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ABSTRACT For reliable and efficient network planning and operation, accurate estimation of Quality of
Transmission (QoT) is necessary. In optical networks, a physical layer model (PLM) is typically used as a
QoT estimation tool (Qtool) including a design margin to account for modeling and parameter inaccuracies,
to ensure acceptable performance. Such margin also covers the performance variations of the transponders
(TPs) which are relatively low in a single vendor environment. However, for disaggregated networks that
utilize TPs from multiple vendors, such as partial disaggregated networks with open line system (OLS), this
traditional approach limits the Qtool estimation accuracy. Although higher TP performance variations can
be covered with an additional margin, this approach would reduce the efficiency and consume the benefits
of disaggregation. Therefore, we propose PLM extensions that capture the performance variations of multi-
vendor TPs. In particular, we propose four TP vendor dependent performance factors and we also devise a
Machine Learning (ML) scheme to learn these performance factors in offline and online network planning
scenarios. The proposed extended PLM and ML training scheme are evaluated through realistic simulations.
Results show a design margin reduction of greater than 1 dB for new connection requests in a disaggregated
network with TPs from four vendors. On top of this, the results also show a ~0.5 dB additional Signal to

Noise Ratio (SNR) saving for new connection requests by proper selection of the TPs.

INDEX TERMS Design margin, optical networks, quality of transmission (QoT), transponders.

I. INTRODUCTION

The increasing popularity and rapid development of emerging
services and cloud-based applications along with the lat-
est networking paradigms (e.g., Internet of Things) require
high capacity and improved transport infrastructure [1]-[3].
To fulfill these ever-increasing services and applications
requirements, data traffic will experience a dramatic evo-
lution over the next years [4]. Moreover, this substantial
traffic growth will push network operators for a continuous
investment in their optical transport infrastructure. To sus-
tain this traffic growth, optical transmission systems do
not only need to scale up in transported bits per fiber,
but also lower the cost of transmission [5]. One of the
key requirements to cope-up with the cost, is to develop
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highly interchangeable products to enable end-to-end vendor-
diverse inter-operable coherent optical systems [6]. Typi-
cally, the design and operation of an optical network requires
a Physical Layer Model (PLM). The PLM with the addi-
tion of design margin is typically referred to as the Qual-
ity of Transmission (QoT) estimation tool or Qtool. Such
a Qtool is used by optimization algorithms to estimate
connections’ QoT while examining candidate optimization
operations. The range of optimization problems varies from
static use cases (e.g., incremental planning) to more dynamic
use cases such as dynamic connection establishments, auto-
matic network reconfiguration, defragmentation, virtual net-
work reconfiguration etc. The accuracy of the PLM is quite
crucial to achieve high efficiency in such optimizations,
and plays an important role to bring forward the bene-
fits of disaggregated optical networks, as discussed in the
following.
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FIGURE 1. (a) Traditional WDM transport system: line system and TPs with proprietary controller, and (b) OLS of multi-vendor TPs with open transport

controller.

The concept of disaggregation in optical networking is
“inherited” from the datacenter’s architecture. Datacenters
are built upon interchangeable, highly flexible computing
and network nodes [7]. This flexible datacenter architecture
approach pushes optical networking to explore multi-vendor
disaggregating hardware and software with a strong focus
on the interoperability. Substantial efforts have been made
in developing vendor-neutral software controllers, third party
network orchestrators, and standardized northbound/ south-
bound interfaces. In this regard, some works demonstrated
line systems that are open to multiple vendor network ele-
ments [7], [8]. Such developments have an ultimate objective
to enable an open or disaggregated line system (OLS), where
the optical hardware from multiple vendors can be intercon-
nected and configured centrally through a common control
plane. Thus, disaggregated optical transport system is con-
sidered as a means to accomplish higher flexibility and cost
reduction. Different levels of disaggregation are being dis-
cussed, from partial to full disaggregation [7]. As expected,
disaggregation trades off data/control plane complexity for
cost, and the different disaggregation levels achieve different
tradeoff levels. Partial disaggregation, where the line system
is open (open line system OLS) to multiple vendor transpon-
ders (TPs), has gained significant attention due to the ease in
the control plane implementation.

While the introduction of disaggregated optical platforms
is expected to push for equipment commoditization and gen-
erate new business models, there are still some uncertain-
ties regarding the performance of such systems and their
applicability to backbone/core networks that have stringent
optical performance requirements. One of the most basic
requirement for such networks is to have a PLM/Qtool that
accounts for vendor dependent performance factors of net-
work elements (e.g. multi-vendor TPs) rather than relying on
traditional closed source vendor Qtool estimator and planning
tools.

