
Received July 12, 2021, accepted August 10, 2021, date of publication August 24, 2021, date of current version September 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3107236

Topology Independent Multipath
Routing for Data Center Networks
NATAŠA MAKSIĆ , (Member, IEEE)
School of Electrical Engineering, University of Belgrade, 11120 Belgrade, Serbia

e-mail: maksicn@etf.rs

ABSTRACT Data center communication networks are characterized by fast and intensive traffic changes,
to the extent that a statistical approach to routing has significant drawbacks. This paper proposes the first
routing solution that takes into account every data center flow. In order to achieve the required performance,
the proposed algorithm operates in the data plane, i.e. in the packet processing pipeline of the programmable
packet forwarding chips. Route updates are triggered by the arrival of new flows, and are immediately
transferred to the upstream switches in order for them to direct newly arriving flows along the best path. This
enables the proposed algorithm to handle fast and intensive traffic changes, such as large-scale flow incast
communication patterns which historically presented challenges to the data center routing algorithms. With
the explicit knowledge of the current path state, the proposed algorithm can improve routing performance in
the data center topologies used today. Additionally, being able to operate with high performance in arbitrary
topology, the proposed solution can enable the introduction of new topologies into the data center networks,
instead of topologies designed with the goal of supporting equal-cost multipath routing which are dominant
in modern data centers.

INDEX TERMS Routing protocols, communication system traffic control, packet switching, programmable
data plane, data center routing, multipath routing.

I. INTRODUCTION
Data centers have enabled the modern information soci-
ety. They belong to the biggest and most important tech-
nological investments. Data center communication networks
are a critical part of data centers, as they transfer data
between thousands of computers which perform data pro-
cessing and storage. Yet, packet routing in the data center
networks is performed using ECMP (Equal-Cost MultiPath
routing), decades-old algorithm, which is oblivious to traffic
properties.

In order to be fast enough to react to fast traffic changes,
path reconfigurations must not use CPUs (Central Process-
ing Unit) which traditionally calculate paths within routers.
CPU operations are significantly slower than the operations
in the data plane: while the control plane is determiningwhere
to direct the flow, the congestion will already have occurred.
Path selection needs to operate at the same speed as the
packet forwarding, and hence, they need to be located in the
packet processing pipeline of the high-performance packet
forwarding chips in the switches. ECMP itself operates in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Tu Ngoc Nguyen .

packet processing pipeline: it assigns a packet to one of the
equal-cost ports by looking at the five fields in the IP packet
header (source and destination IP address, transport protocol
type, and source and destination transport layer port). In the
case of arbitrary topology, this method of forwarding is not
sufficient, and we need to transfer information about link
utilizations between switches in order to accomplish the goal
ofmultipath routing: even link utilizations and the consequent
congestion avoidance.

The simplicity of ECMP has enabled its standardization
and implementation. The implementation of more complex
routing algorithms in the traditional data center switches
would be a lengthy process, which would need to bring
together different equipment vendors. However, recent devel-
opments in programmable data plane chips have enabled the
introduction of new protocols, without the lengthy process of
standardization and implementation in the packet forwarding
chips.

The main obstacle in using programmable data plane
chips is their restricted processing capabilities. The packet
processing pipeline needs to process packets at the
line rate, and to introduce as short a packet delay as
possible.

128590
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7964-3767
https://orcid.org/0000-0001-7184-4102


N. Maksić: TIMP for Data Center Networks

Recently, data center routing solutions based on network
scanning were proposed in the literature. These solutions will
be discussed in the next chapter. In short, they collect network
information along the way by using additional headers or
special probe packets. Switches use the collected informa-
tion for directing traffic. The main limitation of this kind
of routing is the duration of network scans. Between scans,
routing is performed according to the last scan, and it may
not be adapted to traffic changes which have occurred in the
meantime.

This paper proposes TIMP (Topology Independent Multi-
Path routing), a data center routing solution which takes into
account each flow and generates routing updates immediately
upon detection of new flows. TIMP accomplishes this while
keeping the processing short and simple, in order for it to be
executed in the packet processing pipeline.

By reacting to every flow, TIMP is able to route traffic in
the situations when a large number of new flows appear in the
short time. These situations are typical for partition-aggregate
data center applications, which are typical for the data cen-
ters since they use multiple computers for performing time
critical tasks, such as a web search. This can improve the
performance of existing data center networks.

The important property of TIMP is that it offers
high-performance routing in arbitrary topology. ECMP rout-
ing results in an even traffic distribution only in topologies
with specific symmetry properties, and this is the reason why
certain topologies are dominant in the data centers. However,
data center topologies which are not suited to ECMP may
have other desirable properties. In this paper we will evaluate
the application of TIMP in the torus topology, hypercube
topology and the flattened butterfly topology. These topolo-
gies have applications for on-chip networks in multiprocessor
chips [1]. A reduced design complexity and connection length
of these networks could benefit data center performance and
price. TIMP can provide high-performance routing in other
non-ECMP topologies and also in ECMP friendly topolo-
gies, such as widely used leaf-spine topology. The evaluation
section also contains the evaluation for leaf-spine topology.

Results presented in this paper are completely repro-
ducible, with the publicly available P4 implementation,
the Mininet emulation setup of P4 program and the
ns-3 simulation code and scripts which execute simulations
and produce graphs [2].

This paper is organized as follows. The second section dis-
cusses related work. The third section presents an overview
of P4 language features. The fourth section describes TIMP
design. The fifth section presents the P4 implementation of
TIMP. The sixth section discusses TIMP performance. The
seventh section concludes the paper.

II. RELATED WORK
Published proposals in the research area of the high-speed
routing supported by the data plane include CONGA
(distributed CONGestion-Aware load balancing for data-
centers) [3], HULA (Hop-by-hop Utilization-aware Load

balancing Architecture) [4], DASH (Data-plane Adaptive
Splitting with Hash threshold) [6] and Contra [5]. These
proposals are based on periodic network scanning, either by
using additional packet headers or network probe packets.

