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ABSTRACT In this paper, we propose a methodology for designing low error efficient approximate
adders for FPGAs. The proposed methodology utilizes FPGA resources efficiently to reduce the error of
approximate adders. We propose two approximate adders for FPGAs using our methodology: low error
and area efficient approximate adder (LEADx), and area and power efficient approximate adder (APEx).
Both approximate adders are composed of an accurate and an approximate part. The approximate parts
of these adders are designed in a systematic way to minimize the mean square error (MSE). LEADx has
lower MSE than the approximate adders in the literature. The 32-bit LEADx with 16-bit approximation
has 20% lower MSE than the approximate adder with the lowest MSE in the literature. The 16-bit APEx
with 8-bit approximation has the same area, 60% lower MSE, and 4.5% less power consumption in Xilinx
Virtex 7 FPGA than the smallest and lowest power consuming approximate adder in the literature. APEx
has smaller area and lower power consumption than the other approximate adders in the literature. As a case
study, the approximate adders are used in video encoding application. LEADx provided better quality than
the other approximate adders for video encoding application. Therefore, our proposed approximate adders
can be used for efficient FPGA implementations of error tolerant applications.

INDEX TERMS Approximate computing, approximate adder, FPGA, low error, low power, LUT.

I. INTRODUCTION
Approximate computing trades off accuracy to improve the
area, power, and speed of digital hardware. Many computa-
tionally intensive applications such as video encoding, video
processing, and artificial intelligence are error resilient by
nature due to the limitations of human visual perception
or nonexistence of a golden answer for the given problem.
Therefore, approximate computing can be used to improve
the area, power, and speed of digital hardware implementa-
tions of these error tolerant applications.

A variety of approximate circuits, ranging from system
level designs [1]–[4] to basic arithmetic circuits [5], have
been proposed in the literature. Adders are used in most
digital hardware, not only for binary addition but also for
other binary arithmetic operations such as subtraction, multi-
plication, and division [6]–[8]. Therefore, many approximate
adders have been proposed in the literature [9]–[24]. All

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

approximate adders exploit the fact that critical path in an
adder is seldom used.

Approximate adders can be broadly classified into the
following categories: segmented adders [10], which divide
n-bit adder into several r-bit adders operating in parallel;
speculative adders [9], which predict the carry using only
the few previous bits; and approximate full-adder based
adders [12]–[17], which approximate the accurate full-adder
at transistor or gate level. Segmented and speculative adders
usually have higher speeds and larger areas than accurate
adders [5], [13]. Approximate full-adder based approximate
n-bit adders use m-bit approximate adder in the least signif-
icant part (LSP) and (n − m)-bit accurate adder in the most
significant part (MSP), as shown in Fig. 1.

Most of the approximate adders in the literature have
been designed for ASIC implementations. These approxi-
mate adders use gate or transistor level optimizations. Recent
studies have shown that the approximate adders designed
for ASIC implementations either do not yield the same
area, power, and speed improvements when implemented
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FIGURE 1. Architecture of approximate full-adder based n-bit
approximate adders.

on FPGAs or fail to utilize FPGA resources efficiently to
improve the output quality [20], [26].

This is mainly due to the difference in the way logic
functions are implemented in ASICs and FPGAs. The basic
element of an ASIC implementation is a logic gate, whereas
FPGAs use lookup tables (LUTs) to implement logic func-
tions. Therefore, ASIC based optimization techniques cannot
be directly mapped to FPGAs.

FPGAs are widely used to implement error-tolerant appli-
cations using addition andmultiplication operations. The effi-
ciency of FPGA-based implementations of these applications
can be improved through approximate computing. Only a
few FPGA specific approximate adders have been proposed
in the literature [19]–[23]. These approximate adders focus
on improving either the efficiency or accuracy. Therefore,
the design of low error efficient approximate adders for
FPGAs is an important research topic.

In this paper, we propose a methodology to reduce the
error of approximate adders by efficiently utilizing FPGA
resources, such as unused LUT inputs. We propose two
approximate adders for FPGAs using our methodology based
on the architecture shown in Fig. 1.

We propose a low error and area efficient approximate
adder (LEADx) for FPGAs. It has lower mean square
error (MSE) than the approximate adders in the literature.
It achieves better quality than the other approximate adders
for video encoding application.

We also propose an area and power efficient approximate
adder (APEx) for FPGAs. Although its MSE is higher than
that of LEADx, it is lower than that of the approximate
adders in the literature. It has the same area, lower MSE
and less power consumption than the smallest and lowest
power consuming approximate adder in the literature. It has
smaller area and lower power consumption than the other
approximate adders in the literature.

We provide mathematical models to estimate the error
rate (ER), MSE, and mean absolute error (MAE) of the pro-
posed approximate adders.We compare the proposed approx-
imate adders with the approximate adders in the literature.

The rest of the paper is organized as follows. Section II
provides an overview of related works and the necessary

background to understand the proposed approximate adders.
Section III presents the proposed approximate adders and
the mathematical models to compute their error metrics.
Their error analyses and implementation results are given
in Section IV. Section IV also presents the results of using
approximate adders in video encoding as a case study. Finally,
Section V concludes the paper.

II. BACKGROUND
A. RELATED WORKS
Bit truncation in least significant bit positions is a well-known
approximation technique. In truncate adder, the output of LSP
is fixed to zero. Although, the truncate adder provides signif-
icant improvements in speed, area, and power consumption,
it has high error rate and MSE [12], [13].

Lower-part-OR adder (LOA) is proposed in [14]. Its LSP
consists of 2-input OR gates, whereas the MSP is accurate. A
carry is sent to theMSP if it is generated atmost significant bit
position of the LSP. An approximate adder, OLOCA, is pro-
posed in [15] by optimizing the LOA architecture. OLOCA
uses only two OR gates in the LSP to compute the two most
significant sum bits. Rest of the LSP is approximated to a
fixed value. An approximate adder with near-normal error
distribution (HOAANED) is proposed in [16]. HOAANED
has similar architecture to OLOCA, however, it uses more
resources to compute the two most significant sum bits of
LSP. Therefore, HOAANED has better quality than OLOCA
at the expense of slight increase in area.