In traditional optical transport networks, both the line
system and the TPs are aggregated (i.e., single ven-
dor) and controlled via a proprietary Network Manage-
ment System (NMS) or controller as shown in Fig. la.
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For such networks, network elements operating parame-
ters are decided by the network proprietary controller. For
instance, the TPs launch power is generally set to a fixed
value by the vendor itself that is optimized to achieve the best
Signal to Noise Ratio (SNR) for the targeted channel under
high load, i.e., worst conditions. While optimizing/deciding
that, several factors need to be accounted, including statisti-
cal variations of TPs’ components, even if they come from
the same vendor [9]. The used margins, which account for
impairments calculations, uncertainties and ageing, generally
cover such TP performance variations [10], [11].

In the envisioned OLS scenario, the network infras-
tructure is expected to comprise of multi-vendor equip-
ment such as TPs which are controlled via well-defined
models and control interfaces (e.g., YANG, REST APIs,
NETCONF etc.) [7], [12]. The reference architecture for
such a multi-vendor network is shown in Fig. 1b. So, for
multi-vendor TPs in an OLS, apart from the aforementioned
TP statistical variances, vendor dependent factors play a cru-
cial role in QoT/SNR performance and estimation. To be
more specific, in such a network, performance variations arise
from the different TP components, digital signal processing
(DSP), forward error correction (FEC) coding techniques etc.
used by each vendor [9], [13]. Consequently, relying on a
typical single vendor PLM to estimate the performance of
a multi-vendor TP network may result in huge deviations in
the estimated and actual QoT values. A solution to mitigate
this is to add/increase the used margin on top of the PLM
estimations. However, adding such additional margin would
lead to lower efficiency and underutilization of the network
and thus diminish the benefits of disaggregation.

In light of the above, herein we propose extensions to the
PLM/Qtool to accurately model the physical layer in multi-
vendor TP environment that accounts for vendor dependent
performance factors. Although we focus on multiple vendor
TPs, the proposed model can be extended to cover other
line system characteristics such as amplifier ripples, filtering
penalties etc. Compared to our previous work in [14], two
major novelties are brought: i) we devise both offline and
online machine learning (ML) assisted training methods to
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identify the TP vendor dependent performance factors; and
ii) we apply the proposed solution to a different use case,
that is, the incremental planning problem, rather than the TPs
launch power optimization problem investigated in [14].

The remainder of this paper is organized as follows.
In Section II, we overview the related work and current
limitation in existing PLMs. Then, in Section III, we provide
the details about the proposed PLM extensions to model
multi-vendor TPs in OLS network scenarios. In the same
section, we also provide basic results that emphasize the
need for the proposed extensions. In Section IV, we present
the ML-assisted training schemes to find the proposed PLM
parameters. Then, in Section V, we show the performance
evaluation in terms of margin reduction achieved by the pro-
posed modeling scheme. We also verify that additional SNR
improvements for new connection requests can be achieved
with proper selection of TPs. Finally, Section VI concludes
the paper.

Il. RELATED WORK

There are several factors which impact the accuracy of the
Qtool and cause estimation uncertainty [15]. To mitigate such
uncertainty, the design margin is used [10]. The reduction
of the design margin during connections provisioning based
on the actual network conditions and the actual capabilities
of equipment has recently attracted attention from both the
research and industrial community [16]—[19]. Monitoring and
ML schemes have been adopted as key enablers to reduce the
design margin for either planning or incremental planning of
the optical networks [19], [20].

In the literature many numerical and non-ML (analytical)
based models for QoT estimation exist [6], [17], [18]. For
such models, QoT estimation is performed using an analyt-
ical PLM which is the key module of the Qtool. In such
tools, the linear amplified spontaneous emission (ASE) noise
injected by the optical amplifiers, the nonlinear noise caused
by the fiber Kerr effects, the filtering penalties at recon-
figurable optical add drop multiplexer (ROADM) nodes,
the polarization dependent losses (PDL), etc. are the effects
that are modelled in the connection’s QoT calculation. Mod-
eling simplifications or uncertainties in the parameters of
these calculations define the accuracy of the models [15].
Thus, a common practice is to add a design margin to the
Qtool to account for the modeling simplification assump-
tions and other uncertainty parameters. The ASE noise cal-
culations contributed by each erbium doped fiber ampli-
fier (EDFA) in the network is quite straightforward and
depends on the average gain and noise figure (NF) values.
Many models are available to estimate the contribution of
the nonlinear interference (NLI) noise generated due to fiber
nonlinear effects [21]-[23]. One of the major bottlenecks
in choosing these models for NLI estimation is the com-
putation speed. For example, the split step Fourier method
is very accurate and versatile as it can address complex
scenarios including the mix of non-coherent and coherent
signals in networks with dispersion management. However,

