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ABSTRACT In Vehicular ad hoc networks (VANETs), vehicles share and exchange information regarding
road safety and traffic conditions. Thus, trust is established among vehicles to ensure the integrality and
reliability of the received reports. Ensuring the security of VANETs is the key to enhance road safety, and
for this purpose, several trust establishing, evaluation, and management models have been proposed. When
a vehicle receives conflicting reports about an event such as a car accident from its neighboring vehicles,
the receiving vehicle must decide which report has to follow. Therefore, the vehicle takes advantage of the
available data about the report’s sender. Then, the vehicle takes the right action. To this end, we propose a
Risk-based Trust Evaluation Advanced Model (RTEAM) based on Multifaceted Trust and Hop-based trust
to take action. The proposed model provides a decision-making process according to the risk estimation
for each required action of both reports (i.e., reports that deny or confirm the event). The risk is estimated
according to the likelihood of taking an incorrect action and its associated impact. Finally, a decision is
made corresponding to the action with the lowest risk. The experimental results show that the proposed
model shows that the risk-based trust model outperforms a purely trust-based model in terms of undefined
cases and true positive rates.

INDEX TERMS Event validation, event detection, trust management, trust establishment, trust evaluation,
risk estimation, vehicular ad-hoc networks.

I. INTRODUCTION
In 2016, the estimated number of vehicles in the world was
around 1.32 billion vehicles between personal cars, trucks,
and buses. This number is expected to reach 2.8 billion
vehicles by 2036 [1]. Therefore, the number of accidents is
considerably increasing too. Thus, Vehicular Ad-hoc Net-
works (VANETs) have been proposed as a solution to
improve transportation efficiency, ensure road safety, and
satisfy road users. In the VANET environment, the vehicles
can communicate with each other in ad-manner (V2V), and
with the road infrastructure (V2I) through Dedicated Short
Range Communication (DSRC) radio [2]. During this com-
munication, the vehicles exchangemessages to support safety
(e.g., accident warnings) and non-safety (e.g., entertainment)
applications. The vehicles cooperate and share some informa-
tion through periodically Cooperative Awareness Messages
(CAMs) (i.e., beacon) [3]. The exchanged messages with
the surrounding neighbors and infrastructure may contain
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information about the sending vehicle itself, such as its loca-
tion, direction, speed, and control information [4]. Thus,
security, privacy, and trust are the main requirements of
designing VANETs [5], [6]. Trust is defined as the key ele-
ment to support security in vehicular networks and describes
the level to which a vehicle accepts to rely on another vehicle
[7], [8]. In other words, the vehicles1 have to establish trust
among each other and maintain the trust levels during the
communication; then, trust is evaluated, the process called
the trust management. So, for any received message (M) (i.e.,
safety or warning message), the receiving vehicle computes
the trust level of the sender and/or checks the trustworthiness
of the received information. Then, the receiver decides to
accept or reject the received message and take the right action
regarding that associated information. Thus, it is essential
to consider trust metrics since spreading incorrect/inaccurate
information through the network may lead to minor or major

1In this paper, we used the terms ‘‘vehicle’’, ‘‘entity’’, and ‘‘node’’
interchangeably.
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issues on the road and affect the overall traffic safety and
network efficiency.

During the last decade, various papers have addressed a
number of security threats in VANETs, such as communi-
cation attacks (i.e., message forging and tempering) [5], [9].
On the other side, several solutions have been proposed to
overcome the VANETs security threats [10]. All of the exist-
ing trust models are categorized into three categories based on
their trust evaluation mechanisms: 1) Entity-centric, 2) Data-
centric, and 3) Combined trust model [11]. The entity-based
trust model evaluates the trustworthiness of the entity itself
(i.e., the vehicle), the data-based trust model evaluates the
trustworthiness of the data reported by the vehicle, and the
combined trust model is the combination of the entity-centric
and the data-centric models. The existing trust models evalu-
ate trust based on the available information (e.g., detecting the
state of the road) and take the appropriate action. However,
the risk is not addressed and considered in these existing
trust models; this motivates us to propose a risk-based trust
evaluation advanced model called RTEAM, which identifies
the event’s occurrence based on the risk of accepting or
ignoring the message regarding that event. RTEAM model
is an advanced trust model that ensures the trustworthiness of
the sender vehicle (i.e., entity-centric model). Once a vehicle
receives conflicting reports about an event, RTEAM checks
the validity and the relevancy of the reports one by one (i.e.,
the report should be valid and relative to the receiver’s path).
Then, RTEAM assesses the authentication of the sender and
its trust level as a main security requirement before accepting
any information from that sender. Finally, the risk of taking
an action (i.e., accepting and rejecting an event) is estimated,
and RTEAM takes action with the associated lowest risk.
To the best of our knowledge, this is the first paper that uses
trust to estimate risk and take action with the lowest risk.
We summarize the significant contributions of this paper as
follows:
• The paper proposes RTEAM, which is an entity-centric
trust model that detects the event state according to the
associated risk of believing or disbelieving the occur-
rence of the reported event.

• RTEAM reduces the processing time, saves resources,
and consumes energy by following a two-phase filtering
scheme. Phase one filters all invalid and irrelevant
reports. Then, in phase two, RTEAM ensures the
sender’s authentication and trust level before accepting
the report.

• The simulation results show that RTEAM outperforms
a pure trust-based model in terms of the number of
undefined cases and true positive rate.

