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ABSTRACT Internet of Things (IoT) systems are becoming more common and present in our daily
lives. The increase of Internet-connected devices has caused attackers to focus their attention more on
these devices. Therefore, new and more sophisticated attacks on IoT systems are discovered every day.
Currently, to ensure reliability and operability, most IoT systems are designed to operate in a relatively static
configuration in a highly heterogeneous environment. However, a system that does not continuously change
its configurations, i.e., a static system, gives an advantage to attackers; with enough time and resources,
an attacker will eventually find and exploit the vulnerabilities of any static target. This work proposes
a Moving Target Defense (MTD) strategy that randomly shuffles the communication protocols through
which a node communicates to a gateway in an IoT network. The system’s configuration changes have
an associated cost. The objective of the proposed MTD strategy in this work is to balance the increase in
system performance overhead, the increase in business impact (system unavailability), and, at the same time,
the decrease in the probability of success of a given attack. A framework is proposed to design this strategy;
this framework can guide any MTD strategy for IoT systems. The framework’s objective is to find, after
several iterations, the MTD strategy parameters that achieve a balance between five different measurable
variables of an IoT system.

INDEX TERMS Moving target defense, Internet of Things, cybersecurity, framework.

I. INTRODUCTION
According to [1], the number of IoT devices has increased
since 2019 by 30%, and the number of IoT devices worldwide
is expected to almost triplicate from 8.74 billion in 2020 to
more than 25.4 billion devices in 2030. This increased
surge has made IoT systems an increasingly common target
for attackers.

In today’s environment, IoT systems and all information
technology are built to operate in a relatively static con-
figuration. This static approach is a legacy of information
technology systems designed for simplicity when malicious
exploitation of system vulnerabilities was not a concern [2].
A static system, i.e., a system that does not continuously
change its configuration over time, provides attackers with
enough time to study such static system configurations.
In other words, with enough time and resources, attackers
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will eventually find and exploit vulnerabilities of any static
target. In that sense, Moving Target Defense (MTD) emerges
as a viable paradigm to defend these systems.

MTD strategies aim to substantially increase the cost of
attacks by deploying and operating networks and systems in
a manner that makes them less deterministic, less homoge-
neous, and less static [2]. However, the fundamental char-
acteristics of IoT systems, such as heterogeneity and energy
efficiency, require defense strategies that focus their efforts
on reducing the probability of success of attacks.

This paper presents the results of designing an MTD strat-
egy for an IoT system. This strategy aims to balance the
increase in performance overhead, the increase in business
impact (service unavailable), and the decrease of the proba-
bility of success of attacks on an IoT system. To reach this
balance, it is proposed to randomly shuffle IoT communica-
tion protocols as part of ‘‘What to move’’ in the design of an
MTD strategy. Regarding the determination of the remaining
elements that constitute an MTD strategy, i.e., ‘‘When to
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move’’ and ‘‘How to move,’’ a framework is proposed for
these tasks.

This approach intends that the proposed framework can
be used as a guideline to design any MTD strategy for IoT
systems. The framework will help balance the three goals
mentioned in the previous paragraphwhen designing anMTD
strategy.

This work proposes an MTD strategy that uses random
shuffling applied to IoT communication protocols as preven-
tive mechanisms to minimize the probability of a successful
attack while achieving a balance between increase business
impact and system performance overhead. This work has
the following unique contributions related to the current
state-of-the-art:

1) This is the first work that proposes an MTD strategy
that uses the shuffling method in IoT communication
protocols. The goal of randomly shuffling the commu-
nication protocols through which a node communicates
to the gateway in an IoT network is to minimize the
probability of having a successful attack that exploits
vulnerabilities in IoT systems communication proto-
cols. There is no previous research in the literature that
takes advantage of IoT systems’ heterogeneity; partic-
ularly, shuffling methods to switch between different
IoT communication protocols have not been proposed.

2) In order to address the issues of ‘‘When to move’’ and
‘‘How to move’’ to perform the shuffling of IoT net-
work communication protocols, a framework has been
proposed. However, note that the proposed framework
can be used to address the ‘‘What to move,’’ ‘‘When to
move,’’ and ‘‘How to move’’ questions in the design of
any MTD strategy for IoT systems. Although, in this
work, since the ‘‘What to move’’ question remains a
static element in the design of the proposed strategy,
the framework is used to address the ‘‘When to move’’
and ‘‘How to move’’ questions.

3) This paper proposes to find a balance or trade-off
between five measurable variables of the IoT sys-
tem. To obtain the parameters in the strategy to
achieve this balance, the system’s five variables have
been considered objective functions. The evaluation
of these objective functions has been approached as a
multiple-criteria decision problem.

The rest of this paper is organized as follows:
Section II provides an overview of the related work

reported in the literature in terms of MTD strategies for IoT
systems that aim to balance the costs and benefits represented
by the MTD paradigm for IoT systems. Section III describes
the elements that compose an MTD strategy, i.e., the three
fundamental issues that constitute an MTD strategy: ‘‘What
tomove,’’ ‘‘How tomove,’’ and ‘‘When tomove.’’ In addition,
section III presents the proposed framework for designing
MTD strategies for IoT systems, detailing its components.
Section IV describes the metrics used to evaluate the behav-
ior of the proposed strategy according to the framework
presented. Section V describes the multi-criteria analysis

method used in this work to compare the results of the evalu-
ation of the proposed strategy. Section VI presents the results
of theMTD strategy design for a use case IoT system, i.e., the
final parameters obtained by using the proposed framework.
Finally, section VII presents the conclusions and future work
of this research.

II. RELATED WORK
Although MTD is a cyber-defense paradigm that emerged
more than ten years ago, its application in IoT systems has not
been widely explored and can still be considered an immature
field. The fundamental characteristics of IoT systems prevent
classical MTD strategies from being fully feasible for these
systems. However, several works have recently emerged in
the literature of the area proposing MTD strategies applied to
IoT systems.