CONGA,HULA,DASH andContra performflowlet-based
packet forwarding [7]. Flowlets are more suitable for imple-
mentation in the packet processing pipeline, since they are
detected according to the ECMP hash value, and not accord-
ing to the TCP (Transmission Control Protocol) connection
state machine. Flowlets expire after the predefined period
of inactivity. Hence, one flow may consist of a number of
flowlets, if it has periods of inactivity. Since all packets
belonging to a flowlet are forwarded along the same path,
flowlet based routing guarantees in-order packet delivery.

CONGA is designed for the leaf-spine topology. In this
topology the path of the packet is determined by the routing
decision in the leaf switch. CONGA operates only in leaf
switches. In CONGA, the leaf switch attaches additional
packet headers to the packets which are sent in the network.
These headers are used to collect the maximal link utilization
along the path. When the header reaches another leaf switch
then it is returned to the originating switch by attaching it to
another packet. The time by which the information returns
to the originating switch is approximately the network round
trip time and this is the time in which Contra can react to the
traffic changes.

HULA, DASH and Contra are based on periodic probes
which perform network scanning. While HULA and DASH
rely on some other routing protocol for the routing of
probes, Contra can operate without additional routing proto-
cols. Thus, Contra, like TIMP, has the ability to operate in
arbitrary topology.

HULA operates in each switch of the topology. HULA
probes carry the maximum link utilization encountered on
the path towards the switch which generated the probe. Each
switch in the topology generates probes periodically. When a
switch receives a probe on a port, it calculates the maximum
link utilization on the path over that port. This utilization
is calculated as a maximum of local utilization on the port
on which the probe arrived and the utilization received in
the probe. For the forwarding of the newly detected flowlet,
HULA uses the path with the minimal utilization.

Instead of using the best path for the new flowlet,
DASH selects one of the available paths. Path selection prob-
abilities are calculated according to the path utilizations. This
reduces the effect of routing all flowlets along the best path
during the inter-probe period. DASH uses both flowlet-based
routing and packet-based routing.

Contra is the generalization of the probe-based data plane
routing to any topology and various path selection criteria.
Contra uses probes both for path discovery and for carrying
path metric. We will discuss the most significant differences
between Contra and TIMP.

The difference between Contra and TIMP from the per-
formance standpoint is the speed of reaction to the arrival of
new flows. Contra will receive the path information upon the

VOLUME 9, 2021 128591



N. Maksić: TIMP for Data Center Networks

arrival of the probe and then it will take into account traffic
changes since the last probe. TIMP reacts to each new flow
immediately and informs other switches about the change of
path state. These properties determine the reaction to the fast
traffic changes. If we observe the TCP incast traffic pattern,
which is typical for data center applications, TIMP will be
able to respond as the TCP flows arrive, and Contra will
react only when the next probe arrives, which may be too
late to prevent congestion. In Contra, the probe period cannot
be shorter than half of the maximal round trip time in the
network. This limit reduces the minimal probe period as the
network diameter increases.

The second significant difference is the approach to
the prevention of control message loops. For this pur-
pose Contra uses mechanisms for loop prevention of
control messages from ad-hoc routing protocols DSDV
(Destination-Sequenced Distance-Vector Routing) and
Babel. These mechanisms are based on keeping track of
update identifiers. On the other hand, TIMP route updates
do not need mechanisms for loop prevention. This results in
significantly simpler implementation.

Despite the more complex algorithm for the prevention of
control message loops, Contra has the inherent possibility of
the occurrence of the transient loops, while TIMP cannot have
transient loops. For Contra, the authors propose detection of
transient loops by monitoring the packet TTL (Time To Live)
and reacting if it starts increasing. Such detection may last
long enough for the flow tomiss the flow completion deadline
in the data center applications.

TIMP is in essence a different routing protocol from
CONGA, HULA, DASH and Contra because it reacts to the
change of the network state instead of scanning the network
state using additional headers or periodic probes. Periodic
probes are typically used in ad-hoc routing protocols for
wireless networks. Ad-hoc routing protocols have features
adapted to simple devices with low power and processing
capabilities which should result in a simpler implementation
needed by the hardware processing pipeline. This makes their
solutions attractive for P4 implementations. However, as this
paper will show, it turns out that TIMP can be efficiently
implemented in P4. Routing updates triggered by the state
change have the major advantage of faster reaction to the
creation of new flows, since they are sent when the change
is detected and the probes are sent periodically. The time
period by which probes are sent limits the responsiveness of
the ad-hoc routing protocol. In ad-hoc networks this is not the
issue, but in the data center networks it is critical.

In order to keep the P4 implementation simple, the metric
used by the proposed TIMP implementation is the number
of flows on links. Balancing based on the number of flows
has proven to be successful in data center networks since it
is used by ECMP. With congestion control algorithms such
as Swift [8], load balancing based on the number of flows
is successfully used in data center networks. On the other
hand, CONGA, Contra, HULA and DASH use estimated link
utilization as a metric. Contra and DASH can use different

metrics but the evaluation in the paper [5] is performed
using an estimation of the link utilization. Estimation of link
utilization is more complex to implement since it requires
multiplication. Multiplication may not be available in
P4 implementation. Additionally, TCP incast can be detected
by the increased number of flowlets before the traffic
throughput is increased. This makes the number of flows a
better metric for the detection of TCP incast.

In other proposals, authors have used different techniques
in order to improve data center packet forwarding.

DRILL (Distributed Randomized In-network Localized
Load-balancing) [9] chooses output queue for each packet
based on the current local queue states. The paper concludes
that there is little reordering due to the small variance of
queue lengths in the network provided by DRILL. However,
for routing in asymmetric networks the local state is not
sufficient [3]. TIMP performs routing based on the state of
the entire paths.

Presto [10] improves ECMP performance by splitting the
flows into chunks. Servers direct these chunks across precon-
figured paths and handle packet reordering. Expeditus [11]
is designed for a 3-tier Clos network and it uses two stage
path selection based on the monitoring of the link utiliza-
tion and on the control message exchange between ToR
(Top of Rack) switches during the start of the new flow. Both
Presto and Expeditus are designed for special topologies, and
TIMP can operate in arbitrary topology.

LB-SPR (Load Balanced Shortest Path Routing) [12] and
LB-ECR (Load Balanced Equal-Cost Routing) [13], [14]
propose congestion avoidance in the data center networks
by using optimized two-phase load balancing. This enables
the application of non-ECMP topologies in the data center
networks by providing load balancing parameters based on
the current communication demands in the network. Since
the load balancing parameters are calculated in the control
plane, these protocols do not have the ability to react to traffic
changes at the level of the individual flows.