Dutt et al. [17] proposed an approximate full adder based
multibit adder (AFA). The sum of each bit of LSP is computed
accurately whereas its respective carry out is equated to one
of the inputs.

In recent years, a few approximate adders are pro-
posed specifically for FPGAs. A LUT-based approximate
adder (LBA) is proposed in [19]. The LSP and MSP, both
perform accurate addition. A carry is passed to MSP only if
it is generated at the most significant bit (MSB) of the LSP.
If any other carry, that needs to be propagated to the MSP,
is detected, then all bits of LSP are set to 1. LBA has high
accuracy, but it does not provide performance improvement
compared to the accurate adder synthesized by FPGA synthe-
sis tool [20].

A methodology to design approximate adders (DeMAS)
for FPGAs is presented in [20]. The methodology is based
on an optimized truth table of approximate full-adder. Eight
different variants of multibit approximate adder are presented
using the optimized truth table. All these variants use same
number of LUTs but differ in their error metrics.

Quaternary addition based approximate adder using the
fast carry chains of FPGAs is presented in [21]. The accurate
quaternary adder uses two carry inputs and generates two
carry outputs. However, the authors in [21] proposed to use
only one carry in the quaternary addition, hence generating
an approximate result.

A single exact dual adder (SEDA) is proposed for FPGAs
in [22]. The adder can either perform accurate addition of
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TABLE 1. Probability of the length of a carry being equal to L bits.

single n-bit input or approximate addition of two n-bit inputs.
Carry of 2-bit addition is computed accurately, while the sum
bits are equated to inverse of carry out.

High speed segmented approximate adders (xUAV) for
FPGAs are proposed in [23]. Segmentation is done in 2,
3, or 5-bit groups for efficient mapping to LUTs. However,
the proposed adders use more area and consume more power
than accurate adder. These adders also have very large MAE
and MSE as the size of adder is increased.

B. LENGTH OF CARRY
The key principle of approximate addition is to shorten the
critical path of an adder by breaking the carry chain at one
or multiple positions. This technique improves the speed of
an adder at the expense of accuracy loss. In this section,
we briefly explain the rationale for this technique.

The length of a carry signal in n-bit binary addition is
defined as the number of bits it propagates before being killed
or regenerated. For example, if a carry signal is generated
at ith bit position and killed or regenerated at jth bit posi-
tion (j > i), the length of that carry signal is defined as
j− i bits.

In n-bit binary addition, the outgoing carry signal at any
bit position i is determined by the current and previous
input bits. Bit position i is said to generate a carry if both
the input bits at ith position are 1, propagate the incoming
carry if both the input bits at ith position are different, and
kill the incoming carry if both the input bits at ith position
are 0.

In the worst case, a carry signal is generated in the least
significant bit (LSB) and propagated to the most significant
bit (MSB). In this case, the length of carry signal is equal to
the adder bit width. However, the worst case rarely happens,
and the average length of a carry signal is usually much
shorter than the adder bit width [9].

We implemented and simulated n-bit accurate adder using
107 independent random number pairs extracted from uni-
formly distributed sample space between 0 and 2n−1. Based
on these simulation results, probability of the length of a carry
signal being equal to L bits is given in Table 1. As can be seen
from this table, the length of a carry signal is rarely longer
than 5 bits. The length of a carry signal is shorter than 5 bits
with more than 90% probability.

Since theworst case of carry propagation (length of carry=
n-bits) rarely happens, in most cases, the carry can be cor-
rectly predicted by considering only a few previous input
bits.

FIGURE 2. Simplified architecture of a slice in Xilinx Virtex 7 FPGA.

C. XILINX VIRTEX FPGA
The main logic resource in a Xilinx Virtex FPGA is con-
figurable logic blocks (CLBs) [27]. Each CLB contains two
slices. Simplified architecture of a slice in Xilinx Virtex
7 FPGA is shown in Fig. 2. Each slice is composed of 4
such elements with carry-chain cascaded in series. Therefore,
each slice has four 6-input LUTs. Each LUT can be used to
implement two 5-input combinational logic functions or one
6-input combinational logic function. Furthermore, each slice
also contains a 4-bit carry-chain and eight flip-flops.

An efficient FPGA-based implementation should be able to
effectively utilize these resources. This is particularly impor-
tant for implementing arithmetic functions that can utilize
the fast carry-chains. Therefore, it is important to understand
how the arithmetic operations are implemented on FPGAs.
Particularly, we consider the mapping of a full adder to a
Xilinx FPGA.

Typically, a full adder is implemented as shown in (1) and
(2), where A and B represent the inputs, S is sum, and CIN
and COUT are carry-in and carry-out, respectively.

S = (A⊕ B)⊕ CIN (1)

COUT = (A⊕ B)CIN + AB (2)

However, when implementing a full adder on a Xilinx
FPGA, the synthesis tool rewrites (2) as (3).

COUT = (A⊕ B)CIN + (A⊕ B)B (3)

This simplification allows the reuse of A ⊕ B logic func-
tion for computing both S and COUT [28]. This term is used as
input to XOR gate for sum computation and as select input of
mux for selecting the appropriate signal for COUT. However,
since only 4-bit carry chain is available in a slice, an n-bit
adder uses n LUTs such that 4 inputs and one output of each
LUT are not used. These unused resources can be utilized to
implement additional logic with an adder without increasing
area.

III. PROPOSED DESIGN METHODOLOGY
The proposed design methodology uses the approximate full-
adder based n-bit adder architecture shown in Fig. 1. n-bit
addition is divided into n-bit approximate adder in the LSP
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TABLE 2. Effects of increasing the number of bits (k) for carry prediction
in a 64-bit approximate adder with 12-bits LSP.

and (n−m)-bit accurate adder in the MSP. Breaking the carry
chain at bit-position m generally introduces an error of 2m

in the final sum. The error rate and error magnitude can be
reduced by predicting the carry-in to the MSP (CMSP) more
accurately and by modifying the logic function of LSP to
compensate for the error.