A. MTD STRATEGIES FOR IOT
An MTD strategy proposed in the literature that uses the
shuffling method to modify MAC-IPv6 addresses is pro-
posed in [4]. The authors propose an algorithm referred
to as Address Shuffling Algorithm (AShA). According to
the authors, this algorithm is energy-efficient, has minimal
impact on the network overhead, and is easy to imple-
ment. The proposed algorithm uses a cryptographic hash that
enables a controlled and collision-free address shuffling. The
objective of the proposed strategy is to increase the security
of systems that are bandwidth and power-constrained, as an
overload can severely affect the performance of the IoT sys-
tem. The algorithm was evaluated theoretically and through
simulation. While the work presents a novel proposal that
can positively impact the state-of-the-art in the context of
MTD strategies for resource-constrained devices, the authors
focused on evaluating only the performance of the system and
do not clearly explain how the proposed algorithm improves
the cybersecurity of the system or what is the cost of the
strategy concerning service availability.

The work of Judmayer et al. [13], published in 2018,
presents the results obtained by deploying an MTD strategy
that constantly changes the IP addresses of network interfaces
of connected IoT devices. The results obtained are shown in
terms of the performance assessed on the network end devices
or nodes. The evaluation is carried out on both IPv4 and
IPv6 addressing. The experimental setup from which the
results were derived was implemented with hardware widely
used in IoT environments, such as the Raspberry Pi [14]
and Carambola [15]. While the paper presents results that
extend the state-of-the-art concerning the performance of
IoT devices when deploying a shuffling-based MTD strat-
egy specifically applied to IP network addresses, the work
does not show how changing IP addresses influences the
cybersecurity of the system. Although a priori shuffling the
IP addresses of an IoT device can increase the system’s
randomness and thus decrease the probability of a successful
attack, the work presented does not evaluate the system’s
cybersecurity or the positive impact of continuously changing
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IP addresses in an IoT system. However, the approach con-
tributes to the state-of-the-art results that demonstrate the
viability of the shuffling method at the network level applied
to IoT systems, evaluating this strategy on real hardware
widely used in the IoT ecosystem.

Ge et al. [6] proposed an MTD strategy that randomizes
the topology of an IoT network by shuffling the configura-
tion of a network composed of decoy and real nodes. This
proposal is unique in the state-of-the-art. There is no MTD
strategy for IoT in the literature that proposes shuffling the
topology of an IoT network composed of decoy and real
nodes to maximize the attacker’s complexity. This strategy
is called by the authors NTS-MTD. To address the question
‘‘When to move,’’ the authors deployed and evaluated four
different methods (fixed/random/adaptive/hybrid). Regard-
ing the question ‘‘How to move,’’ the authors proposed three
different methods (genetic algorithm/optimization based on
the lure attack path/random). Similarly, the evaluation was
performed to determine the best solution to the question
‘‘When to move,’’ the results obtained from the evaluation of
each proposed method were compared to address the solution
to the question ‘‘How to move.’’ While Ge et al. evaluated
system performance, downtime, and network cybersecurity,
the work lacks a multi-criteria analysis to determine which
one is the best solution from all the proposed.

In their paper, Navas et al. [5] presented an MTD strategy
that aims to increase the resilience of IoT systems against
jamming attacks. The authors proposed Direct-Sequence
Spread-Spectrum (DSSS) as the parameter to move in the
wireless communication of a node in an IoT network, i.e., the
‘‘What to move’’ in the proposed MTD strategy. Unlike
most works in the literature, in the context of MTD for IoT,
this work focuses on the security of the physical layer. The
objective of the strategy proposed by the authors is to increase
the resilience of the system to a jamming attack. To achieve
this goal, the author proposed to randomize the spreading
sequences in a DSSS system. The spreading sequences are
generated using Cryptographically Secure Pseudo-Random
(CSPR) number generators. Sharing the cryptographic key
between the two communicating network elements is nec-
essary to synchronize the spreading sequences. To address
the question ‘‘When to move?’’ in the strategy proposed
by the authors, the devices to communicate decide on a
variable that changes according to the shared sequence; this
variable determines the hopping frequency. The tool used
to evaluate both the strategy’s performance and the sys-
tem’s resilience to interference attacks was MATLAB, so the
results obtained were derived from simulations of the system.
For the design of the strategy, the authors present a model
that explains the procedure used to agree on the spreading
sequences between two devices. Although frequency hopping
is not a new method to avoid interference between wire-
less communications, this is the first work that proposes a
strategy inspired by the MTD paradigm to add randomness
to the frequency hopping agreed in wireless communica-
tions. Although Navas et al. evaluated the system’s resilience

against jamming attacks and evaluated the system’s perfor-
mance when deploying their strategy, the work does not
specify or evaluate the business impact of implementing their
strategy in a real IoT system. The presented work also does
not compare the results obtained with other MTD strategies.
While the authors contribute to the state-of-the-art by evalu-
ating the proposed MTD strategy using simulations, the strat-
egy’s viability was not evaluated in real environments, such as
a testbed or using real IoT systems hardware. However, their
work demonstrated that an MTD strategy could be deployed
in any element of an IoT system, either at the physical layer
level or at any level.