The main motivation behind TIMP is to provide a data
center routing algorithm which can update routing informa-
tion in the switches fast enough to be able to follow the fast
changing state of the data center network. With the ability to
follow the quickly arriving data center flows, routing protocol
would provide higher level of determinism in the data center
routing, and enable the data center network to operate more
consistently as a part of the one large computer, which data
centers aim to be.

III. P4 LANGUAGE FEATURES
P4 program defines operations in the packet processing
pipeline. In order to provide parallel processing, operations
of the algorithm are assigned to pipeline stages. As more
operations are added, more space in the chip is used, and the
chip becomes more expensive. Additionally, longer pipelines
introduce longer packet delays.

In Fig. 4 we can observe packet flow within the TIMP
implementation in the Portable Switch Architecture (PSA).

128592 VOLUME 9, 2021



N. Maksić: TIMP for Data Center Networks

FIGURE 1. TIMP packet flow in the portable switch architecture.

PSA defines the model of the P4 programmable switch. Data
packets and route update packets enter the switch and are
processed in the ingress pipeline. The ingress pipeline has the
ability to create new TIMP update packets by using the packet
cloning operation. Packets are then stored in the packet buffer,
and processed in the egress pipeline. Finally, data packets and
route update packets are sent to output ports.

P4 program defines the operations performed on the packet
in the ingress pipeline and in the egress pipeline. The pro-
cessing of each packet in the pipeline is described by the
P4 standard as a logical thread of execution. P4 program
is expressed as a sequence of operations conducted on the
thread-local memory state which represents the packet. Addi-
tionally, each pipeline stage can read and write its own mem-
ory state, which is preserved as the packets traverse that stage.
For that, pipeline stages use registers in the so-called global
memory.

Parallel processing in the pipeline stages introduces an
important limitation regarding access to memories which
keep the pipeline state. The thread-local memory can only
be accessed by operations on one packet as it traverses the
pipeline, while the global memory is accessible by all packets
traversing the pipeline. The limitation on the global memory
is that each register in that memory has to be accessed by
only one of the pipeline stages, in order to simplify memory
accesses and to improve switch performance. Due to this
feature, it is not possible to read the value from a location in
the global memory, then perform a calculation that requires
multiple pipeline stages, and finally to update the same loca-
tion in the global memory. For TIMP this is the case for
counting new flowlets: registers containing flow counts of the
pre configured ports should be read from the global memory,
then used to calculate output port for the new flowlet, and
finally the register for the selected output port should be
incremented.

Such operation may be performed using another P4 lan-
guage feature, recirculation, which allows for the packet to
be returned from the end of the egress pipeline to the begin-
ning of the ingress pipeline. In the case of counting flowlets
on ports, an update can carry the identifier of the port for
which the flow was added or removed. As the recirculation
introduces new packets to the pipeline, it can increase latency
of data packets and should be used carefully. We discuss the
impact of updates in TIMP in sections IV-E and IV-F.

P4 implementations also impose constraints on arithmetic
operations: multiplication and division are reduced or com-
pletely removed from implementations. The only arithmetic
operations that TIMP uses are addition and subtraction, which

enables its implementation on available P4 programmable
chips.

IV. TIMP DESIGN
TIMP needs to be simple enough for the data plane imple-
mentation and it has to provide high-performance routing.
This section explains the design decisions involved in devel-
oping TIMP.

If we observe data center traffic, there is a general need
for flows to be transmitted as fast as possible. However, data
center traffic is not uniform in time. An important traffic
pattern that needs to be handled is the TCP incast, which
occurs in partition-aggregate applications typical for data
centers.

In order to be able to handle the TCP incast, TIMP switches
generate route update packets when they detect new flowlets,
and send them to the upstream switches on the paths to the
destination of the new flowlet. The upstream switches are
then able to select the best path for the arriving flows.

Obviously, this is the fastest possible update which can be
sent to the upstream switches. The update is sent upstream
as the first packet of the new flowlet is detected, before any
other packet is processed. If required, the update interval can
be shortened by using priority queues for the route update
packets.

The question that arises is how many initial packets of
the new flows can already be queued to be processed in the
switch which generates the update. If we assume a queue size
of 100 kB per port and a link speed of 10 Gb/s, the entire
queue will be processed in 80 µs. In the partition-aggregate
applications, one aggregation server will partition the tasks
to many worker servers, which need to answer within a given
time, which is usually expressed in tens of milliseconds [15].
Processing in the worker servers involves using services of
the server’s operating system, such as disk access and net-
work access. Just the task switching within these services
can take tens of microseconds [16], and the access to the
hard drive, network, as well as the access to the processing
time, depend on the activity of other applications on that
server. Thus, the variations of the processing time in the
worker servers will most likely be larger than 80 µs. Addi-
tional variations of flowlet delay will occur in the network,
since the packets fromworker servers may traverse links with
different delay due to queueing, or a different number of links
on their path. Hence, TIMP will be able to perform load
balancing of the flows belonging to TCP incast.

A. PATHS
ECMP requires graphs containing equal-cost paths to be
precalculated. Possible ports for each destination need to
be configured within the ECMP forwarding function in the
switches. In most cases, path calculation is performed by
routing protocols such as OSPF (Open Shortest Path First) or
IS-IS (Intermediate System to Intermediate System). In the
data center networks, BGP (Border Gateway Protocol) is
commonly applied for the path computation [17].

VOLUME 9, 2021 128593



N. Maksić: TIMP for Data Center Networks

Similarly, TIMP also requires a precalculated graph of
links leading towards each destination switch. P4 program
needs to be as simple as possible and to contain only elements
necessary for path selection. Calculation of these graphs
can be performed by control plane, either by the distributed
routing protocol, for example BGP, or by the centralized
controller. The implementation presented in this paper uses a
centralized controller because it is simpler to implement, and
there are no disadvantages of using the centralized controller
over BGP for this purpose. Pre-calculated graphs have to be
loop free.