The carry to the accurate part can be predicted using any
k-bit input pairs from the approximate part such that k ≤ m.
Most of the existing approximate adders use k = 1.
As discussed in Section II, FPGA implementation of accu-

rate adder uses only 2 inputs and 1 output of each 6-input
LUT. We propose to utilize the remaining 4, available but
unused, inputs of the first LUT of the MSP to predict CMSP.
Therefore, we propose to share the most significant 2 bits of
both inputs of the LSP with the MSP for carry prediction.

Sharing more bits of LSP with MSP will increase the
probability of correctly predicting CMSP which will in turn
reduce error rate. However, this will also increase the area
and delay of the approximate adder.

To analyze the tradeoff between the accuracy and perfor-
mance of an FPGA-based approximate adder with different
values of k , we performed synthesis and simulation experi-
ments on a Xilinx Virtex 7 FPGA.

The results for a 64-bit adder with 12-bits LSP using k bits
to predict CMSP are shown in Table 2. For k > 2, the error
rate reduces slightly at the cost of increased area and delay.
On the other hand, for k < 2, the delay improves marginally
at the cost of significant increase in the error rate.

Therefore, we propose using k = 2, as it provides good
balance between accuracy and performance of approximate
adders for FPGAs. In the proposed approximate adders,
a carry is passed to the MSP if it is generated at bit position
m − 1, or generated at bit position m − 2 and propagated at
bit position m − 1. The CMSP can be described by (4) where
Gi and Pi are the generate and propagate signals of the ith bit
position, respectively.

CMSP = Gm−1 + Pm−1Gm−2 (4)

The error in higher bit positions has more impact on the
error magnitude of an approximate adder. As described in
(4), the carry-in to MSP is predicted using two most sig-
nificant bits of LSP. These 2 bits effectively implement a
3-output function {CMSPSm−1Sm−2}. An error occurs in the
n-bit addition if a carry (Cm−2) is generated at bit position

FIGURE 3. Proposed 2-bit approximate adder (AAd1) used in MSBs of LSP.

FIGURE 4. Architecture of proposed approximate adders for FPGAs.

i < (m − 2) and that carry should be propagated to MSP.
In this case, the correct result should be {CMSPSm−1Sm−2}=
100. However, without any error reduction mechanism the
approximate result will be {CMSPSm−1Sm−2} = 000.
To reduce the error magnitude, we propose a 2-bit approx-

imate adder (AAd1) for computing Sm−1 and Sm−2. The
functionality of AAd1 is described by (5) and (6). AAd1 is
implemented using a single LUT as shown in Fig. 3. When
Cm−2 = 1, Pm−2 = 1, and Pm−1 = 1, the approximate result
will be {CMSPSm−1Sm−2}= 011, only 1 less than the accurate
result. For all other inputs, it will generate the accurate result.

Sm−2 = (Pm−2 ⊕ Cin)+ (Pm−1Cm−2) (5)

Sm−1 = (Pm−1 ⊕ Gm−2)+ (Pm−2Cm−2) (6)

For uniformly distributed inputs, the carry-in has equal
probability of being 1 or 0. The probability of inputs at
bit position i propagating a carry is Pi = 1/2. Therefore,
in the proposed n-bit approximate adders, the probability
of Sm−2 and Sm−1 generating an error is 0.125 as shown
in (7). Throughout this paper, Ex represents the cases when
hardware x generates an error.

Pr [EAAd1] = Pr [Cm−2 ∧ Pm−2∧Pm−1]

=
1
2
×
1
2
×
1
2
= 0.125 (7)
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TABLE 3. Truth table of proposed 2-bit approximate adder (AAd2) used
for approximation in least-significant m–2 bits of LEADx.

Architecture of the proposed approximate adders is shown
in Fig. 4. It uses 2 MSBs of LSP to predict the CMSP, whereas
their respective sum bits are computed using AAd1. AAd1 is
only suitable when the Cout of 2-bit inputs is predicted
accurately. Accurate prediction of Cout requires additional
resources or unused LUT inputs. Therefore, to design area
efficient approximate adders for FPGAs, AAd1 is not used
in the least-significant m − 2 bits of the LSP. In this paper,
we propose two n-bit approximate adders using the architec-
ture in Fig. 4. The two proposed n-bit approximate adders use
different approximate functions for the first m− 2 bits of the
LSP.

A. PROPOSED LOW ERROR AND AREA EFFICIENT
APPROXIMATE ADDER FOR FPGAs
In this section, we propose a low error and area efficient
approximate adder (LEADx) for FPGAs.

State-of-the-art FPGAs use 6-input LUTs. These LUTs
can be used to implement two 5-input functions. The com-
plexity of the implemented logic function does not affect
performance of LUT based implementation. A 2-bit adder has
5 inputs and two outputs. Therefore, a LUT can be used to
implement a 2-bit approximate adder.

For an area efficient FPGA implementation, we propose
to split the first m − 2 bits of LSP into d(m − 2)/2e groups

of 2-bit inputs such that each group is mapped to a single
LUT. Each group adds two 2-bit inputs with carry-in using
an approximate 2-bit adder (AAd2).

To eliminate the carry chain in LSP, we propose to equate
Cout of ith group to one of the inputs of that group (Ai+1). This
results in error in 8 out of 32 possible cases with an absolute
error magnitude of 4 in each erroneous case. To reduce the
error magnitude, we propose to compute the Si and Si+1
output bits as follows:
• If theCout is predicted correctly, the sum outputs are also
calculated accurately using standard 2-bit addition.

• If the Cout is predicted incorrectly and the predicted
value of Cout is 0, both sum outputs are set to 1.

• If the Cout is predicted incorrectly and the predicted
value of Cout is 1, both sum outputs are set to 0.

