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ABSTRACT Investigating and enhancing the accuracy of widespread dissolved gas analysis (DGA)
techniques based on IEC-TC10 and related databases was implemented. The current work aimed to help the
experts to diagnose the transformers’ faults accurately. The major drawback of the dissolved gas techniques
is no decision diagnosis for the cases that lie out of the specified codes of the traditional DGA methods.
In this article, fuzzy logic (FL) and artificial neural network (ANN) were applied to the standard DGA
techniques such as the Dornenburg ratio method, Rogers ratio method, and IEC Standard Code 60599.
This paper provided a new concept using artificial intelligence for enhancing the diagnostic accuracy of
the conventional DGA method such as Dornenburg ratio, Rogers’ ratio, and IEC standard which suffer from
a poor diagnostic accuracy and fail to interpret the cause of the faults in most cases. In this article the FL
and ANN accuracy results were compared with that of other diagnostic techniques in the literature. The
results revealed that the artificial intelligence methods improve the diagnostic accuracy of the conventional
DGA techniques from 41.95, 76.76, and 51.44% to 58.97 (ANN), 89.02 (FL), and 62.67% (FL) for Rogers,
Dornenburg, and IEC standard code, respectively.

INDEX TERMS Dissolved gas analysis, fault diagnosis, power transformer oil, heptagon graph DGA, and
Duval triangle.

I. INTRODUCTION
Power transformers are the most expensive and vital equip-
ment in the electric power system due to their power trans-
formation functions. Moreover, it serves as a crucial link
between power plants and the distribution electric power
system [1]. Therefore, any failure of power transformers
affects the stability and reliability of energy delivery of the
whole power system and would lead to a blackout, which
causes economic problems. Hence, condition assessment of
power transformer is a necessary task; it is a well-accepted
method that helps in improving the detection of the power
transformer faults [2]–[4]. Therefore, reliable and economic
transformer insulation condition monitoring and diagnostic
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techniques are necessary to conduct a comprehensive and
efficient transformer condition assessment.

Dissolved Gas Analysis (DGA) is one of the most effective
monitoring tools for the oil-immersed transformer. It provides
valuable information about the oil and paper insulation con-
dition and helps to identify the incipient fault types within
the transformer [5]–[7]. It uses various dissolved gases in
the transformer oil generated by the oil and paper insulation
decomposition. DGA has gained worldwide acceptance as a
technique for the detection of incipient faults in transform-
ers. Due to the thermal and electrical stresses, the power
transformer’s insulation decomposes, generating gases that
dissolve in the oil and reduce its dielectric strength. Gases
generated through oil decomposition include hydrogen (H2),
methane (CH4), acetylene (C2H2), ethylene (C2H4), and
ethane (C2H6).
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On the other hand, carbon monoxide (CO) and carbon
dioxide (CO2) are generated due to paper decomposition.
Through the analysis of the type, amount, and gassing rate
of generated gases, various techniques for interpretation of
DGA data have been developed, e.g., the key gas, Dornen-
burg ratio, Rogers’s ratio, IEC ratio, Duval triangle, and
artificial intelligence-based techniques to diagnose incipient
faults based on DGA [8]–[14]. Rogers used IEEE and IEC
Codes [8] to interpret faults in the power transformers using
the dissolved gas analysis in the transformer oil [9].

According to specific codes, the conventional ratio tech-
niques for fault diagnosis used certain ratios of dissolved
gas concentrations for fault diagnosis. The ratio techniques
were first proposed by Dornenburg [10] and modified by
Rogers [11] before they were revised in IEC standard
60599 [12]. The codes are generated by calculating ratios
of gas concentrations and comparing the ratios with prede-
fined values derived by experience and continually modified.
Diagnosis is made when a code combination matches the
code pattern of the fault type. The major drawback of this
technique’s accuracy is no decision is associated with some
cases that lie out of the specified codes.

On the other hand, the Duval triangle technique [14]
is characterized by simplicity in application and evaluat-
ing fault types and severity. Still, the essential drawback
of Duval is using only three hydrocarbon gases (methane,
ethylene, acetylene). Furthermore, it does not consider the
concentrations of hydrogen (H2) and ethane (C2H6) despite
their importance in diagnosing certain fault types especially
low-temperature thermal fault and partial discharge, which
reduces the accuracy of Duval techniques.