Precalculated graphs provide TIMP with another advan-
tage: simplified processing of route update packets. For each
destination, updates will be forwarded along a pre-calculated
graph towards predecessor switches. With this functionality,
TIMP does not need a mechanism to prevent the route update
loops. Mechanisms for the loop prevention of routing updates
are generally present in routing protocols but they would
increase complexity of P4 implementation.

The task of pre-calculating a graph of possible paths
towards one destination is surprisingly simple. This task is
equivalent to the task of assigning one arrow to each link,
and making sure that arrows do not create closed paths. The
task of assigning arrows can even be performed by a human
operator who wants to add a possible packet traffic detour.

In practice, calculation of TIMP forwarding graph and
checking for loops will be automated with more or less
sophisticated algorithms. In this evaluation, the following
simple algorithm is used:
• for each destination calculate depth first search paths
from each node to that destination,

• sort paths by length,
• add paths one by one to the set of selected paths. Each
path is added if it does not create a loop with previously
added paths.

This algorithm is one of the many possible path selection
algorithms, and its purpose is to illustrate the performance of
TIMP in this evaluation. Figure 2 shows switches in a simple
network, and paths towards switch 0 for ECMP and TIMP.

We can notice that both ECMP and TIMP have the same
principle: arrows which lead towards the destination do not
create paths with loops. The difference is that ECMP will use
only links which lead to a destination with equal-cost, and
TIMP can use all links.

In TIMP, as in ECMP, the information on ports which lead
to each destination switch is preconfigured in the appropriate
P4 table in the switch. TIMP will use this information during
the path selection.

Github repository with the ns-3 TIMP implementation [2]
contains simulation of partition-aggregate application in the
network shown in Fig. 2, along with the script which executes
simulation and generates graphs.

The partition-aggregate architecture is dominant in appli-
cations which distribute processing and data storage across
many servers [15]. Large data sets used in these applications
cannot be stored on one server. Hence, the processing will

FIGURE 2. ECMP and TIMP paths. Arrows represent graph of paths
leading to the switch 0. Arrows define ports between which switches can
choose to forward flowlets to the switch 0. ECMP decides based on the
hash value of the packet, and TIMP decides based on path state.

simultaneously be executed on many worker servers, and the
results will be returned to the aggregation server for further
processing. In the evaluation, we simulate the flows which
carry the results from the worker servers to the aggregation
server. The critical goal of a data center routing algorithm is
to be able to route these flows which are generated practically
simultaneously, and need to finish as fast as possible in
order to enable partition-aggregate applications to meet their
processing deadlines.

Figure 3 displays the difference in TIMP and ECMP per-
formance in the case of two partition-aggregate applications
in which response flows are sent from computers attached to
switches 3-12 to two computers attached to switch 0. Figure 3
shows flow completion times for each of 20 flows. The graphs
illustrate that, in this case, TIMP flow durations are half of the
ECMP flow durations.

FIGURE 3. Flow completion times for 20 simultaneous flows in the
topology from Figure 3. The destinations of the flows are servers attached
to switch 0, and sources are servers attached to other switches in the
network. TIMP provides significantly better load balancing.

In this topology, TIMP has more paths available and
flow completion time is about half of flow completion
times with ECMP. Flow completion times are important for
partition-aggregate applications since they set a limit for

128594 VOLUME 9, 2021



N. Maksić: TIMP for Data Center Networks

acquiring answers from computers that perform subtasks.
Finally, due to loop-free precomputed paths, micro-loops for
data packets cannot be created either.

B. DESTINATIONS
TIMP destinations are defined with respect to the packet
IP addresses. The IP address is translated to the desti-
nation identifier by performing the longest prefix match.
TIMP destination will typically include the address range
of servers connected to one ToR switch. TIMP paths are
calculated for each destination.

Translation from the packet destination address to the des-
tination identifier is performed using the packet processing
pipeline table populated by the controller. This table performs
the longest prefix match on the destination IP address. In a
separate table, the controller provides the list of ports which
belong to the paths toward destination. Data packets are sent
to the output ports on their way to their destinations, and
routing updates are sent to the input ports along the precom-
puted path. More details of the implementation are presented
in Section V.

C. FLOWLETS
The common approach with flow-based routing is to use
flowlets [7], instead of flows. Instead of tracking active time
of flow on the TCP level, which is a complex operation,
flowlets are limited to periods of flow in which packets are
transmitted at high enough rates. If a pause occurs in the
packet transmission, the flowlet is considered to be finished.
In that case, the following packets can be routed along differ-
ent paths as part of the new flowlet.

D. METRIC
ECMP successfully provides data center routing by dis-
tributing the flowlets among equal-cost paths evenly. Since
this method of load balancing has been proven in practice,
the goal of TIMP is also to distribute flowlets evenly across
paths. The path metric used in TIMP is the maximal number
of flowlets on any of the links along the path to the destina-
tion. TIMP will direct the new flowlet along the path with
minimal metric.

In the P4 implementation described in Section V, the num-
ber of flowlets on a link is calculated by counting hash table
entries.

E. INTER-SWITCH UPDATES
TIMP update packets are exchanged between neighbouring
switches. Each update packet carries the identifier of the
destination switch and a changed price for that destination.
This simple packet structure simplifies packet generation and
processing in order to keep the P4 program simple.

The destination switch in the update packet is the desti-
nation of the new flowlet, which triggered the update. Upon
a change in the distance to the destination, a switch sends
updates only to neighbours which precede that switch on the
paths toward the destination of that flowlet. A change in the

distance to the destination can be triggered by the detection
of a new flowlet or by the reception of the update packet.

Probe-based routing algorithms, Contra and DASH, have
the limitation that the probe period has to be longer than
half of the maximal round trip time between switches in
the network. This results in a longer update time than
in TIMP, and in the limited ability of these protocols to handle
TCP incast.

In order to obtain insight into the update time of TIMP
in the data center, we need to understand data center traffic
patterns. Since TIMP updates are triggered on the arrivals of
the flows, we need information on the flow inter-arrival times.
Such information for one of the Facebook data centres is
available in [18]. This paper reports median interarrival times
of flows of 2-8ms per server. If we assume an interarrival
time of 2ms per server and 40 servers per switch, we obtain
a flow-interarrival time of 50 µs per switch. Thus, in such a
network, the routing prices for each switch will be refreshed
on 50 µs or less, depending on the number of flowlets within
flows. As discussed, the upstream switches will be updated
on changes as the first packet of the flowlet is forwarded
toward the destination switch.When it reaches the destination
switch it will initiate the update of the switches which do not
belong to the path tree on which the packet is forwarded. The
update is forwarded through the switch only if its price toward
destination has changed since the last update.