This modification reduces the absolute error magnitude to
2 in two cases, and to 1 in the other six cases. The resulting
truth table of AAd2 is given in Table 3. The error cases are
shown in red. Since AAd2 produces an erroneous result in 8
out of 32 cases, the error probability of AAd2 is 0.25 as shown
in (8).

Pr [EAAd2] = 0.25 (8)

The proposed LEADx approximate adder is shown
in Fig. 5. An n-bit LEADx uses d(m − 2)/2e copies of
AAd2 adder in the least significant m − 2 bits of the
approximate adder architecture shown in Fig. 4. In LEADx,
Cm−2 = Am−3. AAd2 implements a 5-to-2 logic function that
is mapped to a single LUT. Similarly, AAd1 is also mapped
to a single LUT. Therefore, dm/2e LUTs are used for the LSP.
These LUTs work in parallel. Therefore, the delay of LSP is
equal to the delay of a single LUT (tLUT ). The critical path of
LEADx is from the input Am−2 to the output Sn−1.

Fig. 6 shows an example of the functionality of
16-bit LEADx with 8-bit approximation. The outputs of bits
enclosed in dotted lines are computed using AAd1. The
outputs of the other bits of the approximate part (LSP) are
computed using three copies of AAd2. The carry-in to the
accurate part (CMSP) is predicted from the two MSBs of LSP
as shown in (4).

The error probability of n-bit LEADx depends on the
number of approximate 2-bit adders used in the approximate
part. Error in any of these 2-bit adders can contribute to the
error in the sum output. Therefore, the error probability of
LEADx is given as the union of error probabilities of the
individual 2-bit approximate adders. Let there be N copies
of AAd2 in LEADx and EAAd2−i represents the error in ith
copy of AAd2, then the error probability of LEADx can be
calculated as shown in (9).

Pr [ELEADx]

= Pr [EAAd1 ∨ EAAd2−1 ∨ EAAd2−2 . . . ∨ EAAd2−N ] (9)

Since error in two or more of these 2-bit adders can occur
concurrently, occurrence of error in these adders are not
mutually exclusive. Therefore, (9) can be evaluated using
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FIGURE 5. Proposed n-bit low error and area efficient approximate adder (LEADx).

FIGURE 6. Example of 16-bit LEADx with 8-bit approximation.

inclusion-exclusion principle [29]. For example, the error
probability of LEADx with 4-bits LSP, for uniformly dis-
tributed inputs, can be calculated as shown in (10).

Pr
[
ELEADx|m=4

]
= Pr [EAAd1 ∨ EAAd2]

= Pr [EAAd1]+ Pr [EAAd2]− Pr [EAAd1 ∧ EAAd2]

= 0.125+ 0.25− (0.125× 0.25)

= 0.34375 (10)

Similarly, the error probability of LEADx with 6-bits LSP,
for uniformly distributed inputs, can be calculated as shown
in (11).

Pr
[
ELEADx|m=6

]
= Pr [EAAd1 ∨ EAAd2 ∨ EAAd2]

= Pr [EAAd1]+ Pr [EAAd2]+ Pr [EAAd2]

−Pr [EAAd1 ∧ EAAd2]− Pr [EAAd1 ∧ EAAd2]

−Pr [EAAd2 ∧ EAAd2]+ Pr [EAAd1 ∧ EAAd2 ∧ EAAd2]

= 0.125+ 0.25+ 0.25−(0.125× 0.25)− (0.125× 0.25)

− (0.25× 0.25)+ (0.125× 0.25× 0.25)

= 0.50781 (11)

B. PROPOSED AREA AND POWER EFFICIENT
APPROXIMATE ADDER FOR FPGAs
In this section, we propose an area and power efficient
approximate adder (APEx) for FPGAs.

TABLE 4. Error characterization of constant approximate functions for
1-bit addition.

APEx is also based on the approximate adder architecture
shown in Fig. 4. For the least significant m − 2 bits of the
LSP, the aim is to find an approximate function with no data
dependency. Carry should neither be generated nor used for
sum computation. A 1-bit input pair at any bit position i ≤
(m− 2) should produce a 1-bit sum output only.
In general, any logic function with 1-bit output can be used

as an approximate function to compute the approximate sum
of 1-bit inputs at ith bit position. A constant 0 or constant 1 at
the output are also valid approximate functions. Fixing the
output to 0 or 1will reduce the area and power consumption of
the approximate adder because no hardware will be required
for sum computation.

We evaluated error metrics of both constant functions for
1-bit addition, as shown in Table 4. Fixing the output to
0 introduces error in 3 out of 4 cases with an average
error (AE) of −1 and MSE of 3/2 for uniformly distributed
inputs. Fixing the output to 1 introduces error in 2 out of 4
cases with 0 AE and MSE of 1/2 for uniformly distributed
inputs. Therefore, constant 1 provides a better approximation.

We further analyze the error metrics of n-bit approximate
adder architecture shown in Fig. 4 when approximate con-
stant functions are used in the least significant m − 2 bits of
its LSP. If the least significant m − 2 bits are fixed to 0, the
maximum error (ME) occurs when the inputs A0 to Am−3 and
B0 toBm−3 are all 1.With accurate addition, S1 to Sm−3 output
bits are all 1 and a carry is propagated to m − 2 bit position.
Fixing S0 to Sm−3 to 0 and carry-in for m − 2 bit position to
0 results in ME of 2m−1 − 2.
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FIGURE 7. Proposed n-bit area and power efficient approximate adder
(APEx).

If the least significant m − 2 bits are fixed to 1, the ME
occurs when the inputs A0 to Am−3 and B0 to Bm−3 are all 0.
With accurate addition, S0 to Sm−3 output bits are all 0 and
carry is not propagated to m − 2 bit position. Fixing S0 to
Sm−3 to 1 and carry-in for m − 2 bit position to 0 results in
ME of 2m−2 − 1. The ME of constant 1 is less than the ME
of constant 0.