The remainder of this paper is organized as follows:
Section II provides an overview of related work. Section III
presents the proposed model in detail. We conduct a set of
experiments in Section IV to evaluate the performance of
our proposed model. Finally, Section V includes discussion,
and Section VI concludes this work and proposes future
work.

II. RELATED WORK
In this section, we explore relevant proposed trust models
that are currently proposed trust and related to RTEAM. The
main purpose of any trust model is to ensure that the com-
munication between nodes is secure (i.e., nodes are trusted
and/or data is reliable). Thus, trust management is the key to
improve the security and the efficiency of VANET, and also to
guarantee the users’ (drivers) satisfaction about the provided
services. We present the research findings according to the
earlier mentioned classification in Section I.

A. ENTITY-CENTRIC TRUST MODELS
Entity-centric trust models (ECTM) evaluate the trustworthi-
ness of the vehicles [12]. The trust model aims to estimate
the trust metric according to the node’s experience with its
neighbors (direct and/or indirect). By estimating the node’s
trust metric, we can ensure that we can protect the node from
malicious nodes. To achieve this, direct interaction is made
before deciding to rely on the neighbors’ opinions to make a
decision. In general, in cluster-based approaches, the elected
cluster head (CH) leverages trust computing and/or aggre-
gation such as work in [13], [14]. However, in non-cluster
approaches, the node itself is responsible for the trust met-
ric of the targeted neighbor similar to work in [15]–[17].
Minhas et al. in [15], proposed a multifaceted trust model
that incorporates role-based, direct experience-based, prior-
ity, and majority-based trust to detect the event’s true state
and make a real-time decision. The neighboring vehicles are
ordered from the highest to the lowest role/experience-based
trust values. Then, when a node seeks advice, it restricts the
number of the receivers based on the task on hand (priority);
then, the node sends requests to selected neighbors. Once the
node receives all responses, majority-consensus is applied to
identify the event’s true state (i.e., event occurred or not).
If the majority consensus is exceeded, then the node accepts
the advice; otherwise, it takes the opinion of the receiver
with the highest role/experience trust. The main limitation
of this approach is that it cannot detect the event’s true
state if two vehicles with conflicting reports have the same
experience/role-based trust. The nodes in Minhas’s proposal
are responsible for trust evaluation; however, other exist-
ing researches employ the static infrastructure (RSUs) to
estimate the trust values, distinguish the malicious nodes
from the trusted ones, and support communication and trust
management framework. RSUs have a higher transmission
range and larger storage capacity than the vehicles. Thus,
it can see the big picture of the network. Thus, relying
on secured RSUs in trust evaluating or establishing pro-
cess can reduce the communication overhead among the
vehicles. Marmol and Perez [16], proposed a trust and reputa-
tion infrastructure-based trust model (TRIP) where the static
infrastructure (RSUs) are responsible for the trust evalua-
tion process. RSU estimates the reputation score based on
experience trust (direct trust), recommendations from node’s
neighbors, and recommendations from a central authority.
Similar work in [17] employs the static infrastructure (RSUs)
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to establish trust and oversight nodes’ behavior to share it
with vehicle when they ask. Furthermore, this model uses
direct and indirect trust, recommendation and reputation to
estimate the vehicle’s trust value. The major drawback of this
scheme is that the vehicles may do not have enough time to
get the required information about a neighboring vehicle to
evaluate its trust.

B. DATA-CENTRIC TRUST MODELS
Data-centric trust model (DCTM) estimates the trustworthi-
ness of the data [12], nothing to do with the entity itself. The
DCTM collects information from the network that can assess
the vehicle to accurately estimate the trustworthiness of the
received data (e.g., information about an event’s occurrence).
Huang et al. [19], proposed a DCTM that uses different
weighting for the nodes based on the number of hops from
the event. In other words, the weight of nodes from one hop
from the event is higher than the weight for those nodes
within two hops and more. The proposed model overcomes
the oversampling and cascading issue (i.e., some vehicles
influence other vehicles’ opinions). Ding et al. in [20], pro-
posed an event-based reputation model that gives the vehicle
different roles (i.e., event reporter, event observer, and event
participant) and based on the its role, the vehicle evaluates
the trustworthiness of the received message. Moreover, RSU
is used to manage the long-term trust for the vehicles that
commonly use the same path. However, when the RSU cannot
provide a trust value for a vehicle (i.e., vehicle uses the route
first time), an event-centric mechanism is applied [21]. Other
models use various pieces of information to evaluate the trust-
worthiness of the message,2 such as content similarity, con-
tent conflict, and routing similarity [22], distance calculation
and the vehicle’s geolocation [23], and location/time close-
ness and location/time verification [24]. The main limitation
of DCTMs is that the models cannot work if the required
information is incomplete or redundant [2].

