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ABSTRACT Distribution systems play an important role, delivering the electric power of generation
system to individual consumers. Distribution system reconfiguration (DSR) is a large-scale combinatorial
optimization problem. For the last 45 years, the DSR problem has been widely studied; nowadays, DSR,
combined with new challenges, is being highly investigated, as researchers aim to reach a better solution.
This paper presents a complete review and classification of the most significant works to date, providing a
literary framework for DSR specialists. A categorization of solution methods, case studies, and novelties of
the most relevant works regarding DSR are provided. In order to establish a complete background, not only
traditional approaches, but also those involving uncertainty, reliability, electricity market, power quality,
distributed generation, capacitor placement, and switching time in DSR are highlighted. This framework
can help researches to improve previous formulations and methods and can propose more efficient models
to better exploit the existing infrastructure.

INDEX TERMS Distributed generation, literary framework, network reconfiguration, power distribution
systems, uncertainty.

NOMENCLATURE
Abbreviations used throughout the manuscript are repro-
duced below for quick reference.

AACO Adaptive ant colony optimization.
AC Alternating current.
ACO Ant colony optimization.
ADC Automated distribution control.
ADP Approximated dynamic programming.
AENS Average energy not supplied.
AGA Adoptive genetic algorithm.
AIS Artificial immune system.
AMPL A Mathematical Modeling Language.
ANN Artificial neural network.
APSO Adaptive particle swarm optimization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenghong Gu .

ASIFI Average system interruption frequency
index.

BAS Beetle antennae search.
B&B Branch and bound.
BB Big bang.
BB-BC Big bang-big crunch.
BC Big crunch.
BD Benders decomposition.
BE Branch exchange.
BFOA Bacterial foraging optimization algo-

rithm.
BPSO Binary particle swarm optimization.
CDBAS Chaos disturbed beetle antennae

search.
CPLEX C Programming Language Simplex

method.
CSA Cuckoo search algorithm.
DAOP Discrete ascent optimal programming.
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DC Direct current.
DDSR Dynamic distribution system reconfigu-

ration.
DS Deep search.
DG Distributed generation.
DGA Dedicated genetic algorithm.
DISCOs Distribution companies.
DISTOP Distribution network optimization.
DEWorkstation Distribution Engineering Workstation.
CLONR Clonal reconfiguration.
DM Decision maker.
DR Demand response.
DP Dynamic programming.
DPSO Discrete particle swarm optimization.
DSR Distribution system reconfiguration.
DTLBO Discrete teaching-learning based opti-

mization.
EA Evolutionary algorithm.
EESs Energy storage systems.
EGA Efficient genetic algorithm.
EICPSO Enhanced integer coded particle swarm

optimization.
ENS Energy not supplied.
EP Evolutionary programming.
EPRI Electric Power Research Institute.
ESA Efficient simulated annealing.
EVs Electric vehicles.
FA Firefly algorithm.
FACO Fuzzy ant colony optimization.
FACTS Flexible AC transmission system.
FAGA Fuzzy adoptive genetic algorithm.
FAPSO Fuzzy adaptive particle swarm optimiza-

tion.
FCM Fuzzy C-means.
FDD Flexible DC device.
FEP Fuzzy evolutionary programming.
FGA Fuzzy genetic algorithm.
FMPSO Fuzzy modified particle swarm opti-

mization.
FNSGA Fast non-dominated sorting genetic algo-

rithm.
FPGA Fuzzy parallel genetic algorithm.
FPSO Fuzzy particle swarm optimization.
FVSI Fast voltage stability index.
GA Genetic algorithm.
GAMS General Algebraic Modeling System.
GAMT Genetic algorithm based on Matroid the-

ory.
GCR Graph chains representation.
GCRA Grey correlation analysis.
GWO Gray wolf optimization.
HACO Hybrid ant colony optimization.
HCA Heuristic constructive algorithm.
HC-ACO Hyper cube ant colony optimization.
HDE Hybrid differential evolution.

HEP Croatian electric power company.
HPSO Hybrid particle swarm optimization.
HSA Harmony search algorithm.
LBI Load balancing index.
IA Immune algorithm.
IGA Improved genetic algorithm.
IHSA Improved harmony search algorithm.
IP Integer programming.
ITS Improved tabu search.
LCF Linear current flow.
LOL Loss of load.
MAIFI Momentary average interruption frequency

index.
MAS Multi-agent system.
MBFOA Modified bacterial foraging optimization

algorithm.
MBPSO Modified binary particle swarm optimization.
MCS Monte Carlo simulation.
MICP Mixed-integer conic programming.
MIHDE Mixed-integer hybrid differential evolution.
MILP Mixed-integer linear programming.
MIQP Mixed-integer quadratic programming.
MP Mathematical programming.
MPC Model predictive control.
MPSO Modified particle swarm optimization.
MTS Modified tabu search.
MSU Multiple switch updating.
NCUP Neighbour-chain updating process.
NDE Node-depth encoding.
NS Normal search.
NSGA Non-dominated sorting genetic algorithm.
NVQI Node voltage quality index.
OLTC On-load tap changers.
OSU One switch updating.
OPF Optimal power flow.
PIEFI Power interruption equivalent frequency

index.
PP&L Pennsylvania Power and Light Company.
PSO Particle swarm optimization.
PV Photovoltaic.
QCP Quadratically constrained programming.
ReGA Restricted genetic algorithm.
RGA Refined genetic algorithm.
SA Simulated annealing.
SAIDI System average interruption duration index.
SAIFI System average interruption frequency index.
SDSR Static distribution system reconfiguration.
SOCP Second-order cone programming.
SOE Switch opening and exchange.
SOReco Single objective reconfiguration.
SYSRAP System Reconfiguration Analysis Program.
Taipower Taiwan Power Company.
TEPCO Tokyo Electric Power Company.
TLBO Teaching-learning based optimization.
TPC Taiwan Power Company.
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TS Tabu search.
VDI Voltage deviation index.
VSI Voltage stability index.
VSO Vector shift operation.
XFDPF Extended fast decoupled power flow.

I. INTRODUCTION
Distribution network is an important part of the power system
infrastructure that links transmission network to end-users
of electric grid. Its main task is to deliver electricity pro-
duced by generating units to individual customers of electric
energy [1].

Power distribution networks in urban areas are typically
constructed as a meshed structure and are usually operated
in a suitable radial topology, which can be set or changed
by opening normally closed sectional switches and closing
normally open tie line switches, which is commonly denoted
as distribution system reconfiguration (DSR). Tie lines inter-
connect ends of radial feeders and/or provide connections
to alternative supply points, while sectionalizing switches
provide interconnections for the main sections or branches of
each radial feeder. Both types of switches may be controlled
manually, or may be operated automatically, as remotely
controlled switches [2]. Modern power distribution systems
feature a number of remotely controlled switches, which
are activated to provide emergency supply connections for
reliability improvement or to allow for maintenance and
servicing works, or to adjust optimal system configuration
during normal operation. In term of both system protection
and normal operation, sectionalizing switches along the feed-
ers are automated and can be controlled using dedicated
communication links [3]. The main reason for distribution
utilities (or distribution companies (DISCOs) in deregulated
power systems) to invest in switching devices is to prevent
prolonged failures and to reduce the number of customers
isolated by faults [4].