VOLUME 9, 2021

the trade-off is with the computation speed, as this method
is very slow. The Gaussian Noise (GN) model has been
introduced and shown to be quite accurate, while its approx-
imated closed form analytical version combines both good
accuracy and low computational complexity [21]. Since then,
the GN model became the first choice as PLM for many
research works [6], [16]-[18], [24]. Several works explored
the estimation of the filtering penalty induced at the ROADM
nodes [24], [26]. Some of these methods are analytical whilst
others proposed to use monitoring and ML to estimate these
penalties by correlating the information from the established
connections.

The capability to continuously monitor the network and the
QoT of the established connections is the key to lower the
design margin. For example, we can use a feedback-based
QoT estimation approach, which correlates the monitored
QoT values of established connections to estimate the QoT
of the unestablished ones. Based on similar fundamentals,
the penalties due to the EDFA gain ripple and filtering at
the ROADM nodes are estimated in [24], [25]. In many past
works, monitoring along with ML is exploited to reduce the
design margin by minimizing the uncertainty of the input
parameters of the Qtool [15]-[19]. ML-based estimation
techniques have also gained a lot of attention to improve the
Qtool accuracy in the past [17], [27]. One of the major benefit
of these full black box Qtool is to model all the physical layer
effects together. However, the need of a huge training dataset
is one of the biggest limitations of such approaches. Hybrid
approaches (a mix of PLMs and real-world data) also came up
recently with comparatively less data requirements [15]. All
these trained models at the end are used to attain more accu-
rate QoT estimations embracing diverse use cases. Almost
every scheme in these mentioned research works utilized the
traditional GN-based PLMs. This approach takes into account
different attributes such as channels separations, symbol rate,
transmitted wavelength, launch power etc. However, these
PLMs lack the information about the vendor characteristics,
which are crucial for multi-vendor network scenarios. The
common approach is to increase the amount of design margin
to account for these vendor dependent performance factors.
However, this would result in inaccurate QoT estimation (as
margin is increased) along with network underutilization.

In brief, to the best of our knowledge, the QoT estimation
accuracy and design margin reduction in multi-vendor TPs
with OLS network scenarios have not been investigated. For
such networks, a proper PLM is needed to account for TP
vendor dependent performance factors. Keeping this in mind,
we first propose a PLM to capture the performance variations
of multi-vendor TPs. Then, a ML-assisted training scheme
to trace these TP vendor dependent performance factors is
developed. We verify the benefits of our proposed modeling
scheme in terms of substantial design margin reduction for
new connection requests. We also highlight the idea of using
the proposed PLM with basic resource allocation strategies to
decide the best TPs at the time of setting up the new connec-
tion requests along with the additional SNR improvements.
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lIl. PRELIMINARY STUDY AND MOTIVATION

In traditional aggregated optical network with proprietary
controller (Fig. 1a), the TPs parameters are only known by the
network or domain vendor. In such a network setting, several
past works already proved that the QoT of connections can
be estimated quite accurately using the GN model for fiber
nonlinearities [15]-[18]. The GN model’s main assumption
is that, in dispersion uncompensated transmission systems
where the NLI caused by the Kerr effect is relatively small.
Consequently, the NLI can be modeled as an additive Gaus-
sian noise that is statistically independent of signal and ASE
noise [21]. The GN model is also a well-accepted PLM for
single- and multi-vendor networks [6], [16]-[18], [28].

We assume a network with n = 1,2,..., N established
connections. Let p = p1, p2, .., py represents the TP launch
power vector of those established connections. The GN PLM
is a model that takes as input several parameters and calcu-
lates the generalized SNR values of the connections. Let z
represents the fixed input parameters of PLM, such as routes,
used wavelengths, span lengths, etc. Let r denote the set of
GN model fitted parameters: i) fiber attenuation coefficients,
ii) fiber non-linear coefficients, iii) fiber dispersion coeffi-
cients, and iv) a bias. According to the GN model, the impact
of optical fiber transmission effects on the generalized SNR
of connection n € N generated at span s can be modeled as

P o,n,s

SNR, s (p,r,2) = (D
" PASE n,s + PNLLn,s

where P, , ; is the optical signal average power level, PAsg s
is the ASE noise power, and Pnys s is the NLI contribution
to the noise of connection n generated at span s.