C. COMBINED TRUST MODELS
Combined trust models (CTM) not only evaluate the trust
level of the entity but also compute the trustworthiness of
the data [7]. Therefore, the CTM inherits the benefits of
ECDM and DCTM [2]. A multi-layers fuzz-logic based
model proposed by Soleymani et al. [9] that estimates direct
experience and the sender’s plausibility information (i.e.,
location and time) are then used to detect malicious nodes
and tackle the uncertainty of data in the vehicular network
in both Line of Sight (LOS) and Non-Line of Sight (NLOS)
cases. Also, authors employ fog nodes to ensure the accu-
racy level. However, employing fog can be used in earlier
stage to minimize time and resources. A beacon-based trust
management system (BTM) proposed by Chen and Wei [25]
aims to prevent spreading false message via VANET. The
entity trust (the message’s sender) is constructed from beacon

2In this paper, we used the terms ‘‘message’’, and ‘‘report’’
interchangeably.

message by finding the cosine similarity between the claimed
and the estimated values of the vehicle’s position, speed, and
direction. Then, the event-based trust is computed where a
position and movement verification mechanism is used to
verify the event’s location and the vehicle’s movement (the
sender), and the indirect event-based trust is computed in
the way that gives low trust values for the message sender
if it is a forwarder (not generator). Then, the event repu-
tation is computed, and the composite trust is calculated.
Finally, the Dempster-Shafer theory is used for combining
the opinions, where Soleymani et al. [9] have used the direct
experience trust to estimate the trustworthiness of the entity.
Chen and Wei [25] have used non-experience-based mecha-
nism to estimate the trustworthiness of the entity based on its
plausibility information. Thus, it is important to estimate the
sender’s trust regardless of the used approach. Clearly, from
both [2] and [25], the sender’s plausibility information is a
useful and significant part for estimating the trustworthiness.

D. RISK IN VANETs
Risk estimation in VANET environment has been stud-
ied from different points of view: 1) Security perspec-
tive [26]–[28], and 2) Application perspective (i.e., The
predicted risk of traffic accident) [29]–[31]. Ren et al. [26],
proposed a risk assessment model to assess the risk of loca-
tion privacy in VANET based on an attack tree. The proposed
model estimates the possibility of the attacker reaching its
attack goal (with leakage of victim’s location information)
based on the attack cost, technical difficulty, and probability
to be discovered. Based on the highest threat probability, the
vehicle can predict the possible attack scenario and protect
itself from the attack. Another risk assessment framework has
been proposed in [27]. The proposed security risk assessment
framework is based on a conventional security analysis model
and attack tree. The risk assessment uses asset, threat, and
vulnerability. The authors in [28] provided a context-based
risk assessment sheet that can be used for VANETs, where
threats were identified according to mobility. From the appli-
cation perspective, Fitzgerald and Landfeldt [29], proposed a
traffic accident risk mitigation based on the neighbors’ fac-
tors such as driver, vehicle, and environmental. Each vehicle
makes its decision individually. However, later, the authors
modified their model in [30] by proposing a model that uses
the risk estimates of the surrounding neighbors into account.
Similar work has been proposed in [31]; however, the risk
was estimated based on the road traffic safety level. The risk
was derived based on the sensitivity and type of application.
The risk was then measured in a quantitative and qualitative
manner by taking into account different contexts such as
environmental conditions and the driver’s age.

However, the authors suggested that this risk estimation
model can be integrated with a trust-based model to enhance
the efficiency of the decision-making process in VANET. The
idea of integrating the trust model with risk assessment has
been applied for work in [18] where the authors applied their
context-based risk assessment sheet in [28]. Similar work
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FIGURE 1. RTEAM structure.

has been done in [32], where the proposed security risk
assessment was applied to their trust model. However, in [18]
and [32], it is not clear enough how the decision can be made
based on trust metric and risk level. Thus, we can conclude
from the above-mentioned work that risk is estimated sepa-
rately from trust evaluation, and it can be integrated with the
trust management model to enhance the outputs. Thus, the
motivation for our work is to take advantage of the trust metric
to estimate the possible risk of a taking action regarding an
event.

III. PROPOSED MODEL
In this section, we describe our model in details. We propose
to develop a risk-based model that aims to identify the event
state when a vehicle receiving conflicting reports about the
existence of an event. Each vehicle makes a decision to
believe or disbelieve the event’s occurrence based on the
sender’s information and the risk of taking the action with
the lowest risk. Then, the vehicle spreads its decision (i.e.,
event or no event) to its neighboring vehicles. The risk-based
trust model computes the risk of taking an action based
on computing the likelihood and impacts of each action of
believing or disbelieving the received report. Four elements
are incorporated into our likelihood score computation as
follows: 1) Hop-based trust, 2) Experience-based trust (i.e.,
direct experience), 3) Role-based trust, and 4) Trust consen-
sus. For computing the impacts, two elements are considered
as follows: i) the proximity of the vehicle (i.e., the report

receiver) to the reported event and ii) the number of neighbor-
ing vehicles that may be affected by the vehicle’s decision.
Then, the vehicle computes the risk of both actions corre-
sponding to believing event or an event and makes a decision
to take action with the lowest estimated risk. The proposed
model consists of three modules, as depicted in Figure 1:
Report Validation Module (RVM), Security Check Module
(SCM), and Risk Assessment Module (RAM).

The vehicle receives conflicting reports about an event
from neighboring vehicles. First, RVM checks whether the
report is still valid and relevant (i.e., affects its path). Then,
authentication is checked by using ID authentication (e.g.,
work in [9]) and the trust level of the sender (i.e., the sender’s
trust value should exceeded trust threshold), simultaneously.
If the sender is authorized and trusted, then, RAM computes
the risk of both actions (believing and disbelieving the event)
and makes the final decision. In other words, the action with
the lowest risk is taken.