Power losses of the distribution system are more than
transmission network due to higher ratio of current to volt-
age (higher line impedance) of distribution lines compared
to transmission ones. Power losses directly affect the oper-
ational cost and the voltage profile, especially in heavily
loaded power systems. For this, the DSR was initiated with
the purpose of obtaining the lowest power losses during nor-
mal operating conditions. Nevertheless, today, it also includes
other objectives such as power quality improvement, an
increase of voltage security margin, reliability enhancement,
supply capacity expansion, load balancing, increase of dis-
tributed generation (DG) penetration, service restoration, and
quick fault isolation [5].

Merlin and Back [6] were the first researchers who solved
the DSR problem based on the minimum energy losses.
A static DSR (SDSR) approach (i.e., distribution system
topology and load are considered to be fixed during spe-
cific timeframes) was formulated as a mixed-integer non-
linear optimization problem and solved by using a discrete
branch-and-bound technique. Improving the SDSR approach

presented in [6], a dynamic (multi-period) concept for the
DSR solution (DDSR) was introduced in [7]. Differently
from SDSR, in DDSR, the load is not constant and net-
work topology frequently changes with the real-time oper-
ational conditions using automatic (smart) switches. In this
approach, features such as load fluctuations, generation vari-
ability, the uncertainty of renewable sources, market behav-
ior, switching time, and climate changes can be taken into
account, which leads to a more accurate and realistic assess-
ment of the network. Nevertheless, the adoption of the DDSR
increases the complexity and requires higher computational
effort when compared to the SDSR [8], [9].

The DSR is a large-scale combinational optimization
problem including decision variables, one or more objective
functions, and a set of constraints that can often contain
nonlinearities. The feasible search space in DSR is typically
large, nonconvex, and hard to explore. Hence, determining
good-quality solutions for the DSR problem is always a
challenging task. In order to cope with this issue, distribution
system researchers have dedicated their efforts to develop
efficient methodologies to find the best possible solution for
the DSR. In this regard, classical optimization, heuristic, and
metaheuristic methods have played prominent roles in the
DSR solution. Since the DSR problem was first proposed in
1975 [6], classical optimization methods have been presented
as important tools in order to find good quality solutions
for this problem. Later, heuristic techniques were adopted
in the DSR as a solution strategy to avoid limitations pre-
sented by classical optimization methods, for example, there
is no complete mathematical model, high nonlinearities or
extremely high computational effort. Finally, by improving
heuristic performances in the DSR, metaheuristic approaches
were introduced.

Lately, as distribution system challenges continue to grow,
researchers of several areas need systematic and well-
elaborated classifications of previous works in order to
achieve new solutions and relevant innovations in their fields
[10], [11]. In 1994, [10] presented a literature review of
publications for the DSR problem. Nevertheless, the work
presented in [10] is old and has no longer been updated.
Later, [11] presented a review related to reliability improve-
ment and power loss minimization in distribution systems
through network reconfiguration. However, this literature has
only focused on the reliability issue disregarding new impor-
tant challenges such as renewable and distributed generators,
uncertainty, loadability, DG hosting, investment return, and
smart agents. The novel contributions of this review paper, if
compared to previous ones are as follows:

• To classify most important papers regarding DSR con-
sidering its complete scope.

• To present complete, up-to-date and broad literary
framework that can be used as a base for any further
investigations related to the DSR.

Therefore, three major categorizations are presented,
showing the major advances regarding solution methods
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(Section II), objective functions (Section III), and innovations
(Section IV). Also, implementation methods for real distri-
bution networks and specific applications are presented in
Sections V and VI, respectively. Finally, general conclusions
about the complete development of DSR research are shown.

II. LITERATURE CLASSIFICATION BASED ON SOLUTION
METHODS
In this section, the advantages and disadvantages of several
methods were employed toward the DSR problem, and their
classifications are presented.

A. MATHEMATICAL OPTIMIZATION METHODS
Mathematical optimization methods are known to be effec-
tive to solve simple and linear optimization problems with
a relatively small search space, guaranteeing convergence
toward the best solution. However, in combinatorial opti-
mization problems with large search space, these methods
tend to demand higher and sometimes unaffordable compu-
tational efforts. Over time, numerous works regarding DSR
have used these methods, evidencing their efficiency in this
field.

In 1975, a branch and bound (B&B) algorithm was first
used to solve the DSR problem in [6]. Although the proposed
approach found the optimal solution, its convergence process
was slow. In 1995, Sarma and Rao [12] presented a binary
integer programming (binary IP) method to solve the SDSR
problem, in which distribution feeders were partitioned into
several circuits. In this way, connection of each bus to
corresponding circuits was represented by binary numbers
0 and 1. However, the proposed approach suffered compu-
tational limitations in large-size distribution systems. Later,
a new approach based on Newton power flow method was
introduced by [13] to solve the SDSR problem. Although the
approximations used in loss formulation caused themethod to
be very fast, it may prevent the algorithm to find high-quality
solutions for large-scale networks. Later, Benders decompo-
sition (BD) for solving SDSR was presented in [14], dividing
the formulation into a master problem and a subproblem
(slave problem). In master problem, optimal radial topolo-
gies with minimum losses were determined considering line
power flow constraints, while the feasibility of these radial
solutions was investigated in the slave problem. Although
the results demonstrate the effectiveness and robustness of
the proposed methodology for network reconfiguration, the
efficiency of BD degrades with increase in nonlinear terms
of model.

In 2012 and subsequent years, more formal proposals
appeared to represent radiality constraints in a precise way, as
the proposals presented in [15] and [16]. From these works,
increasingly complexmathematical models appeared. Thus, a
mixed-integer conic programming (MICP) was employed to
formulate the SDSR problem in [17]. The results showed that
solutions obtained by MICP are the same as those obtained
by mixed-integer linear programming (MILP). Neverthe-
less, rewriting the nonlinear power flow equations in terms

of rotated conic quadratic constraints requires additional
mathematical efforts. Later, Taylor and Hover [18] formu-
lated the SDSR using mixed-integer quadratic programming
(MIQP), quadratically constrained programming (QCP), and
second-order cone programming (SOCP) as a convex prob-
lem. The results indicated that the performance of MIQP,
QCP, and SOCP is better than BD, but allocation of two
continues variables instead of binary variables to power flow
direction of each line have decreased the efficiency of the
proposed methodologies. Furthermore, MILP was presented
in [19] to solve an SDSR problem by approximating power
losses using piecewise linear functions. Although the pro-
posed linear model can be easily solved by commercial opti-
mization solvers such as C Programming Language Simplex
(CPLEX) solver, the approximations used may degrade the
performance of this model to solve highly nonlinear combi-
natory DSR problems.