In recent years, artificial intelligence-based techniques
have been extensively studied by many researchers for
transformer fault diagnosis [15]–[22]. These techniques
include expert systems, fuzzy logic, artificial neural network,
or hybrid system. Artificial intelligence techniques are con-
structed either on knowledge-based training using DGA data.
However, these techniques are too complicated for practical
implementation on a wide range. In addition, they are highly
dependent on the training data set, which may reduce their
accuracy. The drawbacks must be avoided to increase the
DGA accuracy. Several ways for different DGA diagnostic
techniques can be presented. DGA techniques were used,
such as the Heptagon graph, three ratios using five main diag-
nosis gases H2, CH4, C2H6, C2H4, and C2H2. On the other
hand, the modified Duval Triangle technique using a new 3-
ratio percentage of DGA based on the consideration of all five
hydrocarbon combustible gases can be presented [23]–[25].

In this article, Fuzzy logic and Artificial Neural Network
models based on DGA ratio techniques are implemented
to study their intrinsic advantages and drawbacks that can
affect the accuracy of DGA interpretation by using an actual
database. Furthermore, this paper systematically discusses
the accuracy of the different conventional, Fuzzy Logic, Arti-
ficial Neural network-based DGA ratio techniques, and DGA
techniques suggested by [23]–[25] to detect and identify

transformermalfunctions in each fault type. These techniques
are implemented for fault diagnosing and decision-making
for oil-immersed transformers and summarize existing prob-
lems. The overall accuracy, fault type zone boundaries, and
each gas ratio development of the suggested techniques have
been determined based on many actual cases. These cases
were visually inspected in transformers over the last 30 years
as reported by EEHC, IEC TC10, and related databases
surveyed from real incident cases of the mineral oil-filled
transformers. The dissolved gas analysis databases have been
tested to confirm or re-adjust these boundaries of each fault
zone slightly with maximum accuracy whenever possible.
The classification performance of these suggested DGA
techniques and Fuzzy logic and artificial neural network-
based DGA ratios techniques are verified compared to the
other conventional DGA techniques. This comparison proved
the Heptagon graph; three ratios using five main diagno-
sis gases and modifications done on Duval Triangle tech-
nique [23]–[25] have good diagnostic accuracy.

Although some of the conventional methods have been
standardized, they have some limitations in the field applica-
tions. Various DGA standard interpretationmethodsmay lead
to different results, which makes the final decision difficult.
Several solutions are proposed in the literature based on the
combination of more than one technique for improving the
accuracy of the DGA techniques To overcome these limita-
tions [26], [27]. For example, A Ward et al. [26] used novel
combined techniques based on DGA and partial discharge
sensors to improve the final decision accuracy

II. CONVENTIONAL DGA INTERPRETATION TECHNIQUES
One of these techniques is the Doernenburg method which
identifies transformer incipient fault conditions based on
the DGA results by analyzing four different gas concen-
tration ratios of (CH4/H2), (C2H2/C2H4), (C2H2/CH4), and
(C2H6/C2H2). A significant amount of gas is needed to val-
idate its use. Nevertheless, it is capable of identifying the
thermal decomposition fault, low energy partial discharges
(PD), and high energy discharges (arcing) [9], [10]. Themajor
drawback of this technique is its low accuracy caused by
no decision associated with some cases that lie out of the
specified codes.

Rogers’s ratio method is the most common gas ratio tech-
nique that distinguishes between thermal and electrical fault
types in the oil-immersed transformer compared to the Doer-
nenburg ratio technique. This method is based on Halstead’s
thermal equilibrium knowledge and the thermal degradation
principles included in IEEE Standard C57.104-2008. It is a
simple scheme that uses four gas ratios, namely CH4/H2,
C2H6/CH4, C2H4/C2H6, and C2H2/C2H4, which are associ-
ated with specific ranges to diagnose the incipient fault types
and the normal aging condition in the mineral oil transform-
ers [8], [9], and [11].

IEC Technique is originated from the Rogers technique;
it uses the same three gas ratios of the revised Rogers ratio
technique, but it refers to different gas ratio ranges of code
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and interpretations in the fault diagnosis scheme. It excluded
the C2H6/CH4 ratio referring only to a limited temperature
range of decomposition faults, and did not further identify
the incipient fault. Based on the output pattern, the incipient
fault conditions detectable in this technique can be divided
into nine different types as illustrated in reference [12]. The
problem of no decision associated with some cases can be
considered in this technique.