A. NETWORK MODEL
First, we give the notations of our network. Let vi be a vehicle
and vj be a neighboring vehicle of vi, and vi, and vj ∈ V .
Each vehicle in the network has a unique identification num-
ber (ID) that is issued by a trusted party (e.g., Ministry of
Transportation), and a predefined role (Tr ), (e.g., a govern-
mental or regular vehicle). Vehicles suppose to have direct
communication with its surrounding neighboring vehicles,
evaluating the experience and assigning a trust value to each
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TABLE 1. Network model notations.

neighbor (Te). At some point, vehicles in V start spreading
reports about an event’s occurrence on the road. Vehicle vi
receives reports from its preceding neighboring vehicles vj
about an event’s occurrence, where a report R indicates the
occurrence of the reported event and a report R′ negates the
occurrence of the reported event. The report of vj includes
the sender’s ID (Idj), the vehicle location (Lj), speed (Sj)
and direction (Dj), the number of hops to the reported event
(Nh), the event ID (E Id ), the event stamp time (Est ), the event
duration (Ed ), the event location (E l), and the report context
(i.e., R or R′). Vehicle vi receives the report from vj at (tcurr .)
and computes time closeness (Ct ) of vj and location closeness
(Cl). Note that vi can only handle report from vj if vj is
trusted (i.e., meets at least Tthr ) and report form vj is valid.
We conclude the notations and descriptions in Table 1.

B. REPORT VALIDATION MODULE (RVM)
Due to the high mobility of vehicles in VANET and the size
of communication, it is important to allow passing of fresh
and related reports. Thus, we propose RVM to provide initial
checks to identify the validity of the received report. Vehicle
vi receives a report from neighbor vj contains information
about the sender (e.g., Idj, Lj, Sj, and Dj) and the event (i.e.,
E Id , Est, E l and Ed ). This module is used the same principle
in [18], and [9] to identify the validity of the event (i.e.,
‘‘Active’’ or ‘‘Expired’’). Moreover, as in [18], the report rel-
evancy is checked to ensure that the reported event is located
in the same city of the receiver. We add the report relevancy
check to our report validation module; however, we modified
the way of identifying the report relevancy in [18]. In other
words, the report relevancy in [18] is checked by ensuring
that the sender in the same geographical area (i.e., same city)

of the reported event. However, knowing that the event in the
city is not enough for the receiver to decide to analyze and
handle an event in another part of its city, and it may not
be related. This may waste the receiver’s resources and time.
Thus, we design RVM to check whether the report affects the
receiver’s path or not. In other words, if the event location is
far away from the receiver’s location (i.e., does not affect its
path), this report is meaningless [33].

When event E is reported for the first time, vi checks
whether or not the event is still active and relevant. For
checking the event time validation, the time difference tdiff .
is calculated between tcurr . and Est , then, compared it with
Ed . In other words, if tdiff . is smaller than Ed , then, the event
is ‘‘Active’’; otherwise, the event is ‘‘Expired’’. For checking
the event relevancy, if the event location El on the receiver’s
path, then, event E is ‘‘Relevant’’; otherwise, the event E
is ‘‘Irrelevant’’. The four possible cases that could happen
are shown in Table 2. We construct two lists, called ELValid ,
ELInvalid to keep track of any future reports regarding the
same event. In other words, afterEd expires, the event is auto-
matically moved from ELValid to ELInvalid as invalid event.

It is important to note the following: 1) the event duration
Ed depends on the event type [9], [18]. For a major event
such as road closure due to an accident or construction, Ed is
about 60 to 120 minutes, while for a minor event such as a
minor traffic accident, Ed is about 30 to 40 minutes [18],
2) according to our assumption, the receiver has to receive at
least two conflicting reports, 3) the case of receiving a single
report or similar reports about an event is not in the scope in
this work, 4) any report that follows Case 1 (see Table 2) is
added to ELvalid regardless of its content (i.e., agree with the
event or not), 5) the RVM prevents spreading invalid reports
through the network and saving the vehicle’s resources and
time, 6) any vehicle that keeps sending or forwarding invalid
reports should be reported to the road monitor (e.g., RSU).

C. SECURITY CHECK MODULE (SCM)
This module assesses the authentication of the sender and the
sender’s trust level, which is a basic step before going further.
In other words, the sender should be a trusted VANET partici-
pant (i.e., vj is a trusted participant). Like RVM, SCMmainly
aims to save the resources and the time of the receiver from
unauthorized and distrust sender. For authentication purpose,
we suggest using the authentication scheme proposed in [6]
to verify the authenticity, where the vehicles use a certificate
issued and revoked by a Certificate Authority (CA). The
authentication check protects the vehicles in the network
from cybersecurity [34] and prevents unreliable/fake senders
from spreading their reports via the network. Simultaneously,
the sender’s trust level is checked, and it should be greater
than the trust threshold (e.g., Tthr . > 0.6, [35]). As shown
in Figure 1, the report from the sender that does not meet the
authentication check or the trust level condition is discarded.
Otherwise, the report is accepted. Then, after n reports
(n at least two conflicting reports), the risk estimation is
calculated.
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TABLE 2. RVM possible cases and the required action.

D. RISK ASSESSMENT MODULE (RAM)
By reaching this point, the receiver vi received nth contradic-
tory reports (R and R′) about an event’s occurrence E from
its neighboring vehicles (i.e., report R informs that event E
does exist, and report R′ informs that event E does not exist).
RAM provides a decision-making process for vehicles facing
conflicting reports. This is done by aggregating nth reports
from vehicles within vi transmission range, then based on
certain metrics, vi decides on the existence of an event before
propagating its final decision to other neighbors behind it.
Vehicle vi computes the risks for the associated action of
believing R or R′, then, the it makes a decision to take action
with the lowest estimated risk. This module comprises two
phases: 1) Risk assessment phase and 2) Decision-making
phase.

