Reverberation time, T60: 0.6 s
• Signal-to-noise ratio (SNR): 20 dB
• Sensor positions: microphone 1 at (x, y, z)= (1.00, 2.00,
1.43) m and microphone 2 at (2.30, 1.20, 1.00) m

• Source position (omnidirectional source): random gen-
eration (500 trails)

The sensor and source locations for the generated scenarios
are shown in Figures 8(a) and (b). The performance improve-
ment of the time delay estimation from the simulations is
summarized in Table 2; in these trials, it was confirmed
that the performance improved by 118% and 48.6% when
the proposed method was used as the prefiltering technique.
In particular, it was confirmed that the performance of AED,

TABLE 2. Effects of Source and Microphone Locations (Cases C & D).

which is sensitive to the position of the sensors, was remark-
ably improved by a factor of more than 2.

IV. CONCLUSION
The main topic of this study was the improvement of TDE
performance in a reverberant environment, using the AED
algorithm as an example. AR-model based prefiltering was
proposed to eliminate the reverberation in the received signal,
leaving the direct path component in the residual. Then,
the results were fed into the AED algorithm to suppress
the appearance of erroneous peaks in the estimated impulse
responses, and subsequently to sharpen the peaks that were
related to the true delay. Monte Carlo-based numerical exper-
iments were conducted to verify that the prefiltering treatment
effectively improves TDE performance. Provided that the
noise level is moderate, the method’s validity is established
even in a highly echoic room. From 1,000 simulations, it was
confirmed that the existing AED method has a low proba-
bility of 42.9% when there is a relatively high amount of
echo, whereas the proposed method can find the source loca-
tion with an accuracy of 88.3%. Furthermore, the outcomes
of additional numerical experiments demonstrated that the
performance improvement is largely independent from the
source and sensor locations. Therefore, the proposed method
can be applied to enhance the performance of the conven-
tional AED method.
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