Furthermore, assume that a constant value V is used to
approximate the function F = A+ B. The resulting absolute
error is defined as |F−V |. The aim is to find a constant value
V such that MSE is minimized. This is a well-known problem
with a well-defined solution: using mean of distribution of F
as V minimizes the MSE [30], [31].

Let us consider that A and B have uniform input dis-
tribution with values between 0 and 2n − 1, then F has a
symmetric triangular distribution in the range [0, (2n+1 −
2)] [18]. In the case of symmetric distribution, the mean and
median are the same and located at the center of the sample
space [32]. Therefore, mean and median of F are located at
2n − 1, which is the halfway point of [0, 2n+1 − 2]. The
binary representation of 2n − 1, in n + 1 bit sample space,
is 0111 . . . 1. Therefore, using constant 1 as the sum output
and 0 as carry-out minimizes the MSE of the approximate
output. If i bits are fixed to 1, the probability of error in the
sum output is calculated as shown in (12).

Pr [Econst1] =
2i − 1
2i

(12)

In the proposed APEx, the S0 to Sm−3 outputs are fixed to 1
and the Cm−2 is 0. This provides significant area and power
consumption reduction at the expense of slight quality loss.
It is important to note that this is different from bit truncation
technique which fixes both the sum and carry outputs to 0.
The ME of truncate adder is 2m+1 − 2 which is much higher
than ME of APEx (2m−2 − 1).
The proposed APEx approximate adder is shown in Fig. 7.

Same as LEADx, the critical path of APEx is from the input
Am−2 to the output Sn−1. Similar to (9), the error probability
of APEx can be calculated as shown in (13). When Cm−2 is
0, EAAd1 reduces to 0 according to (7). Therefore, the error
probability of APEx depends only on the number of output

FIGURE 8. Example of 16-bit APEx with 8-bit approximation.

bits fixed to 1.

Pr [EAPEx] = Pr
[
EAAd1|Cm−2=0 ∨ EConst1|i=m−2

]
=

2m−2 − 1
2m−2

(13)

Fig. 8 shows an example of the functionality of 16-bit
APEx with 8-bit approximation. The outputs of the bits
enclosed by dotted lines are computed using AAd1. The out-
puts of the other bits of the approximate part (LSP) are fixed
to 1. The carry-in to the accurate part (CMSP) is predicted from
the two MSBs of LSP as shown in (4).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present experimental results of the
proposed approximate adders, LEADx and APEx. We com-
pare LEADx and APEx with other FPGA-specific approxi-
mate adders in the literature: LBA [18], DeMAS [19], and
SEDA [21]. DeMAS can be built using different configura-
tions. For a given number of approximate bits, each of these
configurations has the same area. Therefore, we chose the
configuration with the lowest average error for comparison.

We also compare LEADx and APEx with power and area
efficient ASIC-based approximate adders in the literature:
AFA [17], HOAANED [16], and LOA [14]. Each of these
approximate adders is based on the approximate adder archi-
tecture shown in Fig. 1, where approximation is done only
in the LSP and the MSP is kept accurate. We also compare
the proposed approximate adders with the segmented and
speculative approximate adders in the literature.

A. ERROR METRICS
The functional models of these approximate adders are imple-
mented in C++. Error metrics of these approximate adders
are determined using their functional models for 16, 32, and
64-bit addition, with varying number of approximate bits,
using 107 uniform random numbers as inputs.
The error value for each input is calculated by subtracting

the accurate result from the approximate result. Error value
may be positive, negative, or zero. The average error (AE)
is defined as the average of all the error values. MAE, also
known as mean error distance [33], is the average of the abso-
lute values of all the error values. MAE is always positive.
MSE is the average of the squares of all the error values.
RMSE is the square root of MSE.
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FIGURE 9. Error distribution and error metrics of 16-bit approximate adders with 8-bit approximation.

The MAE and MSE of LEADx can be calculated using
(14) and (15), respectively. Similarly, the MAE and MSE of
APEx can be calculated using (16) and (17), respectively.
An empirical approach is used to determine these mathe-
matical models, i.e., these formulas are determined using
experimental results.

MAELEADx =
(

3
16
× 2m−2

)
+ 2m−9 (14)

MSELEADx ≈ 22m−7 + 22m−11 − 21.5m−9.2 (15)

MAEAPEx =
2m−2

3
(16)

MSEAPEx ≈
5
24
× 4m−2 (17)

As can be observed in these equations, error metrics of
the proposed approximate adders depend only on the number
of approximate bits (m), and they are independent of the bit
width (n) of the adder.

Error metrics and the error distribution of 16-bit approxi-
mate adders with 8-bit approximation are shown in Fig. 9. The
error distribution is plotted as a function of error value and its
respective percentage occurrence. As can be seen in Fig. 9,
the maximum errors of the proposed approximate adders are
less than those of other approximate adders.

The error distribution of LEADx is skewed to the negative
side. This indicates that, in most of the cases, the result of
LEADx is less than the accurate result, leading to a negative
AE. Whereas, plotting the error distribution of APEx results
in a symmetrical triangular shape centered at zero, indicating

that APEx has equal probability of negative and positive
errors. Therefore, APEx has almost zero AE.

The error distribution of LBA indicates that its erroneous
output is always less than the accurate result. All other
approximate adders in the literature have almost symmetrical
error distribution. However, their error values are spread over
a wide range, resulting in much larger MAE and MSE as
compared to the proposed approximate adders.

The error metrics of 64-bit adders with 4 to 12-bits of
approximation are reported in Table 5. Our proposed approx-
imate adders have the lowest MSE. The MSE of the LEADx
is at least 20% less than that of the approximate adders in the
literature.

LBA has the lowest MAE. However, it has the worst
area and power consumption results, as reported in the next
section. TheMAE of the proposed approximate adders is sec-
ond only to that of LBA.

The ER of LEADx and APEx validate the analytical error
probability results given in Section II. All the approximate
adders, except LBA and LEADx, have high ER.