1) PHASE 1: RISK ASSESSMENT
In this phase, risk estimation is integrated with a multi-
dimensional trust model that uses experience-based, role-
based, hop-based and majority-based approach. We assume
that each vehicle has a direct communication (Te) with its
neighbors (i.e., at least one interaction). We focus on risk
estimation. However, for computing and updating the direct
trust, we suggest using the trust model proposed in [15]. Risk
is defined in accordance with the USA National Institute of
Standards and Technology (NIST) in [36], as follows:

Risk = Likelihood × Impact (1)

According to our work, we define the Likelihood as the
probability of making an incorrect decision in the face of

conflicting reports, whereas the Impact is defined as the
consequence of that incorrect decision.

Suppose that vehicle vi receives nth conflicting reports (R)
and (R′). The true state of an event is θ may then be one of
two possibilities: 1) θR: the event did occur (i.e., report R is
true), or 2) θR′ : the event did not occur (i.e., report R′ is true).
If θR is believed, the vehicle takes an action aR, whereas if
θR′ is believed, the vehicle takes an action aR′ . In both cases,
the vehicle notifies the other drivers of its decision regarding
the event. Clearly, the objective is to take the action aR when,
in fact, θ = θR, and the action aR′ when θ = θR′ . Thus,
we have a binary set of states θ = {θR, θR′} and a binary
set of actions A = {aR, aR′}, representing a scenario that
can be interpreted as a hypothesis on θ , where action aR is
taken if the hypothesis θR is believed. Two types of errors may
therefore be committed in this situation as follows: 1) A Type
I error is to take the action aR when θ = aR′ . This error results
in a false notification to the drivers of an event’s occurrence.
On the other hand, a Type II error is to take the action aR′
when θ = θR. This error results in a false notification to the
vehicles, unintentionally misleading the drivers despite the
occurrence of an event. For simplification, we called a Type
I error (ERR1) and a Type II error (ERR2). Using Eq. (1),
a separate risk function L can be defined for each action as:

L (aR, θ) = α (θ |aR)Mα (2)

L (aR′ , θ) = β(θ |aR′ )Mβ (3)

where α(θ |aR), and β(θ |aR′ ), represents the likelihood of a
ERR1, given action aR; and the likelihood of ERR2, given
action aR′ , and Mα and Mβ are the impacts associated with
the ERR1 and ERR2 errors, respectively; In the following,
we shorten the notation α(θ |aR) and β(θ |aR′ ) to α and β for
convenience.

Before explaining likelihood score computation, we give a
brief description of the main components of the likelihood
computation formula. We use the same category in [21],
where the vehicles are divided based on their relation with
the event in three categories: 1) Event Reporter (the vehicle
involved in the event), 2) Event Observer (the vehicle wit-
nesses the event and within one hop from the event reporter),
and 3) Event Participant (the vehicle is within two or more
hops away from the event report). For simplicity, we use the
abbreviation for each category as ER, EO, and EP, respec-
tively. The likelihood score formula combines the work in
[15] and the weighting scheme in [19]. The weighting scheme
uses a hop-based model that aims to overcome cascading
and oversampling issue by giving the highest weight for the
first observer (i.e., EO) and the lowest weight for vehicle
two or more hops from the event (i.e., EP). The model uses
hop-based trust to detect whether an event exists or not.
The hop weight (αhop=1,2,...,n) is multiplied by the vehicle
decision (i.e., dj = 1 if v agrees with the event; otherwise,
dj = −1). Then, the hop weights by the corresponding
decision are aggregated (Wd ). The event exists ifWd is greater
than 0; otherwise, it does not exist. The model does not show
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the case when Wd is exactly equal to 0. Also, the report
generator (i.e., ER) is neglected in [19]. Therefore, we use
the same concept of hop weighting scheme in [19], but we
consider ER in our weighting scheme.

For the likelihood score computation, we add a hop-based
trust metric to trust consensus, as proxies from α and β.
We update the formula of calculating the aggregated effect
for report Rj from vehicle vj in [37] by integrating the weight
of each report based on the number of hops from the event,
as follows:

E
(
Rj
)
=

∑
vj∈V

W (Rj)

[
Te
(
vj
)
Tr (vj)

Ct
(
vj
)
Cl(vj)

]
(4)

whereE(Rj) is the aggregated effect formulae for reportRj, Te
is the experience-based trust factor, and Tr is the role-based
trust factor, Ct and Cl are the time closeness and location
closeness, respectively, and W (Rj) is the weight of report Rj
based on the number of hops from the event, which can be
expressed as follows:

W
(
Rj
)
=


ω if hop = 0 (vj is ER)
ω − 1 if hop = 1 (vj is EO)

(ω − 2)
1
hop if hop ≥ 2 (vj is EP)

(5)

where the constant ω > 2.
We divide the vehicles into two sets according to their

reports regarding the event’s occurrence and then the aggre-
gated effect of the reports of both sets E(R), and E(R′) are
computed using Eq. (4). Then, the likelihood score is com-
puted as proxies for α and β as:

α = 1− β =
E
(
R′
)

E (R)+ E (R′)
(6)

Note that E(R) and E(R′) are non-negative. Since our goal
is optimization (i.e., to take action associated with the lowest
risk), it is the relative values of α and β that are of importance.