Even in recent DSR researches, mathematical optimiza-
tion continues to be widely chosen as a solution method,
e.g., [5] and [20]–[25]. In [20], the epsilon-constraint method
was proposed to optimize the network losses and reliability
in a multi-objective SDSR framework. In this method, all
possible solutions were listed by ε-constraint approach and
then unfeasible solutions were identified and discarded from
the list using power flow calculations. Moreover, in [21],
a MILP model was presented to solve a SDSR problem
using a two-stage decomposition algorithm. Although the
proposed decomposition method could solve this large-scale
optimization problem, the piecewise linear approximations
used in [21] reduce the accuracy of solutions for reconfig-
uration of large distribution systems. In [5] and [22], BD and
B&B algorithms were proposed to solve the DSR problem
as dynamic, respectively. Nevertheless, estimated alternating
current (AC) power flow equations have reduced precision of
the BD method of [5]. Furthermore, efficiency of the method
proposed in [22] has not been compared with other online
reconfiguration techniques. In [23], an extended fast decou-
pled power flow (XFDPF) approach was employed to solve a
SDSR problem, showing its lower computing time compared
to conventional power flow methods. Nevertheless, the effi-
ciency of the proposed method is reduced in networks with
high ratio of ohmic resistance to reactance (R/X) of distribu-
tion lines. Furthermore, in [24] and [25], General Algebraic
Modeling System (GAMS) was employed to solve multi-
objective SDSR problem in presence of demand response
(DR) [24] and DISCOs costs [25].

More recently, in [26], an approximated dynamic program-
ming (ADP) approach was applied to minimize DG curtail-
ment and load shedding in DDSR. Finally, in [1] and [27],
the SDSR problem was solved using A Mathematical Mod-
eling Language (AMPL). The results showed that the meth-
ods of [1] and [27] find optimal configurations in shorter
computational time when compared to other mathematical
techniques, but AMPL cannot be applied to very large dis-
tribution systems. Table 1 highlights advantages and disad-
vantages of mathematical methods reviewed in this section.
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TABLE 1. Mathematical optimization methods: Advantages and disadvantages.

FIGURE 1. Power losses obtained by mathematical methods after reconfiguration.

In order to provide a quantified evaluation of advantages
and disadvantages of mathematical techniques, power losses
and computing time of some mathematical methods used

for reconfiguration of 33-bus [28], 70-bus [29], 84-bus [30],
119-bus [31], and 136-bus [32] distribution systems are
shown in Fig. 1 and Table 2.
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TABLE 2. Mathematical optimization methods: Computation time.

B. HEURISTIC OPTIMIZATION METHODS
As shown, solving DSR through mathematical optimiza-
tion typically presents processing limitations. These methods
tend to be time-consuming, due to the nonconvexity of the
search spaces, and this issue increases when integer decision
variables are considered. Therefore, heuristic methods can
be used as a solution to computational limitations. These
methods analyze possible options and logically select good
quality solutions, using simple step-by-step search processes.
Although heuristic methods can find feasible solutions with
low computational effort, they can guarantee neither good
quality nor optimality of these solutions.

In 1989, a heuristic algorithm known as Distribution Net-
work Optimization (DISTOP) was presented by [33] to solve
the SDSR problem in practical networks. This heuristic-
based approach using Lagrange multipliers and AC power
flow equations improved the solution time when compared to
heavy mathematical optimization methods used at the time.
In the same year, the branch exchange (BE) method was
proposed by [28] to solve an SDSR problem. In BE, new
radial topologies are created by closing an open switch and
opening one of closed switches of each planar loop till the
best configuration is found. However, point to point searching
process of BE made it a time-consuming method for recon-
figuration of large distribution systems.

One year later, in [34], the SDSR problem was formulated
by the loss change estimation method. In this approach, only
configurations with negative loss change were selected by the
algorithm. Although considering only voltage drops of tie-
line extremes in loss change evaluation made the proposed
algorithm as a simple method for network reconfiguration,
it is time-consuming for reconfiguration of large distribution
systems.

In 1994, a heuristic algorithm was developed to solve the
SDSR problem in [35]. Performance indices as ratio of power
losses to rated current of each branch were defined for pos-
sible switching proposals. In this process, a radial topology

with the lowest performance index was selected for network
reconfiguration. However, linearized power flow equations
used in this approach degrade the efficiency of the proposed
method to find accurate solutions.

In order to overcome the size restrictions, a heuristic tech-
nique based on network partitioning theory was presented
in [36] to solve an SDSR problem. In this approach, the
distribution network was divided into groups of buses and the
power losses between these groups were minimized. Unlike
the other reconfiguration algorithms, in the best scenario of
the proposed method, only two power flow solutions were
required. However, the proposed technique was tested on
a small-size distribution network. In 1999, discrete ascent
optimal programming (DAOP) algorithm was introduced by
[37] to solve the SDSR problem using the Distribution Engi-
neering Workstation (DEWorkstation) software package. In
DAOP, configurations with the smallest increase in total
losses are selected during the addition of discrete load steps.
Although this method solved the desired problem accurately,
its computational time is considerable.

One year later, a systematic feeder reconfiguration tech-
nique was presented by [38] to solve the SDSR problem. In
this strategy, appropriate switching sequences of planar loops
with positive loss reduction are ranked using power flow
calculations. Then, the best solutions are selected for BE and
this process continuing till no loop with positive loss reduc-
tion appears. Although additional power flow calculations
were eliminated in the proposed technique, it is still time-
consuming method for network reconfiguration. Therefore,
in [39], geometrical circles were allocated to planar loops of
network given in [38], in which loops are selected for BE
according to radius of their allocated circles. If the power
losses are reduced due to a branch exchange, the size of the
circle diminishes and hence a smaller circle gives better con-
figuration. The geometrical method can reduce the processing
time of DSR problem, but definition of appropriate circles is
difficult in large distribution systems.
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TABLE 3. Heuristic optimization methods: Advantages and disadvantages.

Later, in 2005, a new BE-based heuristic method was
proposed to solve the SDSR problem [40]. Ignoring the com-
putation time, the precision of the algorithm was acceptable.
In order to reduce the number of power flows and subsequent
computational time of heuristic method presented in [40],
[41] calculated the sensitivity of the switches by optimal
power flow (OPF).

Also, in 2008, a two-stage heuristic algorithm for solving
SDSR was proposed in [42], where switches with minimum
increase in losses are opened in the first stage, and the best
proposals are selected by BE in the second one. In spite
of high accuracy and simplicity of the proposed technique,
repetitive load flows and checking all possible proposals
makes it a time-consuming method for network reconfigura-
tion. In order to resolve this issue, [43] ranked the candidate
branches based on loss sensitivity to the branch impedances
in heuristic algorithm proposed by [42].

One year later, in [44], SDSR aiming voltage stability
enhancement was optimized by a simple heuristic algo-
rithm. The proposed method determined the best switching
sequences by opening a tie switch or one of its neighbouring
sectional switches in an iterative process.

In 2010, a heuristic constructive algorithm (HCA) was
employed to solve a simultaneous DSR and capacitor allo-
cation problem [45]. In the proposed methodology, a new
sensitivity index using Lagrange multipliers was defined to
determine the status of switches regarding their loss reduction
amount. The proposed algorithm has been well designed for
optimal placement of capacitors during network reconfigura-
tion; therefore it cannot be an efficient method for conven-
tional DSR.

In order to increase the precision of the method presented
in [42], [46] used neighbour-chain updating process (NCUP)
instead of BE in the second stage of the proposed heuristic
algorithm. In NCUP, each switching operation of the previous
stage was updated by opening a closed switch or its neighbour
one.