F. INTRA-SWITCH UPDATES
In order to satisfy the locality of accessing the global memory,
TIMP introduces local update packets. The problem that
arises is storing a number of flowlets on switch ports in
the global memory. This number is needed as an input to
the algorithm which chooses the port for the new flowlet.
After the port is selected, the number of flowlets needs to
be incremented. If the global memory register is read at
the start of the processing and updated at the end of the
processing, that would break the condition that the global
memory register can be accessed from one stage. For that
reason, read/write access to this register is performed only
at the beginning of the pipeline, and local update packets
are used to carry the information about the addition and
removal of flowlets from the end of the input pipeline to its
beginning.

TIMP local update packets use the recirculate operation to
be returned to the start of the ingress processing. Local update
packets solve the problem of the localization of the memory
accesses to the registers containing local port utilizations.
As the next section explains, this problem arises since the
local port utilizations need to be read before the calculation
of the output port of the new flowlet, as it needs to be written
after the output port is selected.

V. P4 IMPLEMENTATION
The P4 code of the implementation, along with the Mininet
emulation setup, is available at Github [2].

VOLUME 9, 2021 128595



N. Maksić: TIMP for Data Center Networks

A. INGRESS PIPELINE PROCESSING
High-level P4 program flow diagram for ingress pipeline is
shown in Fig. 4. Each step in the figure is a group of logically
related operations. The following paragraphs discuss the pro-
cessing steps shown in Fig. 4.

FIGURE 4. Ingress pipeline - high-level program flow. The figure presents
processing steps, which types of packets are involved in those steps, and
which registers in the global memory are accessed.

In the first step from Fig. 4, the program uses P4 tables to
translate the destination IP address into the destination iden-
tifier using the longest prefix match. This is performed for
each data packet. For TIMP control packets, the destination
identifier is extracted from the packet. Then, for all packets,
the second P4 table is used to obtain the list of alternate next
hop ports based on the destination identifier. The destination
identifier and the list of alternate ports are stored in the packet
thread-local variables for use in the following stages of the
pipeline.

In the second step from Fig. 4, the P4 program handles
access to the registers which contain the path cost received
from the neighbours and the local port costs. The path costs
received from the neighbours are updated according to the
received TIMP route update packets. The local port costs
are updated using local update packets which are created
at the end of the ingress pipeline and recirculated to its
beginning. Finally, path costs for alternate ports are stored in
the thread-local variables for further processing of the packet.

The third step in the program flow presented in Fig. 4 is
the calculation of the best port. This part of the P4 program is
implemented using thread-local variables since all the needed
data was transferred to those variables in the previous two
steps. The calculation firstly uses the path costs received from
the neighbours and the local port costs to calculate the price
over each of the alternate ports for the destination identifier
obtained in the first step. Then the program finds the alternate
port with the smallest price.

The fourth step of the program flow presented in Fig. 4
performs operations on the hash table. The hash function is

performed on the packet header fields, similarly to ECMP.
The value of the hash function is the index into register arrays
which comprise the hash table. Register arrays contain output
port identifiers and the time at which the last packet belonging
to this flowlet traversed the switch. The detection of the new
flowlet occurs when the hash table entry calculated for the
packet is not valid. The detection of the flowlet expiration
is determined by the definition of the flowlet: the flowlet
will expire after a predefined period of time without packets.
Upon the change of the number of flowlets on any port,
the program will generate the local update packet which will
update pipeline global memory, as introduced earlier in this
chapter.

P4 pipeline executes processing only when the packet is
traversing the switch. Hence, the check for flowlet expiration
also has to be performed during the packet processing. The
TIMP P4 implementation uses each data packet to check hash
table entries for expiration. According to the rule that each
part of the global memory can be accessed from a single
pipeline stage, the implementation splits the hash table in two
parts in order to check two hash table entries for expiration.
The first of these two entries is determined by the hash value
of the packet. The second hash table entry is checked in the
other part of the hash table memory. If the processed packet
is control packed instead of a traffic packet, both parts of the
hash table memory are checked, based on the round robin
counters.

In the final step of the ingress pipeline processing,
the P4 program checks if there is a need to send local update
packets or route update packets, i.e. if the local port costs or
best path to the observed destination have changed.

Generation of the route update packets is accomplished by
using multicast groups. Multicast groups are defined with the
goal of creating an exact number of replicated packets.

The size of the hash table is determined according to
the expected number of flows and the available memory.
However, a small probability of a hash collision remains.
This probability is small enough not to affect flowlet load
balancing, but it has to be handled in order not to send packets
on the wrong path. TIMP has protection against misdirected
traffic due to hash collisions. The P4 program has the list of
alternate ports which lead to the destination, and it detects if
the hash table directs the packet to a port that is not on that
list. If that happens, the P4 program will direct the packet on
the correct alternate path with the smallest utilization.

B. EGRESS PIPELINE PROCESSING
The goal of the egress pipeline processing is to perform
header selection for packets which are generated using mul-
ticast groups.

If the packet which arrives at the egress pipeline has a valid
IP header, the egress pipeline checks if the port to which the
packet is directed is the port to which the data packet should
be sent. In that case, possible update headers are set to invalid,
and the data packet is forwarded on the next hop on its path to
the destination switch. The information to which port the data

128596 VOLUME 9, 2021



N. Maksić: TIMP for Data Center Networks

packet should be sent is added to the custom packet metadata
in the ingress pipeline.

If the port to which a packet is directed is a special recir-
culate port, then all headers except local update header are
disabled.

In other cases, all headers except route update header are
disabled, and the packet is sent as a route update packet.
This is possible because multicast groups are defined so that
they contain only ports to which any of the data packet, local
update packet or route update header should be sent.