Moving to compute the impacts of incorrect action, first
we defined the impacts Mα and Mβ as the consequences of
an incorrect action due to the existence of ERR1 and ERR2
errors. We defined a factor called the error intensity I that
presents the measure of the vehicle damage size due to ERR1,
and ERR2 errors, respectively. Also, we say that the impacts
(Mα and Mβ ) are proportional to the error intensity (Iα and
Iβ ), and we model the impacts, as follows:

Mα

Mβ

=
Iα
Iβ

(7)

where Mα/Mβ is the risk ratio.
As earlier mentioned, ERR1 commits in the situation

where the driver gets a false notification about an event and
takes action aR; however, the true state of the event is θR′ . The
driver’s action aR could be slowing down the speed, changing
lane, or entering the nearest exit. The type of the action aR and
ERR1 error intensity (Iα) is dependent on the event type and
the proximity of the vehicle to the reported event. Let vehicle
vi be on the highway, and the driver receives a notification

about an accident within T time from its location, and there
are N neighbors following the vehicle (i.e., may be affected
by its outgoing report). The estimated T to the purported
accident determines the driver’s action. For example, if T
is high (i.e., the driver would probably drive more slowly)
and Iα is close to nil. However, if T is low (i.e., the driver
would be alarmed), the drivers are alarmed and take extreme
action such as hard braking). The immediate consequence
of the ERR1 error is having congestion on a lane or on the
road due to slowing down the speed. Therefore, the smaller
T is, the more disruptive ERR1 error is. On the other hand,
the larger N is the larger error intensity is. Thus, we model
the error intensity Iα of ERR1 as:

Iα = a+ (N
/
T )

b
(8)

where a is the baseline of the error intensity and b is a
parameter that adjusts the scale and the shape of the function
according to our perception of how Iα changes with T and N .
Now consider the case of ERR2 error where there is an

actual event (i.e., accident) that has occurred ahead on the
highway, but the driver takes action aR′ . Here, the driver
may come upon the event without warning, potentially being
forced to brake suddenly or swerve. Thus, the immediate
consequence of the ERR2 error is to delay the possibility
of taking the correct action, aR. With large T (i.e., 5 min),
the driver has ample time to get more reports regarding the
event and identify the true event state, then, take the right
action aR. However, with a small T , the driver becomes
too close to the accident, and no action is taken, then, this
increases the possibility of a major accident occurs on the
highway due to late and surprising action by the driver. Even
if the correct decision is finally made, a smaller T demands
a more abrupt response by the driver. Also, with increasing
N neighboring, the impact of ERR2 increases too (i.e., more
vehicles are affected). Thus, we also interpret Iβ to have a
form similar to Iα , as follows:

Iβ = c+ (N
/
T )

d
(9)

Similar to Eq. (8), c here is the baseline of the error
intensity, and d is a parameter to adjust the scale and shape
of the function where d > b. Note that both T in Eq. (8) and
Eq. (9) should be larger than T point at which the event state
is truly identified by the vehicle/driver (i.e., by the vehicle’s
sensors or by the driver’s biological sense), we called this
point (Ttruth). At Ttruth, the driver will take action based on
the real state of the event without considering any other
computations. Finally, the estimated risks L (aR, θ ) and L
(aR′ , θ ) of both actions are calculated using Eq. (2) and (3).
Note that: 1) the number of neighbors following the vehicle

N is directly proportional to I, and T is inversely propor-
tional to I , and 2) the shape of ERR1 and ERR2 intensity
curves could take different shapes according to the road
conditions (i.e., different scenarios). In the following sub-
section, we explain the three possible curves of ERR1 and
ERR2 intensity. Also, the scenario mentioned above is one of
these scenarios, called RTEAM-2.
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2) PHASE 2: DECISION-MAKING
In this phase, the vehicle has to take action a that corresponds
to the lowest of risks L (aR, θ ) and L (aR′ , θ ). Thus, the Bayes’
decision rule is used [38] to take action with the lowest risk
regardless of the correctness of the action. The vehicle takes
action aR, if αMα < βMβ ; otherwise, action aR′ is taken.
In other words, if the risk ratio Mα

Mβ
is smaller than β

α
, then

action aR is considered; otherwise, action aR′ is taken.
Note that for any accepted report that gives the true event

state, the sender’s trust value is updated (i.e., trust value is
increased) [15], [39] and the new Te(j) is updated as follows:

Te(j) =

{
λt (1− α)Te(j) + α if Te(j) ≥ Tthr .
λ−t (1− α)Te(j) + α if Te(j) < Tthr .

(10)

where λ is forgetting factor (to give less weight to older
interactions) and 0 < λ < 1, and α is reward factor, and its
value is 0 < α < 1.

On the other hand, for any report that is discarded due
to its content (i.e., report with false event state or an expire
event), the sender’s trust value is updated (i.e., trust value is
decreased) [15], [39] and the new Te(j) is updated, where the
overall trust of the honest vehicle is computed by Eq. (10)
and the overall trust of the malicious vehicle is computed by
Eq. (11) as follows:

Te(j) =

{
λt (1− β)Te(j) + β if Te(j) ≥ Tthr .
λ−t (1− β)Te(j) + β if Te(j) < Tthr .

(11)

where α, β, λ are reward, penalty, and forgetting factors,
respectively. Their values are in the range 0 < α, β, λ < 1.