Duval Triangle technique uses only the concentrations
of methane (CH4), ethylene (C2H4), and acetylene (C2H2).
These gases are generated by the increasing energy levels
necessary to generate gases in transformers during their ser-
vice [7], [14]. Unfortunately, neglecting the hydrogen (H2)
and ethane (C2H6) concentrations despite their importance in
diagnosing certain fault types reduces the technique accuracy.

Heptagon graph technique for interpretation of oil-
immersed transformers, including cellulose degradation, is a
graphical technique in the form of an equilateral heptagon
shape with its heads representing the percentage concentra-
tion of each individual gas (combustible and non-combustible
gases) to the total dissolved gases. The corresponding point
for a certain faulty case was determined by the center of
mass of all heptagon heads. First, the knowledge related to
each fault type was extracted from previous DGA techniques
and field experience. Then, this knowledge was used to
estimate the normal concentration limits of dissolved gases
and the preliminary positions of boundaries between fault
regions within the heptagon [23]. The proposed heptagon is
based on the concentrations of seven dissolved gases. One
advantage of this method over the others is that it considered
the presence of carbon monoxide (CO) and carbon dioxide
(CO2) concentrations generated due to paper decomposition.
This method can distinguish between high, medium, and low
concentrations of cellulose degradation in oil transformers.
By the use of this technique Mix of electrical and thermal
faults can be defined and determined. Due to the ability of
this method to recognize the different fault types, its accuracy
is high compared with the others.

The three ratios technique (TRT) is proposed using a new
3-gas ratios concentration of DGA to overcome the conflict of
the conventional interpretation techniques. Five main diagno-
sis gases H2, CH4, C2H6, C2H4, and C2H2 are selected from
the dissolved gases generated by faults in transformers to
create an accurate and reliable technique of DGA diagnosis,
which are represented in three different types of gas ratios that
are capable of clear fault distinction [24]. The proposed TRT
diagnosis technique can also perform a detailed diagnosis of
the internal transformer fault types defined by IEC 60599.
The diagnosis coding rule of TRT technique is given in [24].
Using main five diagnosis gases in this technique improved
its accuracy.

Composite Triangle Technique (CTT) presented a graph-
ical triangle technique using new three gas concentration
ratios. These ratios were converted to new three ratio per-
centages of DGA based on considering all five combustible
gases. The aim of that was to overcome the conflict takes

place in other traditional techniques. The accuracy of the
composite triangle technique was evaluated using a practical
DGA database obtained from different transformers of dif-
ferent rating life spans reported by IEC TC 10 and related
databases surveyed from actual incipient cases.

More details of the composite graphical triangle tech-
nique using new 3-gas concentration ratios are presented in
reference [25].

III. ARTIFICIAL INTELLIGENCE BASED ON DGA RATIO
TECHNIQUES
A. FUZZY LOGIC MODELS BASED ON DGA RATIO
TECHNIQUES
Fuzzy Logic Models are employed in the present article to
combine Fuzzy Logic and the conventional DGA ratio tech-
niques; they use the degree an object belongs as the interval
membership information to a fuzzy set. It fuzzifies the coding
boundary to smooth these thresholds and ratio boundaries.
It means that the membership function value ranging between
0 and 1. It helps to overcome the drawbacks of the conven-
tional DGA ratio techniques that can’t diagnose anymatching
and multi-fault codes for diagnosis and to indicate a probable
diagnosis established in the conventional techniques. Each
input pattern was fuzzified into several triangular combina-
tions, and the output fault types of eachmodel are divided into
seven sets of membership functions MF. The membership
boundaries of the fuzzy input ratios and the output fault types
are fuzzified using triangular membership functions.

T(u : a, b, c) =


0 for u < a
(u− a)/(b− a) for a <= u <= b
(c− u)/(c− b) for b <= u <= c
0 for u > c

(1)

where T is the Membership function, u, a, b, and c are the
limits of each membership function. Each fuzzy logic model
for a certain technique is developed under the fuzzy inference
flowchart shown in Fig. 1.

FIGURE 1. Fuzzy logic model flow chart.