Another proposed MTD strategy focused on randomizing
IP addresses in IoT devices was presented by Zeitz et al.
in [16]. This strategy explores the use of Micro Moving
Target IPv6 Defense (µMT6D). The presented strategy is
designed as a defense mechanism for low power consumption
and resource constrained devices. The strategy is based on
IPv6 address rotation, whereby each network node or end
device rotates its IP address based on a lightweight hash-
ing algorithm for address calculation. The strategy aims to
protect IoT devices from targeted attacks, taking advantage
of a dynamic MTD-based configuration’s benefits against
an adversary. According to the authors, the presented strat-
egy successfully prevents denial-of-service attacks or eaves-
dropping passive attacks. The authors in [16] evaluated
the system’s performance when the strategy is running and
compared the results obtained with the evaluation of the
systemwhen theMTD strategy is not running. The evaluation
of theMTD strategy concerning system performance was car-
ried out through simulation using virtualization of operating
systems widely used in IoT applications such as Contiki. The
results obtained in the simulations correspond to the power
consumption of the nodes when the MTD strategy is being
executed andwhen the strategy changes the IP address of each
device every five minutes. The work presented demonstrates
(at least in simulation) the viability of deploying MTD strate-
gies in resource-constrained IoT devices at the network level.
However, the work does not present results on the viability
of the benefits of implementing MTD strategies with respect
to cybersecurity; the measurements conducted focus only
on system performance and do not consider the impact on
service availability between each IP address change. Finally,
the proposed work presents results obtained through simu-
lation; however, this does not necessarily represent that the
strategy is viable in a real environment.

B. MTD-RELATED IOT FRAMEWORKS
Few works have been published in the literature about frame-
works that serve as guidelines for designing MTD strategies
for IoT. In this section, a couple of frameworks proposed in
the state-of-the-art are reviewed.

Navas et al. in [3] proposed an MTD framework suitable
for IoT systems. The proposed framework aims to assist in
the design and implementation of MTD strategies for IoT
systems. According to the authors, the framework abstracts,
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generalizes, and links common components of MTD
strategies. Furthermore, MTD strategies based on this frame-
work can be evaluated against each other. The proposed
framework is conceived to design strategies where there is an
interaction between two elements of the IoT network, e.g.,
the gateway and a node. The authors designed two MTD
strategies based on the framework: one that targets UDP port
numbers (port-hopping) and the other, the Constrained Appli-
cation Protocol (CoAP); both strategies were implemented
using a real IoT hardware platform. Furthermore, based on
the experiments performed, the authors evaluated the sys-
tem’s security and calculated the probability of a successful
Reconnaissance-Phase attack. Despite that the framework
presented in [3] has the necessary elements to design anMTD
strategy for IoT, the framework lacks components to eval-
uate the designed MTD strategies. Furthermore, the frame-
work also lacks components that aim to apply optimization
methods and thus generate strategies that decrease the costs
associated with the MTD paradigm. Finally, the framework
proposed by the authors does not allow the conception of
strategies that are not 100% based on randomness, i.e., the
framework does not consider the design of reactive strategies
or strategies that use hybrid methods that are not 100% based
on randomness.

Kyi and Koide in [17] proposed a framework for securing
IoT systems with an MTD approach to be a starting point
for combining various defense strategies at different levels
of the IoT. The proposed framework consists of two main
components and a third complementary component. The first
component corresponds to a real IoT system. The second
component of the framework corresponds to a virtual IoT sys-
tem. The third component corresponds to an attack detection
system. The authors propose to apply MTD methods such as
IP address translation and code diversification to the twomain
components of the framework. The virtual system receives
information from the real system when an attack happens;
then the virtual system sends feedback to the real system.
According to the authors, through this communication is
possible to estimate the future status of the virtual system
by sending feedback information to the real system. The
framework presented in [17] is quite simple, compelling the
idea of implementing any MTD strategy in a cyber-physical
system composed of a ‘‘virtual system’’ and a ‘‘real system.’’
However, while this framework can be used to understand
basic MTD concepts, the framework does not have sufficient
elements to design MTD strategies for IoT systems.

Both the work in [3], as well as the work presented
in [17], have served as a starting point and inspiration for
the proposed ‘‘MTD strategy design framework’’ presented
in section III of this paper.

III. MTD STRATEGY DESIGN
A. ELEMENTS OF AN MTD STRATEGY
According to Cai et al. [7], there are three fundamental design
questions that any MTD strategy needs to define: ‘‘What to
move,’’ ‘‘How to move,’’ and ‘‘When to move.’’

1) ‘‘WHAT TO MOVE’’
Refers to the elements or components of the system that
change over time, i.e., the moving parameters.

Let S be the set of all distinct states to which an element of
the system can change to, then,

S = {S1, . . . , Sn} (1)

where n is the total number of states. The difference in system
configuration between any of the elements of S is the ‘‘What
to move’’ in the design of the MTD strategy.

For the strategy proposed in this work, the ‘‘What tomove’’
corresponds to the IoT communication protocols; in other
words, the parameter that changes in the system configuration
is the communication protocol through which a node com-
municates with the gateway in the IoT network. In total the
number of protocols shuffled in the proposed strategy is equal
to 4, i.e., for this strategy, in equation (1), n = 4, where
S1 = Wifi, S2 = BLE, S3 = Zigbee and S4 = LoRa.

2) ‘‘WHEN TO MOVE’’
It refers to the time between one state change to another.
Formally, the ‘‘When to move’’ can be defined as the time
elapsed between the state Si and the state Si+1; this time can
be fixed, random, or based on a specific event.

Due that a random time can be within the range (0, +∞),
for this work, we consider ‘‘random time’’ to be any time
given between the interval [α,β ], where α and β correspond
to a fixed time that must satisfy the inequality α < β.
For the proposed strategy, a random time with a discrete

uniform probability distribution has been considered in all
experiments. However, the limits of the range defined by
[α,β] are determined by using the proposed framework.

3) ‘‘HOW TO MOVE’’
It refers to how the elements or parameters of the system
change from one state to another, i.e., the way to move of
the ‘‘What to move’’ set.

In the literature, many methods try to guide the best pos-
sible movement, from game theory, probability distributions,
or a fixed movement sequence.