E. IMPACTS SCENARIOS
Urban, rural, and freeway areas differ in road conditions
such as traffic volume, allowed speed limit, obstacles (e.g.,
pedestrians, bicyclists, and school zones), and accident rates.
Not just that, but even in the same area, the driver may
experience different road conditions during the day (e.g., high
volume traffic in the rush hour). Thus, the driver has to be able
to apply several techniques and skills to maintain safe driv-
ing in each area based on its road conditions. For example,
the driver in the urban area is prepared to stop or slow down
suddenly, where there is a high possibility of unexpected
event occurs (e.g., pedestrians approach the road suddenly);
however, the driver in a freeway area (i.e., highway) is not
prepared to slow down or cover the brake suddenly. Based on
the above mentioned, we expect different realistic scenarios
of the impacts of ERR1 and ERR2 errors under different
road conditions. Since we do not have data from the real
world to shape the error intensity curves, we assume three
possible impact curves of ERR1, and ERR2 errors, as shown
in Figure 2. The impact of both types of errors is increased
by time. However, the impact of ERR2 is always larger than
the impact of ERR1 when the vehicle is too close to the event,
and no action is taken yet.
• RTEAM-1 (Scenario A) is shown in Figure 2a, where
ERR2 error is always higher impact than ERR1 error,

and this an expected scenario in a highway where there
is a big chance of a multi-crashes accident if one vehicle
makes incorrect action (i.e., switching the lane sud-
denly). In other words, this scenario reflects the case
where the intensity of ERR2 (i.e., impact) is always
larger than the intensity of ERR2, and both impacts are
increased the time.

• RTEAM-2 (Scenario B) is shown in Figure 2b, where the
intensity of ERR2 error (the dashed red curve) is found
to be lower than the ERR1 (the dashed green curve) at
high T because, with ERR2 error, the drivers just keep
carrying on without disruption. The drivers have time to
make the right decision. Somewhere around T = 20sec,
the ERR2 error starts to become a bigger problem than
the ERR1 error (i.e., there is an accident on the highway,
and the drivers are getting close to it). Note that the point
shows how crucial the decision errors become as T gets
smaller. This scenario could happen in highways, urban
areas with high density, or urban areas in rush hours.
In other words, this scenario reflects the case where
the intensity of ERR1 (i.e., impact) is larger than the
intensity of ERR2 at high T, and when T is decreased
(i.e., the event is close), ERR2 is gradually increased
until reaching some point where the curve jumps (i.e.,
the event is too close).

• RTEAM-3 (Scenario C) is shown in Figure 2c, where
both errors have the same impact at high T. Then, by the
time passing, ERR2 impact increases. This scenario
could happen where the driver is driving with caution
(i.e., aware of any unexpected obstacle/event) in the
urban area. In other words, this scenario reflects the case
where the impact of both errors is the same when T is
high, but over time, ERR2 impact gradually increases.

IV. PERFORMANCE EVALUATION
In this section, we use MATLAB to evaluate our proposed
model in detail through simulations. The vehicles are set
to be on a 3-lane highway, with one lane fully occupied
and two semi-occupied ones. The distances between vehi-
cles on the fully occupied lane vary around their 2-second
safe distances (e.g., around 44.4 m for an 80 km/hr speed).
In each simulation run, an accident is set to occur on the
highway and notifications are sent to all vehicles informing
them about the event. Reports from event reporters are set
to be trusted since they are directly sent by the equipped
sensors without human intervention. Vehicles within 100m
from the event (i.e., the assumed range of V2V commu-
nications [40]) can therefore make decisions based on the
received message from the event reporters without using the
mathematical model to make a decision. We assume that all
reports are valid and all sender’s trust values exceed the trust
threshold. For our simulations, we vary the percentage of
malicious nodes, which tends to negate that any accident ever
took place. For our risk-based calculations, we assume that
substantial data has been collected about the outcomes of
ERR1, and ERR2 errors with respect to highway accidents,
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FIGURE 2. ERR1 and ERR2 curves of RTEAM-1,2, and 3.

resulting in the error intensity curves of Eq. (8) and (9) to
be defined according to the values of a, b, c, and d as shown
in Table 3.

A. PERFORMANCE METRICS
To show the effectiveness of RTEAM, we compare RTEAM
with 1) Simple Trust Model (STM) [33], where the earliest
report is followed, 2) Hop-based Trust Model (HTM) [19],
and Multifaceted Trust Model (MTM) [15].

We defined the following metrics to evaluate the efficiency
of RTEAM-1, RTEAM-2, and RTEAM-3 for comparison:
•Undefined Cases (UND): This metric reflects the number

of cases that a vehicle failed to determine the event state (i.e.,
whether or not there is an event).

• True Positive Rate (TPR): Represents the probability of
correctly detecting the event state θ .

B. EVALUATION SCENARIOS AND RESULTS
1) UNDEFINED CASES (UND)
The effective trust model should be able to determine the
event state under any conditions. The case where a vehicle
could not determine the event state (i.e., whether or not there
is an event) is unacceptable. Figure 3 depicts where the MTM
fails to define about 3% of the cases when the percentage of
malicious vehicles in the network falls between 5% to 15%.
The number of undefined cases then slightly decreases as the
number of malicious vehicles further increases.