Recently, in [47], a new heuristic method based on the
Lagrange relaxation technique was proposed to solve the
DDSR problem. However, linear approximations used in for-
mulation decreases the quality of solutions in large distribu-
tion systems. Later, in [48], a simple heuristic methodwithout
any power flow calculations was proposed to solve the SDSR
problem in the presence of DG. The results showed that the
proposed method could reduce power losses and improve fast
voltage stability index (FVSI) efficiently. However, there is
no comparison between the computing time of the proposed
approach with other reconfiguration methods. Also, in [49],
a vector shift operation (VSO) method was developed to
minimize distribution losses through network reconfiguration
in presence of DG. In the proposed algorithm, instead of
time-consuming power flow calculations, loss changes due
to BE are determined using the power and resistance vec-
tors. Finally, in [50], a switch opening and exchange (SOE)
method was presented to reduce power losses in DDSR and
the results were verified by mathematical programing (MP).
In SOE, all switches of meshed network are sequentially
opened till no planar loop appears. Then, status of branches is
modified to obtain better radial configurations. Table 3 lists
advantages and disadvantages of above-mentioned heuristic
reconfiguration methods. To provide a comparative paramet-
ric and graphical analysis, power losses and available data of
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FIGURE 2. Power losses obtained by heuristic methods after reconfiguration.

TABLE 4. Heuristic optimization methods: Computation time and some parameters.

some heuristic methods used for reconfiguration of 69-bus
network [51] and other distribution systems are shown in
Fig. 2 and Table 4.

C. METAHEURISTIC OPTIMIZATION METHODS
Metaheuristic methods are randomized search algorithms
based on specific rules (e.g. human evolution process,
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annealing process of steal, learning and teaching mecha-
nism, and so on) that define and use certain search cri-
teria (e.g. operators of selection, mutation, crossover, etc.)
during the optimization process. Whereas, heuristic meth-
ods are step-by-step search algorithms based on trial and
error. Heuristic methods are too greedy and need to be
designed for a specific application (problem-dependent meth-
ods), while metaheuristics are general search algorithms
(problem-independent methods) that just need some fine-
tuning of their inherent parameters for adapting to the under
studied problem. Although metaheuristics represent a higher
computational burden, they can lead to better solutions when
compared to heuristic approaches. On the other hand, meta-
heuristic algorithms tend to find high-quality solutions with a
lower computational time in comparison with mathematical
optimization methods, even though they cannot guarantee the
global optimum. In the last 30 years, many metaheuristic
approaches have been presented to solve the DSR problems
that the most important of them are chronologically reviewed
in further text.

In 1990, simulated annealing (SA) was presented in [52]
to solve the problem of [28]. SA is a point-to-point search
method with a strong theoretical base that has been adopted
from the physical process of solids annealing. However, the
repeated runs of power flow calculations during the annealing
process make this approach very time-consuming.

In 1992, a popular metaheuristic method, genetic algorithm
(GA), was used to solve the SDSR problem in [53]. Genetic
algorithms (GAs) are efficient methods to solve complex non-
linear optimization problems, mainly because of their sim-
ple implementation, flexibility, good performance, and high
adaptation with other metaheuristic algorithms. However, the
standard GA is a time-consuming method for reconfiguration
of large distribution systems. One year later, artificial neural
network (ANN) was employed in [54] to solve the SDSR
problem,where load level of each node is estimated according
to load data and then the best reconfiguration plan is selected.
However, quality of the solutions is degraded if set of training
data (e.g. load characteristics of distribution system) is not
defined properly. In 2001, the problem of [52] was solved
by SA using a simplified set of load-flow equations in [55].
Although this modification could decrease the computing
time of SA method, the quality of the DSR solutions was
reduced.

In order to improve the performance of the SA, an efficient
SA (ESA) was proposed to solve the SDSR problem in [56].
This method presents better solutions than SA because the
algorithm can escape local minima, but its implementation
on the large-scale distribution networks is difficult. In order
to apply the GA for reconfiguration of larger distribution
systems, the refined GA (RGA) was proposed in [57]. In this
method, unlike the standard GA [53], the size of chromo-
somes was reduced to be equal to the number of tie line
switches and an adaptive mutation process with a variable
rate was used to prevent algorithm premature convergence.
Later, the artificial immune system (AIS) was proposed

in [58] to solve a multi-objective SDSR problem consid-
ering network losses and loading unbalances. The AIS is
a random search method based on an initial population of
antibodies containing several antigens, representing positions
of open tie line switches. The algorithm guides the anti-
bodies toward the best objective functions using selection,
crossover and mutation operators. The best switching sce-
narios can be obtained through interactions between multi-
objective decision maker (DM) and immune algorithm (IA).
Although the AIS decreases computing time of the proposed
multi-objective problem when compared to mathematical
optimization methods such as IP, its performance has not
been evaluated for DSR in large distribution networks. Thus,
[30] proposed a mixed-integer hybrid differential evolution
(MIHDE) algorithm to minimize ohmic losses in SDSR. The
MIHDE method is a combination of hybrid differential evo-
lution (HDE) and IP methods that requires relatively lower
computational burden than SA.

In 2003, a combination of fuzzy theory and evolutionary
programming (EP) was used to solve a multi-objective SDSR
problem, aiming loss reduction and voltage deviation index
(VDI) improvement in [59]. The simulation results confirmed
that the fuzzy EP (FEP) is an appropriate method for solving
multi-objective DSR problems, but its performance is highly
affected by fuzzy membership functions. In fuzzy theory,
different objectives are embedded in a single function as
weighted-sum values using membership functions. However,
accurate defining of fuzzy membership functions is not easy
in complex optimization problems. Later, in 2005, [60] pro-
posed an evolutionary algorithm (EA) to minimize active
power losses in the SDSR problem. The EA method is a
random search algorithm using principles of natural selec-
tion and recombination, which has simpler implementation
than SA and tabu search (TS). However, its performance
is drastically reduced by inadequate tree representation of
distribution network graph, resulting in appearance of non-
radial solutions (branches that cannot create a tree) during
algorithm search. At the same year, [61] employed a fuzzy
GA (FGA) based method to solve the problem of [59]. In the
proposed FGA, fuzzy theory was used to control the mutation
operator of standard GA in order to improve its convergence
characteristic.

Later, in [62], TS algorithm was used to solve the SDSR
problem in networks with DG. The TS is a random search
algorithm that utilizes movements and memory operations.
The movement operator is used for ‘‘jumping’’ from one
solution to another, while memory operator guides the search
to avoid cycling between solutions. The obtained simulation
results in [62] confirm better performance of TS algorithm
compared to SA from both computational time and solution
accuracy points of view. Nevertheless, the global search abil-
ity of TS depends on tabu list length: small size tabu lists
cause the algorithm to be captured in some of local minima
easily, while large size lists increase the processing time of
TS method. Moreover, in [63], researchers solved the SDSR
problem using ant colony optimization (ACO). The ACO is a
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powerful intelligent method that has been inspired by natural
behavior of the ant colonies in finding the food source that
has better performance than SA.

In 2006, a restricted GA (ReGA) was presented in [64] to
solve the SDSR problem. This kind of GA has a set of mod-
ified genetic operators and an efficient form of generation
of the initial population with the aim of finding only radial
configurations for large-size distribution systems. However,
this approach can check only the isolation of exterior buses
and does not search for the isolation of interior ones. There-
fore, this strategy does not guarantee connectivity of network
and may produce radial topologies with isolated buses, which
are effectively infeasible solutions. In order to resolve the
issue regarding selection of proper elements for training data
set in [54], a clustering technique was used in ANN method
of [65]. The low processing time of the proposed method
makes it suitable for online (dynamic) applications. However,
clustering the loads based on their values without considering
their locations can decrease the quality of DSR solutions. One
year later, improved TS (ITS) was proposed to resolve pre-
mature convergence of TS algorithm in [31]. In ITS method,
mutation operator of GA was used to weaken the dependence
of global search ability on tabu list length. At the same year,
[66] presented a hybrid algorithm based on AIS and ACO
(AIS-ACO) to solve amulti-objective DSR problem, showing
its better performance than HDE method.