Three fuzzy logic models were developed for all DGA con-
ventional ratio techniques using the fuzzy inference system
(FIS). The input and output membership functions are trian-
gular functions. They are defined on the corresponding ranges
as shown in Fig. 2 for theDoernbourg Ratiomethod, Fig. 3 for
Rogers Ratio, and Fig. 4 for the IEC Ratio technique. It has
to be noted that the colors’ membships refer to the ratio code
and their limits.
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FIGURE 2. Fuzzy logic model of Doernbourge ratio.

Based on thesemembership boundaries, a set of fuzzy rules
for each DGA technique has been developed in the form of
(IF-THEN) statements relating the input patterns to the output
fault types. It discriminates between the entire topology of
the uncertainty levels of the particular parameter based on the
transformer’s diagnostic.

The desired output is computed after de-fuzzification
based on the center of gravity. The output of the fuzzy

FIGURE 3. Fuzzy logic model of Rogers ratio.

inference can be obtained using the Fuzzy Inference System.
About 734 oil samples have been collected from different oil-
immersed transformers and used in testing the conventional
DGA techniques and the developed fuzzy logic model for
each technique.

The samples are classified according to IEC code as
305 cases with normal or no-fault, 237 cases with thermal
faults (32 for T1, 65 for T2, and 140 for T3), 24 cases with
partial discharge and 161 cases represent energy discharges
(sparking and arcing) (73 for D1 and 88 for D2).
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B. ARTIFICIAL NEURAL NETWORK MODELS (ANNMs)
BASED ON DGA RATIO TECHNIQUES
ANNMs are used in transformers fault diagnostic systems,
including input code boundary features, network topology,
fault types outputs, and training network patterns. In the
current study, the Feed-forward back propagation-based arti-
ficial neural nets are used for transformers faults classifica-
tion to identify complicated relationships among the input
dissolved gas contents patterns and corresponding fault types.
Furthermore, the Feed-forward back propagation determines
the optimal connection weights and bias terms to achieve
the most accurate diagnosis model for the conventional DGA
Ratio technique.

FIGURE 4. Fuzzy logic model of IEC ratio.

Fig. 5 illustrates the construction of the Feed-forward back
propagation neural network explaining the input layer neu-
rons, hidden layer neurons and the output layer neurons.
Neurons in input layer consider as buffers for distributing the

FIGURE 5. Feed-forward back propagation neural network.

input signals xi (i = 1, 2 . . . n) to neurons in the hidden layer.
Each neuron j in the hidden layer sums up its input signals xi
after weighting as wji from the input layer and then computes
the output yj as a function f of the sum. The output of the
ANN can be determined as in Eqn. 2 [28].

yj = f
(∑n

i=1
wjixi

)
(2)

f is a simple threshold function or a sigmoidal, hyperbolic
tangent or radial basis function.

The change of the weight (1wji) of a connection between
neurons i and j can be computed as follows:

1wji = ηδjxi (3)

η refers to the learning rate, δj is a factor depends on whether
j refers to the hidden or output neuron.

For output neurons, δj can be expressed as,

δj =
(
∂f/
∂net j

) (
ytj − yj

)
(4)

For hidden neurons

δj =
(
∂f/
∂net j

) (∑
q
wqjδq

)
(5)

The netj refers to the total weighted sum of input signals to
neurons j and ytj expresses the target output for neuron j.
When the target output of the hidden layer is missed as in

Eqn. 5, for hidden layer j, the difference between the target
and actual output can be replaced by the weighted sum of
the δq terms already obtained for neurons q connected to the
output of j.

The definition of output fault types based on interpretation
results and input code boundary patternsmust train theNeural
Network-based technique. These parameters (input and out-
put patterns) constitute a Neural Network training set. The
input patterns of the artificial neural network are weighted,
such each input pattern is multiplied by a weighting factor
called the connection strength weight. Moreover, the connec-
tion strength weights are adjusted during the neural network
training procedure to minimize the difference between the
required fault type output and the actual output of the neural
network for the same input patterns. The output classification
of each DGA ratio technique to minimize the neurons number
of the output layer is presented as follows:
(T3): represents the ‘‘Thermal faults of T > 700 ◦C’’.
(T2): represents the ‘‘Thermal faults of300 <