This is because increasing the number of malicious vehi-
cles in the network leads to more cases where the event state
is defined (even if it is the wrong one) and fewer cases where
it is undefined. However, the worst UND is shownwith HTM,
where UND is about 20% with less percentage of malicious
5%. The UND is dramatically increased up to 40% until
reaching more than 50% when the percentage of malicious
got increased from 10% to 25%. The rapid increase in UND
cases is because HTM relies mostly on the opinion of the
first-hand observers (i.e., one hop from the event) regardless
of their trustworthiness. In other words, the weight of the
first-hand observers’ opinion is the decision in the way that
the vehicle cannot identify the event state (i.e., the weight
of the vehicles agree with the occurrence of the event minus
the weight of the vehicles disagree with the occurrence of an
event is equal to zero). With the increase in the number of
malicious vehicles in the network (i.e., most of the partic-
ipants deny the occurrence’s of the event), the UND cases
decreases (i.e., the decision is mostly unified ‘‘No Event’’).

On the other hand, STM can always determine the event
state because it makes its decision based on the earliest
received report. However, this method lacks accuracy because
the driver makes its decision based on one received report
only, and this report may be a fake one. However, RTEAM
considers different aspects of the senders and relies on mul-
tiple reports before deciding on the action regarding an event
state. With respect to MTM and HTM, it can be seen that
RTEAM-1, 2, and 3 outperform both models by being able
to make a decision in all cases (i.e., all cases are defined)
regardless of the percentage of malicious vehicles.

2) TRUE POSITIVE RATE (TPR)
The TPR depicts the probability of correctly detecting the
event state θ . Generally speaking, increasing the number of
malicious vehicles leads to decreasing the chance of correctly
detecting the event state. Increasing the number of attackers
gives a high chance for the false event state to spread across
the network, which negatively affects the other vehicles’
decisions.

As depicted in Figure 4, the TPR of STM, HTM, andMTM
emphasizes that the network achieves lower TPR compared
to RTEAM-1, 2 and 3. HTM and MTM show slightly similar
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TABLE 3. Simulation parameters.

FIGURE 3. Undefined cases (UND).

TPR for different malicious cases. With a network injected
with 5% malicious vehicles, RTEAM achieves higher TRP
(about 88%) compared to HTM and MTM, where the TRP
is less than 80%. This due to the fact that RTEAM inherits
the advantage of HTM, and MTM (i.e., Multifaceted trust
and hop-based trust are incorporated in RTEAM). The gap
between RTEAM-3 and HTM and MTM is about 20%, and
it is 30% to 40% higher when the number of malicious

FIGURE 4. True positive rate (TPR).

vehicles is between 10% and 25%. Moreover, RTEAM-3 can
achieve higher TPR than STM. RTEAM-3 outperforms all
trust models including RTEAM-1 and 2.

RTEAM-1 and 2 show the exact TPR results, and they
show better results than other trust models. In short, Figure 4
clearly depicts that RTEAM can achieve higher TPR and
get better results than other trust models, especially, when
the number of injected attackers is under 30%. Even though
RTEAM shows low TPR when the percentage of malicious
vehicles is increased (due to the fact that HTM and MTM are
parts of its architecture), it still outperforms the other trust
models in terms of TPR and can truly detect about 19% of
the event state compared to 10% in other trust models where
50% of the vehicles in the network are malicious ones.

V. DISCUSSION
In this section, we discuss RTEAM in terms of limitations
and possible improvements. Experimental results show that
‘‘Risk’’ can drive ‘‘Trust’’. In other words, the associated
risk of action determines which opinion the vehicle has
to follow (i.e., has to trust its advice). Also, RTEAM can
work in both clustered and non-clustered networks. Cluster
Head (CH) can make the decision (i.e., believing or dis-
believing the occurrence’s of an event) and send the right
advice to the cluster members instead of each vehicle making
the decision by itself. Moreover, the unified decision that is
made by CH may reduce the risk level and workload on the
individual vehicle. One of the main limitations of RTEAM
is the design that is based on trust metrics to compute the
likelihood, which affects its performance. Another limitation
is that RTEAM cannot process the case where we only have a
single received report. This limitation can be fixed by adding
a submodule to support the decision-making process, such
as an infrastructure-based trust evaluation module, where the
road infrastructure can help the vehicle to decide the event
state.

Other possible modifications can improve the performance
of RTEAM are the following: 1) adding a data-based trust
evaluation module that checks the correctness of the received
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data (i.e., by evaluating the plausibility of the sender), and
2) adding a Payment Punishment Scheme (PPS) that can
encourage vehicles to participate in voting on the events in the
network. The computation and communication complexity of
RTEAM is relatively low due to the fact that it applies a two-
phase filtering scheme. Only valid and relevant reports from
trusted and authorized senders are accepted and processed,
which reduces processing time and saves resources.

VI. CONCLUSION
In this paper, we have proposed a risk-based trust model for
VANET. The proposed model improves the decision-making
process by integrating risk estimation into the trust evaluation
process of incoming reports. Simulation results demonstrated
how the risk-based model outperforms a pure trust-based
model. This is because the risk-based trust model always
seeks the lowest-risk action, whereas the trust-based model
decides upon actions based only on the highest trust value
reports. This work, therefore, opens the door for many future
extensions of this work as follows. The way of calculating
the risk impact may be improved by considering the cluster
vulnerability, which could then enhance the risk estimation.
Exploring different ways to derive the likelihoods (α and β)
would be helpful to develop a better understanding of the
error intensity curves. Finally, this research may be expanded
through the implementationmore comprehensive simulations
using different scenarios in addition to comparison against
other existing models. Also, to overcome the short communi-
cation time issue in VANET, this model can be enhanced by
utilizing the concept of public trust value for the vehicle that
RSUs could provide it upon request.
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