These adders follow the fail-small approach [25]. In the
fail-small approach, even if ER is high, error magnitudes
are small. The rationale behind this approach is that small
errors are naturally masked by algorithms, and they have less
impact on MSE. Therefore, they slightly degrade the quality
of applications.

The error magnitude of our proposed approximate adders
is significantly reduced by accurately predicting the carry
to the MSP using unused LUT inputs. AAd1 and AAd2,
both fully utilize the LUT inputs to achieve low error. The
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TABLE 5. Error metrics of 64-bit approximate adders.

LEADx is designed in a way that not only the error values
are reduced but also the number of error cases are reduced.
The experimental results show that LEADx has indeed higher
accuracy and lower MSE than the other approximate adders.
Similarly, the logic function of the approximate part of APEx
is determined to reduce the MSE. The experimental results
show that the MSE of APEx is indeed less than that of the
approximate adders in the literature.

B. IMPLEMENTATION RESULTS
All the approximate adders are implemented using Verilog
HDL. The accurate part of all the adders is identical and
implemented using addition operator. Verilog RTL codes are
synthesized and implemented on aXilinxVirtex 7 FPGAwith
speed grade 3 using Vivado 2020.1. AreaOptimized_high
strategy is used for synthesis, and default strategy is used for
implementation.

The qualitymetrics are extracted from post-implementation
timing simulations using 1 million uniform random numbers.
The quality metrics are cross verified with C++ simula-
tions. For power estimation, switching activity interchange

TABLE 6. FPGA implementation results of 16-bit adders with 8-bit
approximation.

format (SAIF) files are also generated from these post-
implementation timing simulations at 100MHz for all adders.
The power consumption of each approximate adder FPGA
implementation is estimated with Vivado 2020.1 using the
corresponding SAIF file.

The implementation results of 16-bit adders with 8-bit
approximation are given in Table 6. All the adders are imple-
mented with input and output registers. SEDA and LBA are
slower than the accurate adder because of carry propagation
in their LSPs. All other 16-bit approximate adders have the
same delay as the accurate adder. It is important to note that
their delay is limited by the maximum frequency of Virtex
7 FPGA. It does not necessarily mean that the critical path of
these adders is the same.

All the approximate 16-bit adders, except LBA, use fewer
LUTs than the accurate adder. Since an accurate adder is used
in the MSP of all these adders, the reduction in LUTs occurs
only in the LSP. Since LEADx performs 2-bit addition in a
single LUT, its LSP uses 50% fewer LUTs than the accurate
adder.

APEx and HOAANED use the lowest number of LUTs.
For these two adders, a significant reduction in number of
LUTs occurs because of the use of constant functions in their
LSPs. For other approximate adders, the reduction in number
of LUTs occurs because of the approximation techniques
used, which allow the synthesis tool tomerge two sumoutputs
to a single LUT.

LEADx consumes slightly less power than the accurate
adder. APEx consumes the lowest power among all the
approximate adders. For the 16-bit adder with 8-bit approxi-
mation, the power consumption of APEx is 29% less than that
of the accurate adder and 4.5% less than that of the second
lowest power consuming adder, HOAANED.

The LUTs vs MSE and power vs MSE graphs of 32-bit
approximate adders are given in Fig. 10. These results are
plotted for 4-bit to 20-bit approximation in a 32-bit adder. The
32-bit accurate adder uses 32 LUTs and consumes 10.75 mW
power.

While the number of LUTs used by most of the
approximate adders decreases linearly with the increase in
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FIGURE 10. Comparison of 32-bit approximate adders with 4-bit to 20-bit approximation (left to right). (a) LUTs vs MSE. (b) Power vs MSE.

approximation, their respective power reductions do not fol-
low the same trend. However, APEx provides significant
power reduction compared to the accurate adder at the cost
of a slight loss in accuracy.

LUTs, power consumption and delay reductions achieved
by 64-bit approximate adders with 16-bit approximation
compared to 64-bit accurate adder are shown in Fig. 11.
LEADx reduced the LUTs by 12.5% compared to the
accurate adder. APEx reduced the LUTs by 23.4% and
power consumption by 21% compared to the accurate
adder.

LBA performs worse than the accurate adder in all these
metrics. Among other FPGA specific adders, DeMAS pro-
vided no power reduction but reduced the LUTs by 11% com-
pared to the accurate adder. The performance of HOAANED
is compatible with APEx. However, as discussed earlier, it has
lower quality than both LEADx and APEx.

These results show that our proposed LEADx has smaller
area, lower power, and better quality than the FPGA specific
adders in the literature. The results show that DeMAS is
the most efficient FPGA specific approximate adder in the
literature.With 8-bits approximation, LEADx has 7% smaller
area and 86% lower MSE than DeMAS. LOA is one of the
most efficient ASIC-based approximate adders in the litera-
ture [5]. LEADx has better quality than LOA at the same cost
when implemented on an FPGA. With 8-bits approximation,
LEADx has 87% lower MSE than LOA at the same cost.
HOAANED is suitable for FPGA implementation. However,
APEx has less power and better quality than HOAANED at
the same cost, when implemented on an FPGA. APEx has
more than 60% lower MSE than HOAANED at the same
cost.

FIGURE 11. Area, power, and delay reduction achieved with 16-bit
approximation in 64-bit approximate adders compared to 64-bit accurate
adder.

C. COMPARISON WITH SEGMENTED AND SPECULATIVE
APPROXIMATE ADDERS
In this section, we compare the proposed approximate adders
with segmented and speculative adders in the literature;
Almost Correct Adder (ACA-I) [9], Accuracy Configurable
Adder (ACA-II) [11], Block-based Carry Speculative Adder
(BCSA) [24], Error-tolerant adder II (ETA-II) [10], and
xUAV [23].

The quality and implementation results of 16-bit adders
with different approximation amounts are given in Table 7.
These adders have same delay (1.35 ns). These adders are
implemented with input and output registers. Therefore,
although their critical paths are different, their speed is lim-
ited by the maximum frequency supported by Virtex 7 FPGA.

xUAV is an FPGA-specific segmented adder. Several con-
figurations of xUAV are proposed in [23]. We used two most
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TABLE 7. Comparison of 16-bit proposed approximate adders with 16-bit
segmented and speculative approximate adders.