For this work, a discrete uniform probability distribution is
used to determine the next move or state of the system. The
evaluation of these moves is carried out using the proposed
framework.

B. MTD STRATEGY DESIGN FRAMEWORK
The framework shown in Fig. 1 is proposed to obtain the
‘‘When to Move’’ and ‘‘How to Move’’ parameters of the IoT
MTD strategy developed in this approach. This framework
can be used as a guideline to design any MTD strategy for
IoT systems to find a balance between the increase in per-
formance overhead, the increase in business impact, and the
decrease in the probability of a successful attack. A specific
MTD design strategy for a given IoT system can use this
framework as an archetype to build upon it.

The proposed framework is an iterative cycle that is
repeated until the parameters of the strategy achieve a
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FIGURE 1. MTD strategy design framework components.

balance between the increase in system performance over-
head, the increase in business impact, and the decrease in the
probability of success of a given attack (or set of attacks).
A description of each component (see Fig. 1) of the proposed
framework is provided as follows.

1) POLICY
The POLICY component establishes a set of statements that
should be stipulated by the governance or organizational
entity responsible for establishing the system’s cybersecurity
countermeasures.

This set of statements should establish general objectives
or desirable goals in the context of the system’s cybersecurity
(attack success probability). Furthermore, it is a fact that the
use of MTD strategies in any system impacts its performance
(overhead on energy consumption, memory usage, CPU time)
and generates an effect on the business availability (service
unavailable).

Hence, the implementation of any MTD strategy in any
system must establish desirable limits on the impact in the
system’s performance and business availability and define the
hierarchy of three objectives: performance overhead, business
availability, and cybersecurity.

The POLICY component is used in the framework as
the a priori preferences set by the ‘‘Decision Maker’’ in a
Multiple-criteria decision analysis.

2) MTD STRATEGY
The MTD STRATEGY component contains the parameters
that answer the questions ‘‘What,’’ ‘‘When,’’ and ‘‘How’’
to move. These parameters are used as inputs to the IoT
SYSTEM component.

3) IOT SYSTEM
The IoT SYSTEM component corresponds to the sum of
all the elements that make up the set of configurable and
non-configurable elements, whether physical or logical. For
the use case presented in this work, the IoT SYSTEM com-
ponent corresponds to an IoT testbed.

4) ATTACKER
In order to measure the probability of a successful attack,
the ATTACKER component generates constant attacks to

the IoT SYSTEM. These attacks can be real or simulated.
This component of the framework establishes the limits and
capabilities of an attacker, defines the interval or frequency
of attacks, and the types of attacks performed on the system,
i.e., it characterizes the attacker.

5) MTD EVALUATION
TheMTDEVALUATION component requires as inputs mea-
surements of the performance of the system and service
unavailability, as well as an estimation of the probability of a
successful attack.

The MTD EVALUATION takes the information from the
measurements made on the system during the execution of
the MTD strategy. It produces as output five variables or
metrics that will be analyzed in the next component of the
framework.

6) MULTIPLE-CRITERIA DECISION ANALYSIS
In the MULTIPLE-CRITERIA DECISION ANALYSIS
(MCDA) component, the variables from the MTD
EVALUATION component are analyzed. These variables
are treated as objective variables. Using multi-criteria
decision-making methods, those parameters of the strategy
that perform best according to the policies stipulated by
governance are selected.

7) BALANCE
The BALANCE component receives as inputs the results of
the MCDA component and compares them with the targets
established in the policies. If a balance on the established
objectives is achieved, then the final parameters of the strat-
egy are extracted; otherwise, new parameters are generated
for the strategy, and the framework cycle is repeated.

C. IOT TESTBED
In order to evaluate the probability of a successful attack,
the system performance overhead, and the business impact
(unavailability of the service), an IoT testbed has been imple-
mented; this testbed belongs to the IoT SYSTEM component
of the proposed framework. In other words, the design of the
proposed strategy has been tested and evaluated on an IoT
testbed.

The IoT testbed consists of three nodes that communicate
to a gateway through different IoT communication proto-
cols. Each node in the network can communicate to the
gateway using four different communication protocols, Blue-
tooth, WiFi, LoRa, and Zigbee. The nodes in the network
send and receive information from the gateway. The gateway
communicates with a private web server in the cloud, where
the collected data can be stored, processed, analyzed, and
viewed via a smartphone or web browser. Fig. 2 shows the
general configuration of the network and the devices.

The nodes and the gateway of the testbed’s IoT network
are implemented with Raspberry Pi development boards and
communications HATs.
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FIGURE 2. IoT testbed setup.

IV. MTD STRATEGY EVALUATION
According to the proposed framework, the MTD EVALUA-
TION component takes the information from the measure-
ments made on the system during the execution of the MTD
strategy and produces as outputs five variables or metrics that
evaluate the system performance overhead, the impact on the
business, and cybersecurity.

The results obtained of the variables are a consequence
of measurements taken during the execution of each MTD
strategy. The strategies were executed in the testbed for a
period ranging from 12 to 24 hours. The time of execution of
each strategy depended on the statistics of the data collected.
If the arithmetic mean stabilized at a point, then the execution
of the strategy was stopped and, therefore, the sampling of
measurements. In other words, if the average of the results
of the measurements obtained stabilized at a point, then the
execution of the strategy in the testbed was stopped.

It is relevant to clarify that because IoT devices are themost
important elements in an IoT system, the measurements were
performed on the IoT network nodes, so the results obtained
correspond to the behavior of the network nodes. This section
describes the procedure followed to measure five variables of
the system, which describe its performance.

A. PERFORMANCE
For the system performance evaluation, three variables were
considered: energy consumption, memory usage and CPU
time.