T < 700 ◦C’’.
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(T1): represents the ‘‘Thermal faults 150 < T < 300 ◦C’’.
(D1): represents the ‘‘Low energy discharge’’.
(D2): represents the ‘‘High energy discharge’’.
(PD): represents the ‘‘Partial discharge’’.
(DT): represents the ‘‘Mix of electrical and thermal fault’’.
(CCD): represents the ‘‘Concentration of cellulose degra-

dation’’.
(HCCD): represents the ‘‘High concentration of cellulose

degradation’’.
(MCCD): represents the ‘‘Medium concentration of cellu-

lose degradation’’.
(LCCD): represents the’’ Low concentration of cellulose

degradation’’.
(NO): means’’ no fault’’.
Feed-forward back-propagation neural network-based arti-

ficial neural design and training steps are:
Step 1: Create the input patterns and output incipient fault

type patterns and then create the network object as a feed-
forward network.
Step 2: After the test is done with several parameters, the

appropriate feed-forward back-propagation network architec-
ture can be obtained with a minimal error rate. Consequently,
the optimal parameters are utilized for training the network
model. Back-propagation training with an adaptive learning
rate is implemented in the function trained for IEC and
roger techniques while in the function trains for Dornenburg
technique. Moreover, the transfer function for IEC and Doer-
nenburg techniques is Tangent sigmoid, while the transfer
function for roger technique is log-sigmoid.
Step 3: A total of 734 oil samples were collected from

different oil-immersed transformers DGA results are tested
to demonstrate the effectiveness of the proposed ANN-based
DGA technique for fault diagnosis.

On the other hand, the main advantage of using artificial
intelligence, whether Fuzzy logic or Neural networks, is that
artificial intelligence automatically recognizes the fault type
pattern and learns what to give due to similar diagnoses to
the datasets they are trained. But they are trained with limited
specific datasets obtained in specific diagnoses. So, the con-
sistency and accuracy of their classification may decreases
when they operate in different diagnoses. Besides that, these
artificial intelligence-based DGA techniques are too compli-
cated for practical implementation on a wide range.

IV. RESULTS OF ACCURACY COMPARISON AND
EVALUATION
A. COMPARISON BETWEEN THE MENTIONED DGA
TECHNIQUES
The mentioned techniques are implemented and verified
using practical DGA data obtained from 734 samples that
have been collected from different transformers of differ-
ent ratings and different life spans as reported by IEC
TC 10, Egyptian Electricity Holding Company, and related
databases [29]–[36]. The incipient fault types in these cases
are determined based on visual inspections and the other

fault diagnosis methods. Then, by comparing the results of
the used techniques and visual inspections reported by the
related database, the techniques are evaluated. This contri-
bution presents a study on various conventional approaches
to fault types diagnosing and decision making of the oil-
immersed transformer.

B. UNIFIED CLASSIFICATION OF FAULT TYPES
All of the mentioned diagnostic techniques depend on per-
sonal experience more than standard mathematical formula-
tion. So, the results of these interpretation techniques do not
necessarily lead to the same conclusion for the same tested
oil sample.

Therefore, an accuracy comparison has to be carried out
for each DGA diagnostic technique, based on standardizing
DGA results quantification and classification to prevent the
comparison from being misleading to mitigate this issue.
Therefore, each interpretation technique is grouped according
to the incipient fault types and their severity assigned with
fault codes (T1, T2, T3, PD, D1, and D2) to compare their
accuracy as in Tables 1 and 2.

C. COMPARISON BASED ON EACH INDIVIDUAL
FAULT TYPE
The comparison of traditional techniques depends on the
consistency of each fault type and their severity of each
technique. The consistency is the value of a reliable indicator
for comparing the different techniques because it does not
depend on the number of cases of each fault and normal
cases. Each technique is tested using the 734 cases in the
dataset. The overall percentage accuracy of each technique is
calculated based on the total successful predictions by using
the following formulas [24]:

SFj =
PFj

Total number of the device operation for each Fj
× 100 (6)

CFj = Fj

∑j=n
j=1 SFj

n
× 100 (7)

where; Fj : Fault types, SFj : the percentage of successful
predictions of particular fault type, PFj: number of suc-
cessful predictions, j: number of fault detectable by each
technique (j = 1, 2, 3, 4 . . . . . . n), CFj : the overall average
percentage of successful predictions of all faults in a particu-
lar technique.