TABLE 8. Impact of approximate adders on HEVC encoder bitrate and
PSNR.

efficient configurations; one with the lowest error (m = 5,
r = 1) and the other with low error and low area (m = 3,
r = 1).
The segmented and speculative adders follow fail-rare

approach [25]. They have low ER. But their error magnitudes
are usually large. Therefore, these adders have highMAE and
MSE. For example, ACA-I with 8-bit segmentation has only
1.5% ER. However, its ME is 215. Most of the errors that

occur in ACA-I have large magnitude, resulting in signifi-
cantly high MSE.

Among the segmented and speculative adders, BCSA with
8-bit segmentation has the best quality. ETA-II and ACA-II
have similar architecture. Therefore, their error metrics are
similar. However, for 8-bit segmentation, ACA-II ismore area
efficient than ETA-II.

LEADx and APEx have better quality, smaller area, and
lower power consumption than the segmented and speculative
adders. These results show that, for uniformly distributed
inputs, fail-small approach gives better quality than fail-rare
approach.

D. CASE STUDY: MOTION ESTIMATION IN VIDEO
ENCODING
We also assessed the impact of the proposed approximate
adders and the other approximate adders on video encod-
ing quality. C++ implementations of 8-bit adders with
4-bit approximation are integrated into High EfficiencyVideo
Coding (HEVC) reference software HM16.14 video encoder.

The approximate adders are used for sum of absolute
difference (SAD) computations for motion estimation (ME).
ME accounts for approximately 70% of the computational
complexity of video encoding [13]. The search strategy is set
to fast test zone search (TZ). The quality results are obtained
for four video sequences with different spatial resolutions.

For each approximate adder, PSNR result in dB and the
percentage increase in bitrate (1BR) with respect to using
accurate adder are shown in Table 8. LEADx has the least
quality loss, i.e., lowest PSNR decrease and lowest bitrate
increase, compared to the other approximate adders.

V. CONCLUSION
In this paper, two low error efficient approximate adders for
FPGAs are proposed. The first approximate adder, LEADx,
has lower MSE than the approximate adders in the literature.
It also achieves better quality than the other approximate
adders for video encoding application. The second approxi-
mate adder, APEx, has same area, lower MSE and less power
consumption than the smallest and lowest power consuming
approximate adder in the literature. It has smaller area and
lower power consumption than the other approximate adders
in the literature. ItsMSE is second only to LEADx. Therefore,
the proposed approximate adders can be used for FPGA
implementations of error tolerant applications.

REFERENCES
[1] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez, M. Shafique, and

A. B. J. Kokkeler, ‘‘MACISH: Designing approximate MAC accelerators
with internal-self-healing,’’ IEEE Access, vol. 7, pp. 77142–77160, 2019.

[2] E. Kalali and I. Hamzaoglu, ‘‘An approximate HEVC intra angular predic-
tion hardware,’’ IEEE Access, vol. 8, pp. 2599–2607, 2020.

[3] T. Ayhan and M. Altun, ‘‘Circuit aware approximate system design with
case studies in image processing and neural networks,’’ IEEE Access,
vol. 7, pp. 4726–4734, 2019.

[4] W. Ahmad and I. Hamzaoglu, ‘‘An efficient approximate sum of absolute
differences hardware for FPGAs,’’ in Proc. IEEE Int. Conf. Consum.
Electron. (ICCE), Las Vegas, NV, USA, Jan. 2021, pp. 1–5.

117242 VOLUME 9, 2021



W. Ahmad et al.: Low Error Efficient Approximate Adders for FPGAs

[5] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, ‘‘A review, classification,
and comparative evaluation of approximate arithmetic circuits,’’ ACM J.
Emerg. Technol. Comput. Syst., vol. 13, no. 4, pp. 1–34, Aug. 2017.

[6] A. C. Mert, H. Azgin, E. Kalali, and I. Hamzaoglu, ‘‘Novel approximate
absolute difference hardware,’’ in Proc. 22nd Euromicro Conf. Digit. Syst.
Design (DSD), Kallithea, Greece, Aug. 2019, pp. 190–193.

[7] N. Van Toan and J.-G. Lee, ‘‘FPGA-based multi-level approximate mul-
tipliers for high-performance error-resilient applications,’’ IEEE Access,
vol. 8, pp. 25481–25497, 2020.

[8] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi, ‘‘Design, eval-
uation and application of approximate high-radix dividers,’’ IEEE Trans.
Multi-Scale Comput. Syst., vol. 4, no. 3, pp. 299–312, Jul. 2018.

[9] A. K. Verma, P. Brisk, and P. Ienne, ‘‘Variable latency speculative addition:
A new paradigm for arithmetic circuit design,’’ in Proc. Design, Automat.
Test Eur. (DATE), Munich, Germany, Mar. 2008, pp. 1250–1255.

[10] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo, ‘‘Enhanced low-power high-
speed adder for error-tolerant application,’’ in Proc. Int. SoC Design Conf.,
Incheon, South Korea, Nov. 2010, pp. 323–327.

[11] A. B. Kahng and S. Kang, ‘‘Accuracy-configurable adder for approximate
arithmetic designs,’’ in Proc. 49th Annu. Design Automat. Conf. (DAC),
New York, NY, USA, 2012, pp. 820–825.

[12] V. Gupta, D.Mohapatra, A. Raghunathan, and K. Roy, ‘‘Low-power digital
signal processing using approximate adders,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013.

[13] W. Ahmad, B. Ayrancioglu, and I. Hamzaoglu, ‘‘Comparison of approx-
imate circuits for H.264 and HEVC motion estimation,’’ in Proc. 23rd
Euromicro Conf. Digit. Syst. Design (DSD), Kranj, Slovenia, Aug. 2020,
pp. 167–173.