In 2008, [67] presented an efficient GA (EGA) to minimize
network losses in SDSR capable of generating only radial
topologies. The proposed GA was adopted from [68] with
some modifications in the recombination operator. In order to
maintain radiality of proposed topologies after genetic oper-
ations, in [69], a GA based on Matroid theory (GAMT) was
proposed to solve the SDSR problem. However, some non-
radial solutions still appear during algorithm evolutionary
process in GAMT. Then, in [70], a binary particle swarm
optimization (BPSO) algorithm was employed to minimize
customer interruption costs via DSR. Also, a discrete particle
swarm optimization (DPSO) algorithm was used in [71] to
minimize power losses and load balancing index (LBI) in
SDSR. However, BPSO and DPSO methods in their standard
forms are very time-consuming for large distribution net-
works. Therefore, a modified binary particle swarm optimiza-
tion (MBPSO) was presented in [72], where some parameters
of BPSOmethod, such as inertia weight, number of iterations
and population size, were modified. The modified settings
allow the particle swarm optimization (PSO) to explore a
larger area at the start of the simulation and to continue its
searching in a smaller area nearer to global optimum. This
feature makes the algorithm faster than DPSO, BPSO, SA,
and TS, but it increases the probability of capturing in the
local minima.

Later, hyper cube ACO (HC-ACO) was proposed in [73]
to minimize active power losses via DSR. In this method,
two heuristic rules were used to improve ACO performance.
The aim of local heuristic rule is to prepare the candidate
configurations for successive random selection, whereas the

aim of global rule is to maintain some already found suc-
cessful configurations. Harder implementation and shorter
computational time are two important features of HC-ACO
algorithm when compared to ACO.

In 2010, the problem of [72] was solved by a modified TS
(MTS) algorithm in [74]. In MTSmethod, the size of tabu list
is set to vary with the system size and a randommultiplicative
move is used in the searching process to diversify the search
toward unexplored regions, to escape local optimums and to
prevent cycling around the sub-optimum solutions. The simu-
lation results show that accuracy ofMTS is higher than that of
TS and SAmethods. At the same year, a dedicatedGA (DGA)
was used to solve an SDSR problem considering capacitor
placement [75]. In the proposed GA, the initial population
was constructed by a heuristic algorithm based on sensitivity
analysis to avoid the creation of non-radial configurations.
Although the sensitivity analysis significantly reduces the
search space of DGA algorithm, it may decrease the accuracy
of solutions, because all possible switching sequences are not
evaluated.

In order to improve the solution method presented in [59],
[76] proposed grey correlation analysis (GCRA) instead of
fuzzy theory. The GCRA by providing a quantitative mea-
surement of candidate solutions in EP method led to more
accurate solutions than FEP and FGA methods. In [77], the
graph chains representation (GCR) used in [60] was replaced
by the node-depth encoding (NDE) to reduce computational
time of EA method. In order to enhance the performance
of FGA presented in [61], a fuzzy adoptive GA (FAGA)
was proposed in [78]. The adoptive GA (AGA) is a mod-
ified version of GA presented in [64] that, in addition to
fundamental loops, uses common branches of each bus and
prohibited group of switches to avoid the generation of any
non-radial solutions. The proposed FAGA technique is more
efficient than SA and FGA, but performance of fuzzy rules-
based methods, such as FGA and FAGA, strongly depends on
the selected fuzzy membership functions. Therefore, a non-
dominated sorting GA (NSGA) was used in [79] to solve a
multi-objective DSR problem. The NSGA is a combination
of GA and pareto techniques that enables to evaluate different
objectives without integrating them into one objective func-
tion. Although the proposed method gives various options to
the decision makers, the accuracy of the obtained solutions
has not been verified.

In 2011, [80] proposed fuzzy ACO (FACO) to solve the
problem of [52], showing that its performance is better than
SA. At the same year, harmony search algorithm (HSA) was
employed in [81] to solve the SDSR problem, with results
demonstrating that the HSA converged to optimal solution
(minimum losses) more quickly than TS. However, determi-
nation of the penalty coefficients of fitness function in HSA
is more difficult than other metaheuristic algorithms. In order
to decrease computational time of PSO method and increase
accuracy of modified PSO (MPSO) method, the enhanced
integer coded PSO (EICPSO) was developed for loss mini-
mization in DSR problem in [82]. In the EICPSOmethod, the
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modified inertia weight of MPSO was employed and binary
numbers (0 for open and 1 for closed switches) were used
instead of integer values (bus numbers) for the representation
of each particle. The presented results show that EICPSO
method is much faster than PSO and MPSO, but its accuracy
is lower than in the standard PSO methods. Then, an adaptive
ACO (AACO) was presented in [83] to solve the SDSR
problem. In this method, graph theory was adapted to create
always feasible radial topologies during the whole evolution-
ary process. It was shown that reconfiguration of the distri-
bution system by AACO method is better than ACO, GAMT,
EGA, and ITS approaches. Nevertheless, the performance of
AACO algorithm has not been tested on large distribution
systems. One year later, in [84], the bacterial foraging opti-
mization algorithm (BFOA)was proposed to minimize power
losses in SDSR. The BFOA is a global optimization algorithm
that uses chemotaxis, reproduction, elimination and dispersal
operators to guide the particles/bacterium toward the best
solution using appropriate fitness function. The simulation
results indicate that the BFOA can reduce losses more than
ACO, but the computing time of this method has not been
compared to other DSR algorithms.

In 2013, a multi-objective DSR problem was solved by
fuzzy adaptive PSO (FAPSO) method in [85]. The adaptive
PSO (APSO) method was based on modifications of some
features (e.g. inertia weight and swarm movement) in PSO.
At the same year, a hybrid ACO (HACO) was applied to
minimize the power losses in SDSR [86], where crossover
operator of GA was used to improve the ACO method. It
was shown that efficiency of the proposed method is better
than HDE. However, there is no comparison between perfor-
mance of proposedmethod and other ACO-based approaches.
In order to enhance the performance of GA for solving
the DSR problem, new improvements for genetic operators
were considered in [87]. In the proposed GA, after pro-
ducing the initial population using BE method, the inte-
ger variables are decoded based on branch list, instead on
nodes-branches incidence matrix. Also, selection operator
was defined as an exponential function using ecological
niche method, instead of tournament mechanism. It was
shown that the proposed single objective reconfiguration
(SOReco) GA is simple enough to obtain a fast conver-
gence and complex enough to obtain a good quality solu-
tion in comparison with other GAs. However, non-radial
topologies may be created after applying genetic opera-
tors and that will degrade efficiency of the proposed algo-
rithm (SOReco) for reconfiguration of large distribution
networks.

One year later, in [88], the SDSR problem was solved
by clonal reconfiguration (CLONR) algorithm. The CLONR
is a metaheuristic method based on AIS and clonal selec-
tion with better performance than MIHDE method. Later
in [89], a big bang-big crunch (BB-BC) algorithm was
employed to solve a SDSR problem. The BB-BC is a com-
bination of big bang (BB) and big crunch (BC) methods

that converges to optimal solution using center of mass and
the best position of each solution operators. The simulation
results indicated that the BB-BCminimizes losses better than
HSA and ACO.