The overall percentage of successful predictions of a cer-
tain fault type is calculated based on the above equations.
In contrast, the average overall percentage of successful pre-
dictions of all fault types in a particular technique is calcu-
lated based on IECTC10 and related databases. Doernenburg
ratio, Rogers ratio, IEC ratio, Duval triangle, TRT ratio,
CTT triangle, Heptagon techniques are compared. Table 3,
illustrates the calculated percentage of successful predic-
tions of particular fault type for unified classification of the
incipient fault types for conventional techniques (SFi). As it
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TABLE 1. Grouping of the incipient fault types codes for conventional DGA interpretation techniques.

TABLE 2. Fault types detected by conventional techniques.

is seen from the results summarized in Table 3, the per-
centage of successful predictions of thermal fault T1 of the
TRT ratio, CTT triangle, and Heptagon graph techniques
are the most consistent techniques with 100% accuracy
for 734 cases, followed by the IEC technique which has
56.25%. In contrast, IEC-based fuzzy accuracy is 62.50%,
and IEC-based neural network is 65.63%. It is also observed
that Duval triangle technique has close accuracy percent-
ages of 53.13% because it did not consider the concentra-
tions of two combustible gases, namely ethane (C2H6) and
hydrogen (H2).
As a result, Duval triangle exhibits a lower accuracy in

diagnosing certain fault types, for which these gases are the
key gases, such as low overheating and corona discharge.
Whereas Rogers technique has the lowest accuracy of the
conventional techniques with 43.75%, Rogers’s accuracy is
50.00%. Rogers-based neural network is 65.63%. because
it is based on four ratios, which increases the rate of mis-
judgment due to no decision of some cases resulting in the

incompleteness of the possible ratio combinations that lead
to uncertainty.

On the other hand, for the thermal fault (T2), Duval trian-
gle has better performance than the conventional techniques
with 67.69% accuracy, followed by IEC and Rogers’s ratio,
which have close accuracy percentages of 43.08% 27.69%,
respectively, for the 734 cases. The accuracy of the IEC and
Rogers’s ratio techniques based on fuzzy logic is 50.77% and
27.69%, respectively. The accuracy of this techniques-based
neural network is 49.23% and 50.77%, respectively. The TRT
ratio and CTT triangle techniques have the best performance
for the thermal fault (T3) with 100 % accuracy; moreover,
the Duval triangle technique has 97.14% accuracy. At the
same time, Rogers’ technique received the worst accuracy
of traditional diagnostic techniques for diagnosing the ther-
mal fault (T3). TRT ratio and CTT triangle techniques have
the best result for detecting low energy electrical discharge
faults (D1) with 100% accuracy, followed by Duval triangle
which has the maximum accuracy of conventional techniques
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TABLE 3. The successful percentage predictions of techniques for unified classification of particular fault types.

about 98.63%. Nevertheless, IEC ratio and Rogers’s ratio
techniques are weak in detecting D1. On the other hand, TRT
ratios andHeptagon graph techniques have the best results for
detecting partial discharge faults (PD), and after that, the CTT
triangle can be a suitable option.

It can be concluded from Table 3 that the electrical dis-
charge (D2) fault is the easiest fault to be detected, and the
suitable technique for diagnosing D2 is effectively TRT ratio
and CTT triangle techniques with 98.86% accuracy. On the

other hand, the accuracy of the Heptagon graph technique for
D2 is close to the Duval triangle, with accuracy percentages
of 93.10% and 95.45%, respectively.

On the other hand, all conventional techniques cannot
detect the degree of cellulose degradation (CCD) except the
Heptagon graph technique. It has an accuracy of 100% for
all levels of cellulose degradation. But this fault can appear
in the incipient fault types T1 and T2 of the other techniques
since most inspected cases of thermal faults in paper have
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TABLE 4. The successful percentage predictions of techniques for unified classification of particular fault types based on main fault types.

been observed in these zone boundaries. Such degradations
affect the insulation paper and may reduce the transformer
life in the long term, more precisely identified by furans
formation in HCCD degradation. The present analysis shows
that the TRT Ratio technique is the most consistent, followed
by the CTT triangle, Heptagon graph, Duval Triangle, Doer-
nenburg Ratio, IECRatio, and the Roger Ratio technique. But
heptagon graph technique is the first one for distinguishing
between thermal faults either in oil or cellulose. It is found
that those techniques that take into consideration the limit
value of fault gases before making the incipient diagnosis
have better success in predicting the normal condition. While
techniques with no limit value of faults gases always fail to
predict the normal condition, the accuracy results.

