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ABSTRACT To date semiconductor switches are still the main enablers for electrical circuit and system
reconfigurability. They however not only consume dynamic power but also dissipate static power, the former
for performing on/off operation and latter for holding on/off state. These semiconductor devices are volatile
and not energy efficient due to the need for holding voltage and can significantly increase the system
power consumption where hundreds and thousands of switches are needed, such as in large reconfigurable
intelligent surfaces and large antenna arrays. In this work, we report a non-volatile reconfigurable antenna
that can switch between dual-band at 2.4 GHz and 5 GHz to a single band at 3 GHz. The measured
results including reflection, gain and radiation patterns reveal promising performance, experimentally
demonstrating a new approach of design and realization of RF switch integrated multi-band reconfigurable
antennas. This zero-static power mechanism, along with easy fabrication on the flexible substrates would be
very beneficial for Internet of Things (IoT) applications.

INDEX TERMS Switching frequency, telecommunication switching, antennas.

I. INTRODUCTION
In this technology era, the market demands smart wireless
connections to support the growing multi-functional and
multi-band mobile devices and cloud-based IoT applications
[1]–[3]. Reconfigurable antennas have attracted significant
attention for their frequency reconfigurability in designing
a compact system for IoT applications. These reconfigura-
tion techniques are either based on microelectromechanical
systems (MEMS) [4], PIN diodes [5], varactors and pho-
toconductive elements [6] to change the antenna radiating
structure, or on the use of materials such as ferrites [7],
liquid crystals [8] or tunable resistive materials such as phase
transitional material vanadium dioxide (VO2) [9]. However,
apart from MEMS, all these switches have a common lim-
itation: they require DC holding voltage, dissipating static
power for their operations [10], [11]. MEMS are however
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relatively difficult to fabricate and expensive for most RF
applications [12]–[15].

On the other hand, the concept of programmable metal-
lization cell (PMC) is introduced as non-volatile switches
require no DC hold voltage [16]. This can significantly
increase reconfigurable system energy efficiency. Recently,
non-volatile RF switches with a parallel plate capacitor struc-
ture, referred to as a Metal-Insulator-Metal (MIM) switch
have been investigated [17], [18]. Non-volatile chipless RFID
tags were made in [19]. In [20], a single frequency band shift
antenna on PCB is reported, which uses the MIM switch
as reflector/director element for ON/OFF states. Efforts
have also been made to fabricate 2D material non-volatile
RF switches, but there is no report in integrated antenna
applications [15], [10], [21], [22].

This paper reports the design and realization of a
non-volatile planar inverted F-shaped monopole antenna
fabricated on flexible Kapton substrate with the aim of
wearable/flexible IoT applications. The non-volatile RF
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switch is integratedwith the antenna structure and the antenna
is capable of switching between dual-band at 2.4 GHz and
5 GHz to single band at 3 GHz with no static power supply.

II. ANTENNA DESIGN AND REALIZATION
The antenna uses a planar inverted F-shaped monopole struc-
ture, consisting of two resonant line paths responsible for the
dual-band behaviour [3]. The lengths of the arms are chosen
close to one quarter-wavelength at 2.4 GHz (33 mm) for the
Ag layer path and 5 GHz (17 mm) for the Au layer path,
respectively. DuPontTM Kapton R© HN (125µm) is chosen as
the flexible substrate; the film is cleaned firstly in Acetone
for 5 mins, then Deionized (DI) water for 2 mins and propan-
2-ol (IPA) for 5 mins with ultrasonic bath for better adhesion
in later steps. The antenna fabrication started with top part
patterning with 200 nm silver using thermal vapor deposition
on Kapton film via engraved Nickel shadow mask. Silver
is used to act as an active electrode for the non-volatile RF
switch. A layer of Nafion is formed uniformly by spin coating
the Nafion solution (Sigma Aldrich) at a rate of 5000 RPM
for 60 seconds. The sample is then air-dried on a hot plate
at 110 ◦C for 1 min. The Nafion layer is measured to be
of 100 nm thickness using stylus profilometer (DektakXT).
The lower part of the antenna was patterned with 200 nm
Gold as an inert electrode to rule out any switching effect that
might arise from interfacial metal oxide formation. An SMA
connector is connected to the CPW fed antenna with silver
epoxy. The fabrication process is depicted in Fig.1.

Fig. 2 shows the basic structures of the integrated non-
volatile reconfigurable antenna. By applying a positive
voltage bias, an electric field forms from active to an inert
electrode, driving the ions to grow a conductive filament in

FIGURE 1. The fabrication process of the proposed non-volatile
reconfigurable antenna.