1) ENERGY CONSUMPTION
In order to obtain the energy consumption levels achieved
by the network nodes, electrical current measurements
were performed during the execution of the MTD strategy.
Fig. 3 shows the electrical schematic diagram used tomeasure
the electrical current in the testbed nodes.

Direct measurements were performed with the help of an
ammeter to measure the electrical current of the network
nodes. The measuring device is essentially a voltmeter with a
precision resistor. The ammeter uses Ohm’s law to obtain the
value of the current flowing through the circuit.

As shown in Fig. 3, the procedure consists of interrupt-
ing the flow of electrons in the circuit and connecting the
ammeter as a bridge in the circuit through which the current
is flowing.

FIGURE 3. Electrical schematic diagram used to measure the electrical
current in the testbed nodes.

2) MEMORY USAGE
The Node.js OS Library was used to measure the
node’s memory usage. The OS module provides operating
system-related utility methods and properties [8].

Memory usage was sampled every 100 milliseconds (at a
sampling frequency of 10 Hz) to obtain the average memory
used by the node during the execution of the strategy.

The data collected from each sample was dumped into a
CSV file. Once this process was completed, the arithmetic
mean of all the samples collected was obtained. An average
of half a million samples was collected for each experiment.

3) CPU TIME
As well as the memory usage, the Node.js OS Library [8] was
used to measure the CPU time of the node.

The ‘‘idle task’’ was used to measure the processor time.
The idle task is executed every time the processor is not
running any other task. In other words, the CPU idle time is
the inactivity time of the processor. The total run time minus
the total idle time is subtracted to calculate the CPU working
time.

The total working time is divided by the number of hours
the testbed executed the MTD strategy to obtain the average
CPU working time per hour.

B. BUSINESS IMPACT
Making continuous changes to the system configuration
when implementing MTD strategies increases power con-
sumption, memory usage, or processor time. In addition,
switching from one state to another causes an interruption in
the service; this service interruption time generates a business
impact. In the case of the strategy proposed for this work,
randomly shuffling the communication protocol used by the
network nodes to communicate with the gateway generates a
service interruption, affecting the service’s availability.
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Hence, to evaluate the business impact, the service down-
time was measured. Fig. 4 shows the events that occur when
switching from one IoT communication protocol to another
in the order of their occurrence.

FIGURE 4. Active and inactive time measurement.

According to the three-layer IoT reference architec-
ture [19], the shuffling of protocols is done at layer two,
i.e., at the network layer. Although the purpose of the four
technologies used is to communicate the IoT network nodes
with the gateway, the establishment and negotiation of the
communication are different for each protocol. For example,
the address negotiation is different for WiFi and LoRa com-
munications protocols. Therefore, if a protocol is switched to
any other, then new negotiations are generated according to
each communication protocol. Under this context, the time of
service unavailable includes the time spent for configurations
of the protocols in higher layers.

Timestamps were used to measure downtime and active
service time. The IoT SYSTEM downtime was measured by
calculating the difference between the timestamp when the
connection of the new protocol was ready and the times-
tamp when the disconnection of the previous communication
protocol was initiated.

The total service downtime was divided by the total time
the testbed was executing the MTD strategy to obtain the
percentage of time the service was down.

C. CYBERSECURITY
In the context of system cybersecurity, the probability of
a successful attack was evaluated. Several assumptions
on attack behaviors and goals were made to characterize
attackers to estimate the probability of success of an attack.

1) ATTACKER CHARACTERIZATION
The following assumptions were made about the attacker’s
goals and behavior:

• It is assumed that the attacker knows that the target is
constantly changing communication protocols. Hence,
white box attacks are assumed.

• The attacker has the capabilities to attack all the
communication protocols considered in this work.

• The attacker’s goal is to deny service to the target by
attacking vulnerabilities in the communication proto-
cols.

• An attack is assumed to be successful when an
unauthorized result is produced.

2) SUCCESSFUL ATTACK
In this work, an attack is assumed to be successful when an
unauthorized result is produced. Also, this research assumes
that an unauthorized result is produced when the attack
crafting and execution period is over and the system has
not changed to the next state (change of communication
protocol).

Fig. 5 shows a graphical representation of the conditions
for a successful and an unsuccessful attack. This representa-
tion is based on the model presented by Zheng and Namin
in [9].

FIGURE 5. Successful and unsuccessful attack representation.

3) PROBABILITY OF SUCCESS OF AN ATTACK
In order to estimate the probability of success of an attack,
in this case, a DoS attack, to the wireless communication
protocols of the IoT network node, four different real attacks
were conducted, one for each communication protocol. The
objective of the execution of the attacks was to deny the
service of the IoT network nodes. For the Bluetooth protocol,
hijacking attacks were executed using the BtleJack tool [11].
The Aircrack-ng [12] tool was used to execute deauthentica-
tion attacks over WiFi. Attacks targeting LoRa and Zigbee
communication protocols were performed through a script
written in JavaScript, executing replay attacks.

A total of approximately 90 real attacks were executed
on the testbed. These attacks were executed while the IoT
system was running the MTD strategy of randomly changing
states (shuffling communication protocols) between a time
range of 5.5 min to 6.5 min. Of the total number of attacks
carried out, 61 were successful. Fig. 6 shows the distribution
of successful attacks versus the ‘‘attack crafting period’’ by
the IoT communication protocol being attacked.

However, carrying out real attacks to the testbed caused
two problems. The first problem encountered was that the
attacks to be performed were limited by the hardware avail-
able. The second problem faced was that performing contin-
uous attacks to the testbed was impractical because once the
system had been compromised, the system and attack must
be manually restarted.
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FIGURE 6. Histogram of the distribution of 61 real successful attacks.

To solve the two problems mentioned above and estimate
the attack success probability more accurately, the Monte
Carlo method [18] was used to simulate attacks to the testbed.