C. TIMP PIPELINE LATENCY
TIMP introduces advanced routing protocol features to the
packet processing pipeline, which can cause increased length
of the packet processing pipeline. We will shortly assess the
complexity of the TIMP P4 program available at [2] in terms
of the number of required operations. If we observe Fig. 4,
only the second and third steps do not have a fixed length.
The second step scales linearly with the number of switch
ports, with two if-else constructs per port. The third step
scales linearly with the selected maximal number of alternate
paths. The egress pipeline has a fixed and small number of
operations.

In the implementation [2], we can observe that all steps
except the second step perform the number of operations
usual for P4 solutions. The second step will contain more
operations for high-radix switches. Each port introduces two
if-else blocks per port, which translates to two pipeline stages
per port. If we assume a pipeline clock frequency of 1GHz,
which results in the delay of 1ns per stage, each port will
introduce a delay of 2ns. The ports toward servers are not
included in TIMP. Packets arriving at their destination ToR
switch are forwarded towards the server using P4 table [2].

By observing P4 implementation available at [2], we can
conclude that TIMP delay will not exceed typical pipeline
latency of data center switch of 500ns [19].

D. DETECTION OF FLOWLET EXPIRATION
TIMP enables immediate detection of new flowlets and gen-
eration of update packets which transfer network state to other
switches.

Flowlet expires after a period of inactivity, i.e. after the
predefined time period Tf has expired since the last packet
of the flowlet traversed the switch. In this section we analyze
the additional time needed to detect flowlet expiration after
the time period Tf has expired.
TIMP checks hash table entries for the flowlet expiration

in a round-robin fashion, one entry with the traversal of
each data packet and two entries per update packet. For data
packets, TIMP also checks hash table location determined
by this packet. If we take into account guaranteed expiration
detection using round robin checkwe can simply calculate the
detection time based on the hash table size and the packet rate
passing through the pipeline.With the assumed pipeline clock
of 1GHz, with high traffic intensity, one packet would be pro-
cessed every nanosecond and a hash table with 65536 entries

would be completely scanned in 65 µs. This value is close
to the typical flow interarrival time per switch of 50 µs,
discussed in section IV-E. This implies that most of expired
flowlets will be detected between two flows towards any of
the destination switches.

Additionally, for many flowlets expiration detection time
will be shorter than the time needed by the periodic scan
to traverse the hash table. Detection time is reduced since
the hash table entry corresponding to the processed packet
is checked in addition to the round robin check.

VI. PERFORMANCE EVALUATION
We have implemented Contra, DASH and TIMP in the
ns-3 network simulator. This implementation is made pub-
licly available at [2]. Results presented in this paper can be
reproduced by following simple steps described in the github
page [2].

Figure 5 presents topologies used in the evaluation.
Switches are represented with circles. In the leaf-spine topol-
ogy, the servers are connected only to the switches in the
bottom row. In the other topologies each switch is used to
connect servers to the network.

FIGURE 5. Data center topologies used in the evaluation. Circles
represent switches. In leaf-spine topology servers are attached only to
servers in the lower row. In other topologies servers are attached to each
switch.

The goal of the evaluation is to measure flow completion
times (FCT) which are important indicators of the data cen-
ter performance. As mentioned before, partition-aggregate
applications set a time limit until the aggregation server waits
for responses from the worker servers, and FCT can show
the ability of routing algorithms to meet these deadlines.
In addition to that, the shorter FCT indicates better load bal-
ancing, i.e. more even network utilization and shorter paths
of packets.

A. LEAF-SPINE TOPOLOGY
Firstly, we evaluate the performance of data-plane routing
protocols in the leaf-spine topology. Leaf-spine is the dom-
inant topology in modern data-centers. The leaf-spine topol-
ogy used in the evaluation is shown in Figure 5. This topology
has twelve switches, with six leaf switches in the lower row
and six spine switches in the upper row. Each switch of the

VOLUME 9, 2021 128597



N. Maksić: TIMP for Data Center Networks

FIGURE 6. Flow completion times of partition-aggregate applications in
the leaf-spine topology. TIMP has shorter flow completion times than
other protocols.

lower row is connected to each of the switches in the top
row. Servers are connected only to the leaf switches, and
paths between any two leaf switches have the same length
of 2. Thus, ECMP can perform load balancing over six paths
between two leaf switches.

Leaf switches have the role of top-of-the-rack (ToR)
switches, to which servers located in one data center rack are
connected. In the simulation 42 servers are connected to each
of the leaf switches. All links in the simulation have 10 Gb/s
transmission speeds.

The background traffic is generated by random selection of
communicating servers using uniform distribution. The flow
sizes from the distribution of Web search workload used in
the HULA paper [4]. The flow sizes in Web search workload
are [5 kB, 7 kB, 10 kB, 20 kB, 30 kB, 50 kB, 100 kB, 500 kB],
with probabilities [0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.04, 0.01]
respectively.

The flow interarrival times are taken from the exponential
distribution. By adjusting the mean of the exponential dis-
tribution we obtain the target mean total throughput. In this
simulation, we select flow interarrival times typical for data
centers, as discussed in Section IV-E. With the flow inter-
arrival of 50 µs per switch and six switches which have
servers attached, we obtain network flow interarrival time
of 8.333 µs. With the distribution of flow sizes used in the
simulation, this results in the average total network traffic
of 19.86 Gb/s.

In the simulation we measure the flow completion times
of flows belonging to partition-aggregate applications. In the
applications the flows are transmitted from the worker servers
to the aggregation server. Each application has one aggre-
gation server and ten worker servers. The flows from the
worker servers start simultaneously and each flow has the
size of 30 kB. We start ten partition-aggregate applications.
All aggregation servers are located in the same rack, i.e. they
are attached to the same leaf switch. The worker servers
are attached to other switches in the network. The probe

FIGURE 7. Flow completion times of partition-aggregate applications in
three non-ECMP topologies. TIMP performs significantly better than
ECMP and Contra in torus topology. In hypercube and flattened butterfly
topologies the difference between TIMP and ECMP is smaller.

period for Contra and HULA is set to 256 µs. All simulation
parameters are available in the published implementation [2].