In 2015, a multi-objective SDSR problem was optimized
using fast NSGA (FNSGA) algorithm [90]. In this method,
the convergence speed of NSGAwas improved by employing
the codificationmethod of AGA and a guidedmutation opera-
tor. The results evaluation revealed that the proposed method
could find the optimal solution faster than NSGA. In order
to improve performance of BFOA for solving DSR prob-
lems, a modified BFOA (MBFOA) method was developed
in [91]. One year later, a discrete teaching-learning based
optimization (DTLBO) algorithm was employed by [92] to
solve the SDSR problem in the presence of DG. Teaching-
learning based optimization (TLBO) is a new metaheuristic
technique based on teaching and learning process with better
performance than PSO method. At the same year, fuzzy par-
allel GA (FPGA) was proposed to minimize losses, voltage
deviation, and number of switching operations in a smart grid
with variable loads [3].

In order to help researchers to develop efficient meta-
heuristic methods for solving large-scale DSR problems, the
search space and a detailed analysis of the main operators
of metaheuristic algorithms were addressed in [93]. Later,
in [94], a combination of TLBO and ε-constraint method
was presented to solve simultaneous DSR and DG allocation
problem, indicating better performance of proposed method
compared to PSO. In order to reduce the computational time
of the multi-objective DDSR problems, a chaos disturbed
beetle antennae search (CDBAS) algorithm was presented
in [95] to minimize power losses, loading unbalances and
nodal voltage deviations. The beetle antennae search (BAS)
algorithm was inspired by the foraging principle of bee-
tles. Grey target decision-making technology was used to
adopt CDBAS for multi-objective frameworks. The results
confirmed better performance of the proposed methodol-
ogy compared to other reconfiguration methods for multi-
objective DSR applications. More recently, a fuzzy modified
PSO (FMPSO) based on Kruskal algorithm was employed to
solve a multi-objective SDSR problem in [96]. The Kruskal
algorithm can generate a radial topology directly without
checking the loops and islands. Also, an improved cuckoo
search algorithm (CSA) was presented to solve a multi-
objective SDSR problem in presence of DG and DR in [97].
The CSA was inspired by the obligate brood parasitism of
some cuckoo species by laying their eggs in the nests of
other host birds (of other species). In this method not-so-
good solutions are replaced by new and potentially better
solutions (cuckoos) in the nests. Table 5 describes advan-
tages and disadvantages of reviewed metaheuristic methods
briefly. Also, power losses, running time and some param-
eters of metaheuristic algorithms are presented in Table 6
and Figs 3 and 4. Finally, a complete classification of the
methods used in the DSR relevant literature is supplied
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FIGURE 3. Power losses obtained by metaheuristic methods after reconfiguration of 33-bus and 119-bus test systems.

FIGURE 4. Power losses obtained by metaheuristic methods after reconfiguration of 69-bus, 70-bus, 84-bus, and 136-bus test systems.

in Table 7. Figure 5 illustrates portion of mathematical,
heuristic and metaheuristic approaches from reconfiguration
methods.

According to Fig. 5, a great share (58.3%) of works
related to DSR have employed metaheuristic optimization
techniques as their solution method.
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TABLE 5. Metaheuristic optimization methods: Advantages and disadvantages.
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TABLE 6. Metaheuristic optimization methods: Computation time and some parameters.

FIGURE 5. Percentage of mathematical, heuristic, and metaheuristic
techniques from reconfiguration methods (%).

III. LITERATURE CLASSIFICATION BASED ON OBJECTIVE
FUNCTIONS
Lately, the inclusion of DSR-related areas, such as load
balancing, voltage stability, capacitor placement, renewable
energy sources, electricity market, and associated fields
(e.g., uncertainty and reliability) have gained strong rele-
vance. Therefore, this section presents a classification for
DSR works based on the proposed studies from different
power system aspects. A short description of the relevant
works embracing the most important DSR related areas is
presented as follows.

Initially, [102] estimated power loss changes in SDSR
using direct current (DC) power flow, showing that the pro-
posed formulation enables fast reconfiguration for online
applications. Two years later, the problem of [20] was for-
mulated as a two-stage multi-objective optimization problem
using SA in [52] and [103]. In simple words, the objective
functions of losses and maximum load balancing were mini-
mized in the first and second stages of the proposed approach,
respectively.

In order to achieve a more realistic assessment of power
loss reduction through network reconfiguration, [33] formu-
lated the SDSR problem using AC power flow equations.
Also, [28] investigated network losses and load balancing
separately in SDSR using exact and estimated forward-
backward power flows, concluding that the type of load flow
affects the convergence speed and precision of the proposed
reconfiguration algorithm. Later, [54] considered load type
in the formulation of the SDSR. Also, [118] maximized
system reliability via static reconfiguration of distribution
network, concluding that SAIFI (system average interrup-
tion frequency index) minimization leads to minimal SAIDI
(system average interruption duration index). Then, [35] pro-
posed a linear model for SDSR, defining the active losses of
each branch over its rating current, by linearized power flow
equations. Also, [12] introduced a new model for network
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TABLE 7. Classification of DSR literature based on solution method.

reconfiguration, allocating distribution feeders to different
circuits, by representing network losses in terms of circuits’
currents.

In addition, [101] minimized energy losses via network
reconfiguration and optimal installation of shunt capacitors
using different load models. The results showed that method
of load formulation affects the solutions of DSR and capacitor
placement problem significantly. Furthermore, [55] showed
that network power loss is more reduced by simultaneous
capacitor setting and DSR compared to conventional distri-
bution network reconfiguration. Also, [59] optimized power
losses and improved voltage profile in a multi-objective DSR
framework, reducing voltage deviation of load buses. Later,
[119] presented a new multi-objective framework for SDSR
by replacing lossminimizationwith loadabilitymaximization
in [59].

In [51], a new index was defined to measure the voltage
stability of each bus. The voltage stability of each node was
presented in terms of voltage magnitude of neighboring buses
and the power flow between them and related node. More-
over, [50] considered daily load and photovoltaic (PV) output
variations in DDSR. Also, [29] formulated a multi-objective
SDSR problem, considering active losses, load balancing,
voltage deviation, and branch current violation; meanwhile,
[106] solved simultaneous SDSR and capacitor placement
problem.

In [14], minimum active and reactive power of substation,
nodal voltage angle limit, and transformer tap restriction were
added to constraints of SDSR problem. In addition, [45]
considered a daily load curve in simultaneous SDSR and
capacitor placement problem, introducing a new sensitivity
index for switches. Later, [76] included maximum voltage
drop in objective functions of [28], while [78] considered the
number of switching operations in the problem of [29], aim-
ing at reducing the operating cost and switching transients.

In [107], distributed generators considered in formula-
tion of SDSR, concluding that lower system loss and bet-
ter load balancing can be obtained in the presence of DG.
Furthermore, [80] proposed a multi-objective formulation for
network reconfiguration in a deregulated electricity market,
considering the operation cost of DISCOs, customer interrup-
tion cost, and voltage deviation.