Simulating the execution of attacks through the Monte
Carlo method has several advantages over performing real
attacks; firstly, it is possible to simulate any capability of the
attacker, i.e., the attacker’s capabilities are not limited by the
available hardware. Another advantage is that no user interac-
tion is required; therefore, the simulation can be left running
without the need to intervene each time a successful attack is
carried out. Finally, through Monte Carlo simulations, more
attacks can be performed in less time.

An agent was run on each node of the IoT network to
estimate the probability of success of an attack. The agent
performs the same steps that a real attacker would per-
form, with the difference that the agent does not execute the
actual attack; however, the agent can scan the environment
and obtain the communication protocol through which the
network node is communicating with the gateway at that
moment. Based on this information, the agent simulates the
execution of the attack.

The following paragraphs describe the steps performed by
the agent to determine whether an attack was successful or
unsuccessful.

The first step of the attack simulation is to scan the environ-
ment. Through a scan, the agent obtains the current state of
the system, i.e., the current communication protocol through
which the node and gateway are communicating.

The second step is to generate a random number. This
random number represents the attack crafting period, i.e., the
estimated time from the attack launch until an unauthorized
result is reached. This time is obtained randomly within
a given time range; the time range and the probability
distribution obey a baseline.

In this work, the baseline was derived from the data col-
lected by performing real attacks, as previously described,
i.e., from the information in Fig. 6.

The aim of using the information obtained from the attack
crafting period (see Fig. 6) as a baseline was to achieve a
behavior in the simulation, i.e., the behavior of the agent,
to be as close as possible to the behavior that would have been

obtained by executing real attacks. In consequence, the results
obtained are as close as possible to those that would have been
obtained if real attacks had been performed.

Fig. 7 shows a histogram constructed from a sample of
75,000 pseudo-random numbers. The probability distribution
of the histogram in Fig. 7 was derived from the average of the
attack crafting period obtained from the execution of the real
attacks, i.e., from the baseline.

In the third step of the simulation, the agent waits the time
obtained randomly (in the second step), i.e., the agent spends
a waiting time equal to the time obtained randomly. This
time is the one referred to as the ‘‘attack crafting period,’’
previously mentioned.

FIGURE 7. Histogram generated from a sample of 75,000 pseudorandom
numbers.

Finally, after the attack crafting period, the agent scans the
environment again and obtains the current state of the system
a second time. If the current system’s state is the same as the
system’s state registered in step 1, then the agent considers
that a successful attack has taken place; if the system’s state
obtained at the beginning is different from the system’s state
after the attack crafting period, then the agent registers an
unsuccessful attack.

The process described in the previous paragraph was
carried out repeatedly until the attack success probability
converged to one point. For the experiments conducted, the
probability converged after an average of 200 executions.

A useful analogy to understand the process described
above is the game of darts. The player or dartist would be
the attacker or agent, while the dartboard is the IoT system.
In this analogy, the dartboard is constantly changing color,
between a total of four colors. The time that the dartboard
remains in one color before changing to another is randomly
chosen, and the choice of the next color is also randomized.

In the case of the dartist, she/he has four different colors
of darts (the same four colors that the dartboard is constantly
changing to). The player’s objective is to hit the target with
a dart of the same color as the one on the board before the
dartboard changes color again.

In the above analogy, the player is an agent, i.e., a robot.
This robot shoots the darts at different speeds; some darts
travel at higher speeds, while some other darts travel at lower
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speeds, the purpose of the game is that the dartboard changes
color before the dart hits the target; thus, if the dart travels at
a slow speed, then it is likely to fail to reach the target in time
before it changes color.

The speed of each dart, i.e., the time it takes for the dart
to reach the target, is determined randomly based on the
probability distribution established from the baseline.

V. MULTIPLE-CRITERIA DECISION ANALYSIS
As previously mentioned, the objective of the designed
strategy is to achieve a balance between different goals.
The balance is given by the multi-criteria analysis applied
to the different solutions obtained in each iteration of the
framework.

Multiple-criteria decision analysis helps to find one suit-
able solution that satisfies in a balanced way the goals in
the policy set stipulated by the governance or organizational
entity responsible for establishing the system’s cybersecurity
countermeasures.

The multi-criteria analysis method used in this work is the
Multi-Objective Optimization on the basis of Ratio Analysis
(MOORA) method. MOORAwas first introduced in 2006 by
Brauers and Zavadskas [10]. The objective of this method is
to find the best possible solution given a set of solutions and
certain constraints. It has been successfully applied to solve
various types of complex decision-making problems in many
fields in economics and engineering.

The procedure for the MOORA implementation method is
described as follows:

Step 1: Create a Decision Matrix.
The decision matrix is represented as the x matrix,

x =


x11 x12 · x1n
x21 x22 · x2n
· · · ·

xm1 xm2 · xmn

 (2)

where xij is the response of alternative j to objective
i, i = 1, 2, . . ., n are the objectives, j = 1, 2, . . ., m are the
alternatives [10].

Step 2: Normalize the Decision Matrix.
A second matrix N xij, normalized, is obtained from

equation (3),

N xij =
xij√
m∑
j=1

x2ij

(3)

Step 3: Assign the objectives weights.
The way to assign the weights of the objectives is a

procedure that is not established in the MOORA method;
therefore, the assignment of weights is at the discretion of
the decision-maker, as long as equation (4) is satisfied,

m∑
j=1

Wj = 1 (4)

Because the objective for this work is to find a balanced
solution, the weights assigned to each objective are the

same, i.e., each objective has the same weight and, therefore,
the same priority.