[14] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, ‘‘Bio-inspired
imprecise computational blocks for efficient VLSI implementation of soft-
computing applications,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,
no. 4, pp. 850–862, Apr. 2010.

[15] A. Dalloo, A. Najafi, and A. Garcia-Ortiz, ‘‘Systematic design of an
approximate adder: The optimized lower part constant-OR adder,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1595–1599,
Aug. 2018.

[16] P. Balasubramanian, R. Nayar, D. L. Maskell, and N. E. Mastorakis,
‘‘An approximate adder with a near-normal error distribution: Design, error
analysis and practical application,’’ IEEE Access, vol. 9, pp. 4518–4530,
2021.

[17] S. Dutt, S. Nandi, and G. Trivedi, ‘‘Analysis and design of adders for
approximate computing,’’ ACM Trans. Embedded Comput. Syst., vol. 17,
p. 40, Dec. 2017.

[18] D. Celia, V. Vasudevan, and N. Chandrachoodan, ‘‘Optimizing power-
accuracy trade-off in approximate adders,’’ in Proc. Design, Automat. Test
Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2018, pp. 1488–1491.

[19] A. Becher, J. Echavarria, D. Ziener, S. Wildermann, and J. Teich, ‘‘A LUT-
based approximate adder,’’ in Proc. IEEE 24th Annu. Int. Symp. Field-
Program. Custom Comput. Mach. (FCCM), Washington, DC, USA,
May 2016, p. 27.

[20] B. S. Prabakaran, S. Rehman, M. A. Hanif, S. Ullah, G. Mazaheri,
A. Kumar, and M. Shafique, ‘‘DeMAS: An efficient design methodol-
ogy for building approximate adders for FPGA-based systems,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany,
Mar. 2018, pp. 917–920.

[21] S. Boroumand, H. P. Afshar, and P. Brisk, ‘‘Approximate quaternary addi-
tion with the fast carry chains of FPGAs,’’ in Proc. Design, Automat. Test
Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2018, pp. 577–580.

[22] C. K. Jha, K. Prasad, A. S. Tomar, and J. Mekie, ‘‘SEDAAF: FPGA based
single exact dual approximate adders for approximate processors,’’ inProc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Seville, Spain, Oct. 2020, pp. 1–5.

[23] T. Nomani, M. Mohsin, Z. Pervaiz, and M. Shafique, ‘‘XUAVs: Towards
efficient approximate computing for UAVs-low power approximate adders
with single LUT delay for FPGA-based aerial imaging optimization,’’
IEEE Access, vol. 8, pp. 102982–102996, 2020.

[24] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha, and
M. Pedram, ‘‘Block-based carry speculative approximate adder for energy-
efficient applications,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67,
no. 1, pp. 137–141, Jan. 2020.

[25] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, ‘‘Analysis
and characterization of inherent application resilience for approximate
computing,’’ in Proc. 50th Annu. Design Automat. Conf. (DAC), Austin,
TX, USA, 2013, pp. 1–9.

[26] Y. Wu, C. Shen, Y. Jia, and W. Qian, ‘‘Approximate logic synthesis for
FPGA by wire removal and local function change,’’ in Proc. 22nd Asia
South Pacific Design Automat. Conf. (ASP-DAC), Chiba, Japan, Jan. 2017,
pp. 163–169.

[27] Xilinx. (Sep. 2016). 7 Series Configurable Logic Block. Accessed: 2021.
[Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf

[28] A. Ehliar, ‘‘Optimizing Xilinx designs through primitive instantiation,’’ in
Proc. FPGA World Conf., Copenhagen, Denmark, 2010, pp. 20–27.

[29] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electri-
cal Engineering. Upper Saddle River, NJ, USA: Prentice-Hall, 2008.

[30] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice, 2nd ed. Melbourne, VIC, Australia: OTexts, 2018.

[31] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[32] D. P. Doane and L. E. Seward, ‘‘Measuring skewness: A forgotten statis-
tic?’’ J. Statist. Educ., vol. 19, no. 2, pp. 1–18, Jul. 2011.

[33] C. Niemann,M. Rethfeldt, andD. Timmermann, ‘‘Approximatemultipliers
for optimal utilization of FPGA resources,’’ inProc. 24th Int. Symp. Design
Diag. Electron. Circuits Syst. (DDECS), Vienna, Austria, Apr. 2021,
pp. 23–28.

WAQAR AHMAD received the B.S. degree
in electronics engineering from Air University,
Islamabad, Pakistan, in 2007, and the M.S.
degree in computer sciences and technology
from Northwestern Polytechnic University, Xi’an,
China, in 2011. He is currently pursuing the
Ph.D. degree in electronics engineering with
Sabanci University, Istanbul, Turkey. His research
interests include approximate computing, FPGA
design optimization, and energy-efficient digital

hardware design for video coding.

BERKE AYRANCIOGLU received the B.S. degree
in electronics engineering from Sabanci Uni-
versity, Istanbul, Turkey, in 2019, where he is
currently pursuing the M.S. degree in electron-
ics engineering. His research interests include
low-power and high-performance digital hardware
design, FPGA design, video compression, and
approximate hardware design.

ILKER HAMZAOGLU (Senior Member, IEEE)
received the B.S. and M.S. degrees in computer
engineering from Bogazici University, Istanbul,
Turkey, in 1991 and 1993, respectively, and the
Ph.D. degree in computer science from the Uni-
versity of Illinois at Urbana–Champaign, IL, USA,
in 1999. He worked as a Senior and Principle Staff
Engineer with Multimedia Architecture Labora-
tory, Motorola Inc., Schaumburg, IL, USA, from
August 1999 to August 2003. He is currently an

Associate Professor with Sabanci University, Istanbul, where he has been
working as a Faculty Member, since September 2003. His research inter-
ests include low-power digital hardware design for video processing and
compression, system-on-chip (SoC) ASIC and FPGA design, approximate
computing, and high level synthesis.

VOLUME 9, 2021 117243