Also, in [18], new radiality constraints were proposed
for SDSR, allocating two continues variables to the power
flow direction of each line. In addition, in [120], the volt-
age dependency of loads was considered in SDSR formu-
lation, highlighting the importance of load type in network
reconfiguration.

Later, [110] modelled composite SDSR and DG placement
problem, concluding that simultaneous DG allocating and
network reconfiguration reduces the losses more effectively.
In addition, [121] developed a linear model of [19] to include
a voltage dependency of loads and distributed generators.
Also, [85] considered uncertainty in demand, distributed
wind power generation, and fuel cells in SDSR, aiming min-
imization of power loss, bus voltage deviation, generation
cost, and total emissions. Moreover, [104] included switching
and losses costs in a probabilistic SDSR problem considering
uncertainty in the generation of wind, solar, and biomass DG
units.

Also, [122] concluded that reconfiguration is more effec-
tive than network reinforcement for increasing DG hosting
capacity in static and dynamic reconfigurations. Furthermore,
[16] modelled radiality constraint of traditional SDSR as
a spanning tree minimization problem using graph theory,
considering the voltage dependency of loads. At the same
year, a new model based on the linear power flow equations
was presented for formulation of the SDSR problem in [98].

Afterwards, the SDSR was formulated as a multi-objective
optimization problem, minimizing reliability criterion of
PIEFI (power interruption equivalent frequency index) in
[111]. Also, [99] presented simple linear current flow (LCF)
equations to formulate the conventional SDSR problem,
showing higher efficiency of the proposed formulation com-
pare to models presented in [17] and [18]. In addition, [112]
considered load (both active and reactive demands) and dis-
tributed generation variability in SDSR, showing that more
accurate losses can be obtained in this way.

In order to improve models presented in [17] and [18],
[123] developed a binary convex formulation for SDSR.Also,
[21] proposed a robust model for network reconfiguration
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with the aim of loss minimization under load and renewable
generation uncertainties. For a more realistic assessment of
the SDSR problem, [124] included losses and voltage devi-
ation in the objective function considering the coordination
of protective devices. Moreover, [108] formulated SDSR in
presence of DG considering capacitor switching and cost
of buying power from the substation, indicating that the
proposed model reduces the total grid cost efficiently. In
addition, [5] proposed a disjunctive integer linear formulation
for DDSR in order to increase DG integration in distribution
systems.

In order to show the importance of voltage security in
deregulated energy markets, [105] maximized separately
voltage security index and node voltage quality index (NVQI)
via network reconfiguration. Moreover, [109] solved the
DDSR problem in order to increase the annual investment
return considering the hourly load profile. Also, [125] pro-
posed a robust stochastic model for DDSR including DG,
minimizing daily operational cost (total hourly power loss
and switching costs) of systems managed by local distri-
bution companies using model predictive control (MPC)
technique. Then, [114] optimized reactive power losses in
SDSR for enhancement of distribution system loadability
limit.

Afterwards, [22] determined the optimal switching time
in conventional DDSR problem. Later, in order to increase
network security, [116] included N−1 contingency criterion
in SDSR problem with the objective of power loss minimiza-
tion. Also, for service restoration during continues small load
changes, [126] presented a multi-agent system (MAS)-based
model for DDSR considering load priority and distributed
generators. Also, [8] formulated a DDSR problem in order to
increase the daily DG hosting capacity under distributed gen-
eration uncertainties. In [96], random and fuzzy uncertainties
of the wind and PV power generation and load demand were
considered in SDSR for power loss reduction and voltage
stability enhancement.

Furthermore, in [97], the effect of DR on the single and
multi-objective SDSR problem was studied in a stochastic
environment considering wind and PV units, electric vehicles
(EVs), and cost of DR participation. The results reveal that the
DR strategy along with the DSR can provide new opportuni-
ties to improve system situations in modern power systems.
In [100], a new voltage stability constraint was introduced for
SDSR problem, aiming network losses reduction considering
switched capacitor banks and DG units. The results show that
the model can concisely describes the influence of DG output
fluctuations on bus voltages.

Moreover, in [113], the DSR problem and distribution
expansion planning problem were solved simultaneously.
The simulation results indicate that solving reconfiguration
and expansion planning problem at the same time leads to
decrease the network losses efficiently. Also, in [115], the
DSR problem considering voltage and reactive power con-
trol devices (on-load tap changers (OLTC), shunt capacitor

banks, and voltage regulators) in presence of PV based DG
units was studied, aiming minimization of energy losses and
consumption. Furthermore, in [89], power losses, DG costs,
and greenhouse gas emissions were optimized in SDSR using
BB-BC algorithm.

In [127], network reliability was formulated in a multi-
objective DSR problem based on minimal cut sets between
substation node and load buses, indicating that the proposed
strategy can formulate system reliability better than Monte
Carlo simulation (MCS). Also, in [117], power quality (num-
ber of voltage sages) and reliability criteria of SAIFI, ASIFI
(average system interruption frequency index), and MAIFI
(momentary average interruption frequency index) were opti-
mized in SDSR problem using firefly algorithm (FA). More-
over, in [128], a Weibull-Markov stochastic-based model
was presented instead of time-consuming MCS method for
reliability assessment in a multi-objective simultaneous net-
work reconfiguration and capacitor placement. In addition,
[129] proposed a robust model for simultaneous DSR and
DG allocation problem using a combination of GA, BE, and
sensitivity analysis.

In [130], a comprehensive MILP model was presented
for SDSR problem in presence of DG, by embedding exact
network losses in power flow equations instead of consid-
ering losses as estimated power injections at each node.
Furthermore, in [131], it was shown that simultaneous net-
work reconfiguration and expansion planning in presence
of DR reduces the expansion costs more efficiently com-
pared towhen only network expansion planning is performed.
Later, [132] formulated SDSR in presence of power flow
controllers, showing that flexible DC device (FDD) improves
DSR solutions by adjusting line power flows in coordina-
tion with switching sequences. Finally, DDSR in presence
of renewable energy resources and energy storage systems
(EESs) was solved in [133].

Table 8 lists the most relevant areas that can affect the
decisions of operators in a distribution network. Moreover, it
presents a complete classification of the papers from relevant
aspects point of view. Hence, Table 8 represents an important
tool for DSR modelling.

According to Table 8, it can be seen that loss reduction
via DSR has been always important for researchers and it
comprises a great share of objective functions in DSR studies.
After loss minimization, power quality improvement via DSR
and reconfiguration of distribution systems in presence of DG
have been major concerns of network operators. Also, Table
8 indicates that recent research tends to study DSR prob-
lem in presence of energy storage systems, electric vehicles,
demand response, and communication systems. It seems that
reconfiguration of smart distribution systems in presence of
renewable energy sources, electric vehicles, energy storage
systems and flexible loads (DR) will be the most important
research theme in future. This issue also imposesmany uncer-
tainties to DSR problem and challenges current DSR models
and methods.
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TABLE 8. Classification of DSR literature based on relevant aspects.

IV. LITERATURE CLASSIFICATION BASED ON
INNOVATIONS
As mentioned, for the last 45 years, the DSR problem has
been widely studied. Therefore, one last classification is pro-
posed in this section, aiming to cite and honour those works
that have brought the most significant innovations in the dif-
ferent fields related to DSR. This classification represents a
great tool for new researchers because it collects the research
basis regarding DSR most important features. Hence, Table 9
sorts DSR research from the novelty point of view.