Step 4: Weighting the normalized matrix.
Weight the normalized matrix by multiplying each element

of the normalized matrix by the weight of each objective or
criteria,

wN xij =N xijWij (5)

Step 5: Obtain the evaluation of each alternative.
In (6), the value of yj is the evaluation of each alternative

and represents the normalized response of alternative j to
objective i; these normalized responses of the alternatives to
the objectives are in the interval [0, 1]. For optimization, these
responses are added in case of maximization and subtracted
in case of minimization.

yj =
i=g∑
i=1

wN xij −
i=n∑

i=g+1
wN xij (6)

Step 6: Calculate the Tchebycheff distance to an ideal
point.

In order to measure the distance between the alternatives
and the reference point, the Tchebycheff Min-Max metric is
chosen,

minj
{
max i

∣∣ri − yj∣∣} (7)

where ri = the ith coordinate of the maximal objective
reference point, each coordinate of the reference point is
selected as the highest corresponding coordinate of the
alternatives [10].

VI. RESULTS AND DISCUSSION
This section presents the results of the design of the MTD
strategy for the chosen IoT use case obtained by using the
proposed framework.

The use case, the established policy, and the first parame-
ters of the strategy are described below.

A. USE CASE
An MTD strategy that randomizes IoT communication pro-
tocols cannot be used for all applications. Switching between
different IoT communication protocols such as Bluetooth,
WiFi, Zigbee, or LoRa limits the application scenarios, and
the service interruptions caused between each state change
in the system configuration also restricts the application
scenarios.

The strategy proposed in this work can only be used in
application scenarios that satisfy the following two criteria:
• The maximum distance between the nodes and the gate-
way in the proposed scenario must be less than the max-
imum distance reached by the wireless communication
protocols (LoRa, WiFi, Zigbee, and Bluetooth). This
distance is a maximum range of 30 meters.

• Because of interruptions caused by MTD, IoT
time-critical application scenarios cannot be accepted,
such as autonomous cars or medical monitoring.
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The application scenario chosen as use case example in
this work is a smart home. This application scenario satisfies
the two criteria mentioned in the previous paragraph since
the distances between a node and the gateway in an IoT
network in a smart home typically do not exceed 30 meters.
In that context, the four proposed communication protocols
satisfy the distance requirements in a smart home. Further-
more, concerning the tasks performed by an IoT device in a
smart home, such as measuring environmental variables, like
temperature and humidity, or turning on/off lights, these are
not time-critical tasks; hence, they are not highly affected by
the downtime caused by protocol shuffling.

B. ESTABLISHED POLICY
The set of policies established for the chosen use case is listed
below:
• Because the objective of the strategy is to achieve a
balance between the desirable goals, the hierarchical
weighting of the increase in system performance over-
head, the increase in business impact, and the decrease
of the probability of a successful attack are the same,
i.e., no one goal is more important than any other.

• According to the application scenario, the strategy
should maintain a low increase (30% desirable reference
value) in the system performance overhead of the IoT
network.

• According to the application scenario, the strategy
should achieve a high decrease (70% desirable reference
value) in the probability of a successful attack.

• According to the application scenario, the strategy
should achieve a low increase (5% desirable reference
value) in the business impact (unavailability of the
service).

C. FIRST STRATEGY PARAMETERS
In order to carry out the first iteration of the framework,
initial strategy parameters have to be proposed. These initial
parameters will not necessarily be the final strategy param-
eters; they will depend on the evaluation and analysis of
the system’s behavior and whether any solution achieves the
balance proposed by the policy.

The initial strategy parameters proposed were as follows:
What to move.
• IoT communication protocols

When to move.
• At a uniformly random time within a range from
0.5 minutes to 1.5 minutes.

• At a uniformly random time within a range from
1.5 minutes to 2.5 minutes.

• At a uniformly random time within a range from
2.5 minutes to 3.5 minutes.

• At a uniformly random time within a range from
3.5 minutes to 4.5 minutes.

• At a uniformly random time within a range from
4.5 minutes to 5.5 minutes.

• At a uniformly random time within a range from
5.5 minutes to 6.5 minutes.

How to move.

• Randomly shuffling communication protocols in each
node. Each communication protocol has the same proba-
bility of being the next one, i.e., 1/4 (uniform probability
distribution).

The strategy parameters were implemented in each net-
work node, i.e., each node independently executed the strat-
egy according to the proposed parameters. Therefore, each
node acts independently with respect to the other nodes in
the network.

Fig. 8, Fig. 9, and Fig. 10 show the results obtained at
the EVALUATION component output of the first framework
iteration. In each of these figures, the horizontal axis cor-
responds to the strategies evaluated in the first iteration of
the framework, as well as the behavior of the system when
each strategy is executed (without MTD). In other words,
the ‘‘x’’ axis in Fig. 8, Fig. 9 and Fig. 10 corresponds to the
six strategies implemented on the testbed in the first cycle of
the framework, as well as the behavior of the system without
executing MTD.

In Fig. 8, the vertical axis corresponds to the results
obtained in terms of the estimation of the probability of a
successful attack. It is important to note that, according to

FIGURE 8. Attack success probability estimation.

FIGURE 9. Percentage of service downtime.
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the experiments conducted in this work, and following the
process described in section V.C of this paper, the probability
of a successful attack when the system does not execute any
MTD strategy was estimated to be 100%. This value can be
taken as a reference point to compare the results obtained in
each of the six strategies executed in the IoT system.

The vertical axis in Fig. 9 corresponds to the results
obtained in terms of service downtime produced in eachMTD
strategy in terms of percentage. That is, the percentage of time
that the service remained interrupted compared to the total
time that the MTD strategy was executed in the IoT system.

Fig. 10 shows the results concerning the performance
obtained in each MTD strategy. The vertical axis in Fig. 10.a
represents the average CPU working time per hour during
the execution of each of the MTD strategies. In Fig. 10.b,

FIGURE 10. Framework’s first iteration results in performance.

the vertical axis represents the energy consumption average in
mWh per hour. Finally, the vertical axis in Fig. 10.c represents
the memory usage average in MB, during the execution of
each MTD strategy, during the first iteration of the frame-
work.