FIGURE 2. Photo and structure of the integrated zero-static power
non-volatile reconfigurable antenna. (a) Fabricated reconfigurable
antenna with integrated non-volatile RF switch on flexible Kapton
substrate; (b) Cross-section of the non-volatile RF switch.

FIGURE 3. DC characteristics of the zero-static power non-volatile RF
switch. (a) Applying a positive voltage to switch to ON state; (b) Applying
10 ms voltage pulse (negative) to switch to OFF state.

the ion-conductor layer towards the inert electrode and the
switch is in anON state. On the contrary, a negative bias forms
the field of opposite direction; the filament then ruptures,
turning the switch to a high resistance state, i.e. the OFF state.
Both ON and OFF states do not require any DC power supply
to maintain their state.

III. DC MEASUREMENTS
The top and lower part of the antenna is bonded separately
with gold wires on a wire bonder (West·Bond 7440E) for DC
measurement. The DC performance is measured on a probe
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FIGURE 4. Switching performance of the non-volatile RF switch.
(a) Time-dependent retention measurements of the switch at room
temperature; (b) Resistance distribution of the switch with 30 manual DC
switching cycles.

station (Research Instruments) with Keithley 4200 semicon-
ductor characterization system under ambient conditions as
shown in Supplementary Materials Fig. S1.

An 11mA current compliance was set to minimize the pos-
sible damage to the device without affecting the non-volatility
(Fig. 3a). By applying a voltage around 3V to the Ag terminal
relative to the Au terminal, the current suddenly rises and
the RF switch switches on (Fig. 3a). The resistance of the
ON state is measured to be less than 15 � with a two-probe
measurement. The low ON-state resistance value is critical
for low-loss non-volatile RF applications. Fig. 3b (before
40,000 ms) shows that how the device behaves during the
ON state. The device is firstly applied with a voltage bias
of +0.2 V, the current goes to compliance of 11 mA. When
a negative voltage bias of −0.1 V is applied, the current
becomes −7.1 mA, demonstrating that once the switch is
at ON state, it is voltage-dependent like a resistor; positive
current when it is positively biased, negative current when
negatively biased, and no current when the bias is zero.

When a 10ms voltage pulse of−8.5 V around 49,000ms is
applied to the switch, it is reset to OFF state. As it can be seen

FIGURE 5. Antenna measurement results. (a) Measured reflection
coefficient with switch ON/OFF; (b) Measured gain with switch ON/OFF.

FIGURE 6. Measurement setup in the anechoic chamber.

in Fig. 3b, the current then stays still at zero either a positive
DC bias or negative one is applied afterward. The enlarged
inset shows the voltage pulse. The voltage pulses used to
operate the switch are generated from a National Instruments
myDAQ and data acquisition with NI USB-6003, the DC bias
circuit and schematic is shown in Supplementary Materials
Fig. S2. The ON/OFF ratio of the switch is measured to
∼3 orders (Fig. 4b).

Both OFF (high-resistance) and ON (low-resistance) states
of the device as a function of time, i.e., the device retention
property, have been investigated (Fig. 4a). The device is
biased with 0.1 V and the high-resistance state (HRS,
ROFF) and low-resistance state (LRS, RON) resistances are
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FIGURE 7. Normalized radiation patterns at ON state. (a) 2.4 GHz azimuth
plane; (b) 2.4 GHz elevation plane; (c) 5 GHz azimuth plane; (d) 5 GHz
elevation plane.

FIGURE 8. Normalized radiation patterns at OFF state and measurement
setup. (a) 2.4 GHz azimuth plane; (b) 2.4 GHz elevation plane.

determined by measuring the current with Keithley 4200s
semiconductor characterization system.

The measurements are made for every 60 s over 105 s
time at room temperature. The retention over time reveals the
stable operation of the device. A high ON/OFF ratio (∼1000)
is also observed. Similar measurements are made after two
weeks since the device is fabricated, the results are similar
indicating good retention over time.

The endurance of the device was tested by switching
between ON/OFF for 30 cycles using the aforementioned DC
bias circuit with NI USB-6003 to control and the data were
acquired using the LabVIEW program (Fig. 4b).

IV. ANTENNA MEASUREMENTS
The measured reflection coefficient |S11| of the antenna is
shown in Fig. 5a using a VNA (Agilent E5071B). It can be
seen when the RF non-volatile switch is on, it operates close
to the Wi-Fi band (2.4 GHz (2.28–2.53 GHz) and/or 5.0 GHz
(4.89–5.05 GHz)). When the switch turns off, it operates

FIGURE 9. Antenna bending illustration (a) Vertical bending 30 degrees
(V-30); (b) Vertical bending 60 degrees (V-60); (c) horizontal bending
30 degrees (H).