It can be seen that these innovations are related to methods
and/or studied issues—a comprehensive combination of the
classifications previously presented.

TABLE 9. Classification of DSR literature based on innovations.

V. IMPLEMENTATION METHODS
Table 10 shows some implementation methods used by dif-
ferent companies and organizations in the world such as
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Iraqi power utilities [134], Croatian electric power company
(HEP) [135], Brazilian utility companies [23], [136], Athens
Utilities Board (AUB) [7], Tokyo Electric Power Company
(TEPCO) [22], Pennsylvania Power and Light Company
(PP&L) [138], Taiwan Power Company (Taipower or TPC),
Korea Electric Power Corporation (KEPCO) [57], Pacific
Gas and Electric Company of San Francisco in United States
[33], and Electric Power Research Institute (EPRI) [37].

TABLE 10. Some implementation methods in real networks.

VI. OUTCOMES
In order to help the DSR researchers to know which reconfig-
uration method is suitable for which application, outcomes of
DSR approaches for specific applications are presented in this
section.

A. LOSS REDUCTION
Tables 11 to 16 present approaches used for power loss
minimization in DSR. In these tables, methods were
ranked first according to power loss reduction (accuracy),
then reported computational time (convergence speed), and
afterward regarding the number of algorithm iterations
and number of power flow calculations (computational
burden).

TABLE 11. SDSR for power loss minimization: 33-bus system.

TABLE 12. SDSR for power loss minimization: 70-bus system.

B. VOLTAGE IMPROVEMENT
Tables 17 to 20 show reconfiguration methods used to
improve voltage profile of distribution systems. Methods
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TABLE 13. SDSR for power loss minimization: 69-bus system.

TABLE 14. SDSR for power loss minimization: 84-bus system.

TABLE 15. SDSR for power loss minimization: 119-bus system.

were ranked in tables first according to highest minimum
voltage and voltage stability index (VSI) and then computa-
tional time reduction.

TABLE 16. SDSR for power loss minimization: 136-bus system.

TABLE 17. SDSR for minimum voltage maximization: 33-bus system.

TABLE 18. SDSR for minimum voltage maximization: 69-bus system.

TABLE 19. SDSR for voltage stability enhancement: 69-bus system.

TABLE 20. SDSR for voltage deviation minimization: 33-bus system.

TABLE 21. SDSR for feeder load balancing: 33-bus system.

C. LOAD BLANCING
One of important objectives of DSR is minimization of load-
ing unbalances in distribution feeders to use lines trans-
mission capacity more efficiently. Tables 21 and 22 rank
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TABLE 22. SDSR for feeder load balancing: 69-bus system.

TABLE 23. SDSR for loss reduction and voltage improvement: 136-bus
system.

TABLE 24. SDSR for loss reduction and voltage improvement: 69-bus
system.

TABLE 25. SDSR for loss reduction and feeder load balancing.

TABLE 26. SDSR for loss reduction, voltage improvement, and feeder
load balancing: 69-bus system.

reconfiguration methods for load balancing according to their
accuracy and then computation time.

D. MULTI-OBJECTIVE DSR APPLICATIONS
In order to give a general overview to readers about multi-
objective applications of DSR, outcomes of some recon-
figuration methods based on their application are listed in
Tables 23 to 28.

TABLE 27. SDSR for loss reduction and reliability improvement: 33-bus
system.

TABLE 28. SDSR for loss reduction, and voltage and reliability
improvement.

TABLE 29. SDSR for loss reduction, voltage deviation minimization, and
transformer load balancing: 84-bus system.

E. DSR APPLICATIONS IN ACTIVE DISTRIBUTION SYSTEMS
In this section, results of DSR in presence of DG
units (active distribution systems) are presented in
Tables 30 to 35.
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TABLE 30. SDSR for loss reduction in presence of DG: 69-bus system.

TABLE 31. SDSR for loss reduction in presence of DG: 84-bus system.

TABLE 32. SDSR for energy loss reduction in presence of DG: 70-bus
system.

TABLE 33. Multi-objective SDSR for loss reduction and voltage stability
enhancement in presence of DG: 69-bus system.

TABLE 34. Multi-objective DDSR for loss reduction, voltage improvement,
and minimization of switching operations: 119-bus system.

F. COMBINATION OF MULTI-OBJECTIVE DSR
APPLICATIONS WITH OTHER METHODS
In order to approach more optimal solutions, DSR can be
solved with DG allocation and capacitor placement prob-
lems simultaneously. In this case, lower power losses, better

TABLE 35. Stochastic multi-objective SDSR for loss reduction and
minimization of voltage deviation, electricity generation costs, and air
emissions in presence of DG: 84-bus system.

TABLE 36. Simultaneous SDSR and capacitor placement for loss
reduction.

TABLE 37. Simultaneous stochastic DDSR and DG allocation for
switching cost minimization and reliability improvement: 33-bus system
with a 50% increase in peak load.

TABLE 38. Simultaneous stochastic multi-objective SDSR and DG
allocation for maximization of DG owner’s profit and minimization of
DISCO’s cost: 33-bus system with a 20% increase in peak load.

voltage stability, more efficient load balancing, and higher
reliability can be achieved compared to when capacitor place-
ment and/or DG allocation are carried out before or after
reconfiguration. Optimally siting and sizing shunt capacitors
(reactive power compensators) and/or DG units (flexible gen-
eration sources) at the same time with DSR enhance effec-
tiveness of reconfiguration strategies, capacitor placement
plans, and DG allocation programs. However, solving such
complex large-scale and highly non-linear problem is hard,

118522 VOLUME 9, 2021



M. Mahdavi et al.: Reconfiguration of Electric Power Distribution Systems

time consuming and needs extensive computational efforts.
Tables 36 to 38 show outcomes of combination of multi-
objective DSR applications with capacitor placement and DG
allocation strategies.

VII. CONCLUSION
A complete review and classification of the most significant
works regarding distribution system reconfiguration (DSR)
has been presented, including not only traditional approaches,
but also those involving renewable energy resources, reliabil-
ity, generation and demand uncertainties, electricity markets,
capacitor placement, capital saving, and associated fields
(e.g., switching frequency and cost). The DSR in its complete
scope was categorized into three major classifications, i.e.,
solution methods, objective functions, and innovations. This
work represents a valuable tool for anyone associated with
this research field, as it provides a broad literary framework
that can be used as a base for any further investigations related
to DSR and its upcoming challenges. Therefore, distribu-
tion system operators can use this framework in order to
improve upon previous formulations and methods, and they
can propose more efficient models to better exploit existing
infrastructure.

The presented classifications evidence that most
researchers have focused on the solution of the DSR problem
from a static point of view, although a number of works were
found to have used a dynamic approach. Moreover, due to
the large-scale combinational feature of the DSR problem,
metaheuristics have been the most commonly used solution
method in this matter.

Nowadays, most of distribution systems contain distributed
generation (DG) and renewable energy sources in presence
of flexible and variable loads (demand response) with high
uncertainty in generation that need more realistic analysis
and complex models. This issue increases importance of
stochastic DDSR problems with different objectives from
DG owners, distribution companies, and energy consumers
point of views. Therefore, the important challenge for DSR
researchers is to find more efficient and accurate mathemati-
cal models and techniques to solve such complex large-scale
optimization problem in an acceptable computational time.
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