D. OBTAINING A BALANCED SOLUTION USING MCDA
Table 1 summarizes the results obtained from the first itera-
tion of the framework. The weights assigned to each criterion
correspond to the first sentence established in the policies of
the use case.

It is necessary to clarify that the MOORA method allows
assigning different weights to different criteria. That is, if the
policy had prioritized cybersecurity (attack success probabil-
ity) over all the other criteria, despite the increase in system
performance overhead or the increase in the percentage of
system downtime, a higher weight could have been given
to this aspect and, consequently, lower weights to the other
criteria. Although the above criterion was not included in the
experiments performed, there is no impediment to carry it out;
however, for reasons of space, it is left as future work and as
an option to be experimented by the possible adopters of the
proposed framework.

TABLE 1. Framework’s first iteration results.

Implementing the MOORA method, from Table 1,
the decision matrix x is obtained as follows:

x=


17.04 3.89 135.36 3405.4 315.19
29.22 2.00 142.00 3360.0 297.39
52.46 1.66 1267.71 3347.8 298.88
66.14 0.87 119.64 3340.0 285.18
70.00 0.80 123.54 3336.0 266.00
74.79 0.74 116.24 3330.8 268.34

 (8)

After normalizing and weighting the decision matrix using
equations (3) and (5), respectively, the weighted normalized
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matrix WNxij is obtained, as follows:

wNxij =


0.0248 0.1593 0.0956 0.0826 0.0890
0.0426 0.0819 0.0885 0.0818 0.0840
0.0765 0.0680 0.0790 0.0815 0.0844
0.0965 0.0356 0.0746 0.0813 0.0805
0.1022 0.0327 0.0770 0.0812 0.0751
0.1091 0.0303 0.0724 0.0810 0.0758

 (9)

Then, after obtaining the evaluation of each alternativewith
equation (6) and having calculated the Tchebycheff distance
to an ideal point with equation (7), the results indicating the
best alternative are obtained.

After implementing the MOORA method on the results
of the MTD strategies (or alternatives) evaluated in the first
cycle of the proposed framework, the method provides a
ranking where the alternatives are ordered from the best to
the worst.

If no decision criteria are prioritized or assigned a higher
weight, then the MOORA method gives the best alternative
according to the behavior of each one, i.e., it chooses the most
balanced alternative.

Table 2 shows the final ranking of the alternatives in order
from the best to the worst. From the multiple-criteria decision
analysis, it is concluded that the alternative [1.5-2.5] min is
the alternative with the best overall behavior considering the
three goals; performance overhead, business impact, and sys-
tem cybersecurity, while the alternative [0.5-1.5] min cannot
be considered.

TABLE 2. Results rank.

Fig. 11 shows a graph with the results of the MOORA
method for each alternative and the ranking position of each
one.

FIGURE 11. Ranking of the alternatives of the framework’s first iteration.

It is important to note that although the alternative [0.5-1.5]
achieved the lowest probability of a successful attack,
it obtained the worst evaluation regarding the system perfor-
mance overhead and business impact; therefore, according to
the MOORA method, it is the alternative worst evaluated.

E. FINAL STRATEGY PARAMETERS
Once the best solution of the framework’s first iteration was
obtained, it should be verified that this solution satisfies the
whole set of proposed policies. In this case, the best solution
from the first iteration achieves the objectives established in
the use case policy; therefore, it is unnecessary to carry out
a second iteration of the framework to find new solutions.

Due to the above, it is established that the final parameters,
i.e., the proposed strategy, is as follows:

What to move?
• IoT communication protocols

When to move?
• At a uniformly random time within a range from
1.5 minutes to 2.5 minutes.

How to move?
• Uniform random shuffling from one communication
protocol to another. Each communication protocol has
the same probability of being the next one, i.e., 1/4.

VII. CONCLUSION & FUTURE WORK
In this work, an MTD strategy that uses shuffling (random-
ization) applied to IoT communication protocols as preven-
tive mechanisms to minimize the probability of a successful
attack while achieving a balance between increasing business
impact and system performance overhead was proposed.

In order to design this strategy, a framework has been
proposed; the proposed framework can be used to address
the ‘‘What to move,’’ ‘‘When to move,’’ and ‘‘How to move’’
issues in the design of any MTD strategy for IoT systems.

The framework uses multiple-criteria decision analysis
to determine the best solution (balance) given a set of
parameters (elements of an MTD strategy) and goals
(policies).

In this work, we designed an MTD strategy for the chosen
IoT use case that reduces by 70% the probability of success
of a denial-of-service attack that exploits vulnerabilities in
IoT wireless communication protocols, assuming that the
probability of success of such attack is equal to 1, i.e., 100%
if the MTD strategy is not implemented.

In addition, on average, considering CPU time, power con-
sumption, and memory usage, the designed strategy increases
system overhead by only 19% compared to the system
performance when it is not running any MTD strategy.

Finally, the designed strategy affects the service availabil-
ity by only 2%, compared to 0% of service interruption time
when the system does not execute any MTD strategy.

The results obtained are favorable according to the policies
established for the proposed use case. The strategy was eval-
uated on a real testbed composed of devices widely used in
applications of the IoT.
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As future work, the following research areas are planned
to be explored:

• Explore game theory applied to the attacker/defender
relationship to create more intelligent moving defense
strategies, where changes from one state to another do
not obey a uniform probability distribution, instead they
can be a function of other variables, such as the robust-
ness of the next state, or the capabilities of the attacker.

• Replace the use of multiple-criteria decision analysis
and instead explore the behavior of genetic algorithms
to find the best possible MTD strategy.

• Explore the use of software-defined networks in IoT
systems in the context of MTD strategies.
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