Figure 6 shows the measured flow completion times for six
routing schemes. The arrival time of the ith flow is averaged

128598 VOLUME 9, 2021



N. Maksić: TIMP for Data Center Networks

over five statistically independent runs. TIMP has lower flow
completion time than Contra, DASH and ECMP. This result
indicates that TIMP provides better performance than ECMP,
which is still the main routing protocol in the data center
networks. In this simulation Contra and DASH have longer
flow completion times. That can be attributed to imbalance in
flowlet distribution across spine switches, as a consequence
of inter-probe intervals during which routes are not updated.
As TCP incast flows arrive during time which is shorter
than the probe period, the same forwarding parameters in
switches will be used on all flows. The exception is when
the probe arrives during TCP incast, which will provide one
reconfiguration during the arrivals of the TCP incast flows.

B. NON-ECMP TOPOLOGIES
The goal of the simulations in this section is to assess the
performance of the partition-aggregate applications in
the alternative data center network topologies. We evaluate
the torus topology, flattened butterfly topology, and hyper-
cube topology, which are shown in Figure 5. In these topolo-
gies we cannot evaluate DASH since it relies on the second
routing protocol for the underlying routing. Thus, we evaluate
topology independent data-plane routing protocols Contra
and TIMP. Along with them, we evaluate ECMP in order
to examine the performance gains of the data-plane routing
protocols in these topologies.

In these simulations we use the same traffic setup as in the
leaf-spine simulation, described in the previous section. As in
the leaf-spine simulation, the mean value of the exponentially
distributed flow interarrival times is selected to obtain the
average flow interarrival time of 50 µs per switch, which
is typical for data center networks [18]. This results in the
average network flow interarrival times of 3.125µs for hyper-
cube topology and torus topology and 6.25 µs for flattened
butterfly topology used in the simulation. the average total
network traffic amounts to 52.96 Gb/s for hypercube and
torus, and 26.48 Gb/s for flattened butterfly.

Figure 7 presents simulation results. In torus topology,
TIMP has significantly shorter FCT than Contra and ECMP.
The difference between ECMP and TIMP is smaller in hyper-
cube and flattened butterfly topologies.

VII. CONCLUSION
TIMP has achieved the balance between the computational
constraints of the programmable packet processing pipelines,
and the need to detect, transfer and process network changes
as fast as possible. This is enabled by preparing loop-free
graphs of possible paths, and configuring them by the control
plane. With this information, the routing algorithm which
executes in the packet processing pipeline can limit the size
of its data structures and the number of operations.

Using precalculated graphs of possible paths, TIMP rout-
ing protocol operates on a set of simpler graphs, instead of
one network graph. One switch will store only information
on which of its ports belong to which graph. Then it selects
routes among a smaller number of ports, and it sends updates

only to upstream ports since the other switches do not need
them. Updates sent upstream are likely to encounter smaller
queue sizes during TCP incast compared to the queue sizes
in the downstream direction of the TCP incast flows. Finally,
processing of route update packets is simplified since one
packet contains information on one destination.

The precalculated graph can encompass all paths of prac-
tical importance. Hence, in the case of TCP incast, TIMP can
direct flows to longer paths in order to achieve more even net-
work utilization and avoid congestion. TIMP will direct flow
along a path in the preconfigured graph of alternative paths.
As stated in the section IV-A, the graph of alternative paths
can be configured using a centralized network controller. The
alternative paths may be static and symmetrical, or they may
be adjusted dynamically, as the network controller would
play a role of a slower, second level traffic optimizer. The
algorithm in the TIMP switch is ready to accept changes
in the alternative paths without the interruption of routing.
Additionally, in case of link failure, an algorithm in the switch
embedded software would be able to remove a port from a list
of ports belonging to the graphs. This action would ensure
that new flows are not directed to the failed link. It will also
instantaneously redirect traffic from the failed link to another
port, using the protection from hash collision described in
Section V-B. For each packet, this protection checks if the
output port belongs to the list of output ports and redirects
the packet to one of the ports from the list when needed.
This procedure doesn’t require any additional processing in
the packet processing pipeline.

The high performance of TIMP is accomplished by gen-
eration of the updates locally, in the switch which detects a
new flow. This results in the shortest distance to the switches
which need this information in order to properly direct flows.
Such transfer of informationmay be observed as a reservation
procedure. In this procedure a switch performs reservation as
a new flow appears and immediately updates other switches
which may select a path through this switch for some follow-
ing flow. The advantage of this reservation procedure is its
simplicity and speed. The simplicity enables implementation
in the packet processing pipeline. The speed of such reserva-
tion procedure stems from the fact that it does not require
coordination which involves flow endpoints and switches
along the path of the flow. Typically, reservation involves
communication protocol in which flow endpoints generate
messages which establish state of reservation along the path.
Such coordinationwould postpone the start of the time critical
flow and degrade the performance. The implementation in
the packet processing pipeline enables TIMP to inform other
switches at the speed at which new flows arrive, thus being
able to direct the new fastly arriving flows along the least
used path. This introduces determinism in data center routing
with the goal of handling traffic patterns generated by the
distributed applications. Since bursts of flows can be properly
routed using this procedure, applications are not constrained
by the possibility of congestion due to TCP incast. TIMP can
be combined with advanced congestion control algorithms

VOLUME 9, 2021 128599



N. Maksić: TIMP for Data Center Networks

such as Swift [8]. TIMP’s ability to distribute TCP incast
flows evenly across available paths combined with Swift’s
ability to regulate congestion window in order to achieve line
throughput without losses would provide high-performance
routing in the case of large-scale TCP incast.

By taking into account each flow, TIMP can perform well
at the times when data center applications generate flow
patterns for which the statistical approach to routing has
significant drawbacks. If a routing scheme would require
applications to provide traffic demands, that would intro-
duce additional delay. Instead, the applications communicate
freely, and TIMP switches exchange network state informa-
tion as they direct the first packet of the flow through the
network.

The performance evaluation has shown that TIMP
improves network performance in the widely used leaf-spine
data center topology. The performance evaluation has also
shown that TIMP enables the introduction of non-ECMP
topologies in data centers by providing high-performance
multipath routing. This would remove the requirement that
data center topologies need to have as many equal-cost paths
as possible, and enable benefits which alternative topologies
may provide. With its ability to provide routing in arbitrary
topology TIMP can facilitate the introduction of topologies
which may bring advantages such as shorter cable length,
ability for modular build using pre-built containers and other.