D. COMPARISON BASED ON MAIN FAULTS
In this section, to measure each technique’s performance,
the accuracy of the thermal decomposition, partial discharge,
and electrical discharge arcing main fault types are investi-
gated. The consistencies of the conventional techniques are
calculated based on IEC TC 10, Egyptian Electricity Holding
Company, and related databases, and the results are summa-
rized in Table 4. For the main fault type’s detection, the TRT
ratio, CTT triangle, and Heptagon techniques have better
performance than conventional techniques, and their results
are more reliable. In addition, they have a high accuracy of
more than 98% compared to the Duval triangle with 91.39%
accuracy, while Rogers’s ratio is the weakest one.

The average of the overall percentages of successful pre-
dictions of some techniques such as Heptagon graph, TRT
ratio, and CTT triangle have close accuracy percentages
of 99.75%, 99.01%, and 98.52%, respectively 734 cases.
In comparison, the Duval triangle technique has a maximum
accuracy of 91.39%.While techniques that use direct diagno-
sis (did not consider the marginal value of normal condition)

of fault gases based on each value of fault gases are less
accurate.

However, based on the total number of cases, the accuracy
shows a different trend due to the high value of cases with
no prediction. So, the accuracy drops significantly less than
70% for Rogers and IEC Techniques. Noteworthy, the Doer-
nenburg ratio technique does not determine the degrees of
severity of the incipient faults. According to Table 4, it is
clear that the Heptagon graph, CTT triangle, and TRT ratio
techniques can effectively diagnose thermal decomposition
faults, partial discharge, and electrical arcing. In contrast,
Rogers and IEC ratio techniques are weak in diagnosing.
In contrast, the Doernenburg ratio and Duval triangle can
have the best performance for conventional techniques but
are not as powerful as the TRT ratio, CTT triangle, and
Heptagon techniques. Heptagon graph technique has consid-
erably better performance than other techniques for detect-
ing the incipient fault conditions, including the concentra-
tion of cellulose degradation and their severity, classified
within thermal decomposition faults (T1 and T2) in the other
techniques.

The diagnosis of cellulose degradation can be more pre-
cisely evaluated by furans formation, but it is costly. There-
fore, the Furan test [37] should be performed in the case
of HCCD degradation. So, the main merit of the heptagon
technique over all the other conventional DGA techniques is
distinguishing between the thermal decomposition faults in
the T1 and T2 zones and concentration of cellulose degrada-
tion in the HCCD, MCCD, and LCCD.

V. CONCLUSION
Several DGA techniques were implemented in this work.
These techniques were Conventional DGA, Fuzzy logic, Arti-
ficial Neural Network models based DGA ratio, Heptagon
graph, three ratios using five diagnosis gases (TRT), and
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modified Duval triangle (CTT). The results of these tech-
niques were investigated using a statistical study of the vari-
ous faults. The accuracy of these techniques is analyzed based
on their output results of 734 samples that have been collected
from different transformers of different ratings and different
life spans reported by IEC TC 10, Egyptian Electricity Hold-
ing Company, and related databases. Furthermore, it system-
atically discusses the accuracy based on the individual fault
type and main fault types of these DGA techniques.

The overall percentages of successful predictions of the
Heptagon graph, TRT ratio, and CTT triangle techniques as
compared with the other methods based on main faults; have
close accuracy percentages of 99.75%, 99.01%, and 98.52%,
respectively for the 734 cases under investigation, while
Duval triangle technique reaches to 91.39%. Dornenburg,
Rogers, and IEC conventional techniques have the accuracy
of 76.76%, 49.40%, and 53.34%, respectively. Their accuracy
is improved by using the Fuzzy logic algorithm to be 89.02%
for Doernenburg, 64.82% for Rogers, and 69.25% for IEC
technique. The Neural Network algorithm also improved the
above techniques but with fewer values.

This article can help experts evaluate the condition of trans-
formers and their most critical components for having a clear
perspective on the application and accuracy of the conven-
tional and artificial intelligence techniques for the incipient
fault detection in transformers. In addition, the accuracy of
detecting each fault type using the investigated techniques is
presented.

The authors believe that the hybrid artificial intelligence
methods may be more accurate, but it may be difficult for
experts to detect faults in electrical transformers, and in any
case, such these methods will be considered in future studies.

For future research, the authors prepare a proposed plan
to enhance the diagnostic accuracy of the transformer faults
based on machine and deep learning tools.
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