FIGURE 10. Reflection coefficient with vertical bending at 30 degrees
(V-30), 60 degrees (V-60), and horizontal bending at 30 degrees (H).
(a) ON state; (b) OFF state.

around 5G mid-band 3.5 GHz (2.71–3.59 GHz). The ability
to reconfigure around these bands is highly desirable for 5G
wireless IoT applications.

Fig. 5b shows the realized gain of the antenna, measured
using reference horn antenna Aaronia PowerLOG R© 70180.
The result coincides with the reflection and the antenna has
a positive gain around 2.4 GHz/5 GHz Wi-Fi band when the
RF switch is ON. When the switch is OFF, it has a positive
gain around 5G mid-band of 3.5 GHz.

To further verify the effective radiation, the radiation pat-
terns of the antenna have been measured in an anechoic
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FIGURE 11. Realized Gain with vertical bending at 30 degrees (V-30),
60 degrees (V-60), and horizontal bending (H). (a) ON state; (b) OFF state.

chamber (Antenna Measurement Studio 5.5, Diamond Engi-
neering) with a horn antenna (Aaronia PowerLOG R© 70180)
as a transmitting antenna. The DUTwas connected to a rotary
table and the data were recorded for every 5◦. The antenna
gain and radiation pattern measurements of the DUT are
measured with a distance of 200 cm apart from the trans-
mitting antenna, shown in Fig. 6, which fulfils the far-field
conditions.

From Fig. 7, it can be seen that at 2.4 GHz the antenna
has an omnidirectional pattern at the azimuth plane and a
dumbbell-like one at the elevation plane, similar to the dipole
antenna. At 5 GHz the effective radiation elements of the
antenna change, hence the change in the radiation pattern.
Fig. 8 shows the radiation patterns when the RF switch is
OFF. The azimuth pattern has an oval shape and a bagel-like
pattern at the elevation plane. The slight mismatches between
the measured and the simulated are possibly due to the SMA
connector and the rotary table but the measured results agree
with the simulations reasonably well.

V. ANTENNA BENDING PERFORMANCE
The prototype antenna is fabricated on Kapton film,
a substrate with great flexibility. Bending tests are made to

FIGURE 12. Normalized radiation patterns at ON state with vertical
bending at 30 degrees (V-30), 60 degrees (V-60), and horizontal bending
at 30 degrees (H). (a) 2.4 GHz azimuth plane; (b) 2.4 GHz elevation plane;
(c) 5 GHz azimuth plane; (d) 5 GHz elevation plane.

FIGURE 13. Normalized radiation patterns at OFF state with vertical
bending at 30 degrees (V-30), 60 degrees (V-30), and horizontal bending
at 30 degrees (H). (a) 3 GHz azimuth plane; (b) 3 GHz elevation plane.

investigate the antenna radiation performance under differ-
ent bending positions, vertical bending 30 degrees (V-30),
60 degrees (V-60), and horizontal bending 30 degrees (H) as
shown in Fig. 9.

Fig.10 shows the reflection coefficient at ON/OFF state
under different bending positions, it is discovered that the
bending does not affect antenna matching much, most likely
due to the CPW fed monopole antenna structure as reported
in [23] and [24]. The measured realized gains of the bent
antenna are shown in Fig. 11. The measured gains are inferior
to unblended results, which is expected and reasonable due to
the bending.

The measured normalized radiation patterns are displayed
in Fig. 12 (ON state) and Fig. 13 (OFF state). The shape of
the radiation patterns remains consistent with the un-bended
scenarios, with a slight change in the vertical bending, where
the angle changes as the monopole structure bending to a
different angle. Overall, the prototype antenna performs well
with a satisfactory result against minor bending; there is no
damage or performance degradation when it returned to its
normal position. These results show that the RF non-volatile
switch integrated reconfigurable antennas on the flexible sub-
strate and the fabrication technique being reported here could
have the potential for low-cost and wearable IoT applications.
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VI. CONCLUSION
In this paper, we have designed, fabricated, and characterized
zero-static power non-volatile RF reconfigurable antenna on
a flexible substrate. The measured DC characteristics demon-
strate the non-volatility of the switch and the RF experimental
data proves the re-configurability. The antenna’s operational
spectrum can be reconfigured and can radiate effectively.
The prototype has also been tested under different bending
positions, showing that the reported antenna has a certain
level of flexibility. With further development on material
selection, device structure, and fabrication process optimiza-
tion, zero-static power non-volatile RF switches and recon-
figurable antennas on the flexible substrate can prove highly
desirable for energy-efficient wireless IoT applications.
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