This paper is accompanied by the publicly available
ns-3 simulation code and P4 implementation of TIMP [2].
Since TIMP uses standard P4, it can be implemented in
existing switches that support P4, and used in existing data
center networks. Beside the flow completion time metrics
presented in this paper, the published ns-3 simulation code
has prepared scripts which generate results for the following
additional metrics: number of dropped packets, queue sizes
seen by arriving packets, routing overhead and end-to-end
packet delay. In addition to measurement of flow completion
times in the applications, the implementation provides the
graphs of flow completion times measured in the transport
layer.

If we consider the number of data centers in use today, it is
clear that any improvement in the efficiency of the data center
network would result in large savings. By improving algo-
rithms, instead of improving and adding hardware, data cen-
ters would become more energy efficient and less expensive.

REFERENCES
[1] J. Kim, J. Balfour, and W. J. Dally, ‘‘Flattened butterfly topology for

on-chip networks,’’ IEEE Comput. Archit. Lett., vol. 6, no. 2, pp. 37–40,
Feb. 2007.

[2] Implementation of the TIMP Data Center Multipath Routing Proto-
col. Accessed: Sep. 16, 2021. [Online]. Available: https://github.com/
nmaksic/timp

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
‘‘CONGA: Distributed congestion-aware load balancing for datacenters,’’
in Proc. ACM Conf. SIGCOMM, Aug. 2014, pp. 503–514.

[4] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, ‘‘HULA:
Scalable load balancing using programmable data planes,’’ in Proc. Symp.
SDN Res., Mar. 2016, pp. 1–12.

[5] K. F. Hsu, ‘‘Contra: A programmable system for performance-aware rout-
ing,’’ Proc. Networked Syst. Design Implement., Feb. 2020, pp. 701–712.

[6] K. F. Hsu, P. Tammana, R. Becket, A. Chen, J. Rexford, and D. Walker,
‘‘Adaptive weighted traffic splitting in programmable data planes,’’ in
Proc. ACM SOSR, San Jose, CA, USA, Mar. 2020, pp. 103–109.

[7] S. Sinha, S. Kandula, and D. Katabi, ‘‘Harnessing TCPs burstiness using
flowlet switching,’’ in Proc. 3rd ACM SIGCOMM Workshop Hot Topics
Netw. (HotNets), Nov. 2004, p. 84.

[8] G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan, D. Wetherall, and A. Vahdat,
‘‘Swift: Delay is simple and effective for congestion control in the dat-
acenter,’’ in Proc. Annu. Conf. ACM Special Interest Group Data Com-
mun. Appl., Technol., Archit., Protocols Comput. Commun., Jul. 2020,
pp. 514–528.

[9] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
‘‘DRILL: Micro load balancing for low-latency data center networks,’’ in
Proc. Conf. ACMSpecial Interest GroupData Commun., Los Angeles, CA,
USA, Aug. 2017, pp. 225–238.

[10] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella, ‘‘Presto:
Edge-based load balancing for fast datacenter networks,’’ in Proc. ACM
Conf. Special Interest Group Data Commun., London, U.K., Aug. 2015,
pp. 465–478.

[11] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, ‘‘Expeditus: Congestion-
aware load balancing in clos data center networks,’’ in Proc. 7th ACM
Symp. Cloud Comput., Santa Clara, CA, USA, Oct. 2016, pp. 442–455.

[12] M. Antic, N. Maksic, P. Knezevic, and A. Smiljanic, ‘‘Two phase load
balanced routing using OSPF,’’ IEEE J. Sel. Areas Commun., vol. 28, no. 1,
pp. 51–59, Jan. 2010.

[13] N. Maksic and A. Smiljanic, ‘‘Improving utilization of data center net-
works,’’ IEEE Commun. Mag., vol. 51, no. 11, pp. 32–38, Nov. 2013.

[14] N. Maksia, ‘‘Two-phase load balancing for data center networks using
OpenFlow,’’ Telfor J., vol. 10, no. 1, pp. 8–13, 2018.

[15] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, ‘‘Better never than
late: Meeting deadlines in datacenter networks,’’ in Proc. ACM SIGCOMM
Conf., Toronto, ON, Canada, 2011, pp. 50–61.

[16] D. B. de Oliviera, D. Casini, R. S. de Oliviera, and T. Cucinotta, ‘‘Demys-
tifying the real-time Linux scheduling latency,’’ in Proc. 32nd Euromicro
Conf. Real-Time Syst. (ECRTS), Jul. 2020, pp. 1–4.

[17] A. P. Lapukhov and J. Mitchell, Use of BGP for Routing in Large-Scale
Data Centers, document RFC 7928, IETF, Aug. 2016.

[18] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, ‘‘Inside the
social network’s (datacenter) network,’’ Proc. SIGCOMM, London, U.K.,
Aug. 2015, pp. 123–137.

[19] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
‘‘Backpressure flow control,’’ in Proc. Workshop Buffer Sizing, Palo Alto,
CA, USA, Dec. 2019, pp. 1–3.

[20] B. Vamanan, J. Hasan, and T. N. Vijaykumar, ‘‘Deadline-aware datacen-
ter TCP (D2TCP),’’ in Proc. SIGCOM, Helsinki, Finland, Aug. 2012,
pp. 115–126.

NATAŠA MAKSIĆ (Member, IEEE) was born in
Belgrade, Serbia in 1983. She graduated from the
Mathematical Gymnasium in Belgrade, in 2002.
She received the B.Sc. and M.Sc. degrees in
electrical engineering from Belgrade University,
Serbia, in 2007 as the best student in her class, with
the maximum average grade of 10. She received
the Ph.D. degree in electrical engineering from
Belgrade University, in 2014.

From 2008 to 2014, she was a Researcher with
the Innovation Center of the School of Electrical Engineering at Belgrade
University. Since 2014, she has been an Teaching Assistant at the Telecom-
munications Department at the School of Electrical Engineering. Currently,
she works as an Assistant Professor at the School of Electrical Engineering.

Her research interests are communication networks and protocols. In
particular, she is interested in improving performance of the data center
communications networks.

128600 VOLUME 9, 2021