Assuming incoherent noise accumulation over the spans of
the path for connection n, we can sum Pasg s and Pyps n.s
over the spans that comprise the path of n, to obtain Pasg ,
and Pnyr ,, respectively. Then the generalized SNR of con-
nection n at the path end, SNR,, (p, r, 2), is given by

Po,n
Pasg n + PNLIn

Then, the total SNR of connection n, calculated by the
traditional single vendor Qtool Qgy (using Eq. (2)) is given
by

Osv.n(@,r,2) =[SNR, (p,7,2)]yp — SNRpy2, — DM 1 (3)

where SNR;p is the dB penalty in TP’s back to back (b2b)
configuration and DM | stands for the design margin, which
is the additional margin (in dB) added on top of PLM cal-
culations to cover modeling inaccuracies such as EDFA gain
ripple penalties, TPs performance variations etc. Eq. (1) to
Eq. (3) collectively form the traditional model/Qtool to esti-
mate generalized SNR. We call it as a single vendor Qtool,
and refer to it with Qgy .

The above described Qgy considers in a coarse manner
the characteristics of the TP. In general, the average power
of the output signal and NLI noise, that is {P,,Pyzs} terms,
are affected by receivers’ characteristics of the TPs such as

SNR,, (p,r,z2) = 2)
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the digital signal processing (DSP) implementation, perfor-
mance variations of TP components (e.g., laser linewidth,
photodiode’s responsivity, etc.). The linear noise term, Pasg,
is mostly determined by the optical amplifiers. Parts of the
TP characteristics are included in the SNRy, and then the
uncertainties/variations of the TP performance are covered in
the design margin DM;. This can be acceptable for a single
vendor TP with small variations.

A. MOTIVATION

Considering optical networks with line system open to TPs
from multiple vendors it stands to reason to expect to have
higher variation in TPs performance as compare to a single
vendor environment [13]. The DSP chain, which is generally
implemented by different vendors in different ways, such as
different algorithms or the same algorithms with different
parameters (e.g., number of digital filter taps), is one of
the major source of variation in multi-vendor TPs perfor-
mance. Furthermore, different vendors use different compo-
nents (from different third-party vendors) such as balanced
photodiodes, local oscillator (LO) lasers (drifts, linewidths,
etc.), analog amplifiers, etc. As discussed, there are statis-
tical variances within the TP components which cause per-
formance (statistical) variations even in single-vendor TPs.
However, in OLS scenarios with TPs from multiple vendors,
the effects of these variations in the overall network perfor-
mance become more critical.

Keeping this in mind, we simulated seven polarization-
multiplexed (pol.-mux.) 16-Quadrature Amplitude Modula-
tion (QAM) channels, spaced at 50 GHz and modulated at
32 Gbaud symbol rate with root raised cosine (RRC) pulse
shaping (roll off-0.2) in VPI Transmission Maker [29]. We
simulated the setup with total fiber/link length of 160 km
and 480 km with 2 and 6 identical spans of length 80 km
each respectively. The EDFAs (or the line system part) were
assumed to be completely flat, to capture the performance of
the TPs. The total impairments compensated at the receiver
DSP block is shown in Fig. 2a. We also varied the balanced
photodiodes responsivity at the coherent receiver front-end
from 0.8 (worst) to 1.0 (ideal/best) and the LO laser linewidth
to emulate the component statistical variation originating
from different vendor components. In chromatic dispersion
(CD) compensation module, we varied the effective fast
Fourier transform (FFT) size and the phase noise component.
For polarization demultiplexing algorithm, we varied the
constant modulus algorithm (CMA) and the multi- modulus
algorithm (MMA) with different initial taps and number of
iterations. We also varied the number of samples during clock
phase recovery module, in order to emulate performance
variation within different vendors DSP chains. Inside the
same module, we also varied the fourth power operation
on the received samples, before estimating the frequency
offset. Lastly, in the carrier phase recovery module, we only
varied phase noise parameter from 0 to 20 radians. Based
on the different combinations of the above DSP algorithms
and parameter variations, we implemented four different DSP
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FIGURE 2. (a) Simulated set up in VPI transmission maker in order to emulate different DSP chains for different TP vendors, and (b) different value of flat
optimized launch power for different DSP chain (TP vendor) at a transmission distance of 480 km (6 x 80 Km spans).

chains at the receiver side (DSP-1 to DSP- 4), to emulate TPs
from four different vendors.

As expected, due to the maximum nonlinear interference
noise from the neighboring channels, the central channel has
the worst performance/lowest SNR in a wavelength division
multiplexed (WDM) system for both transmission distances.
As so, we measured the SNR at the central channel while
varying the flat or uniform launch power vector for all chan-
nels. For a transmission distance of 480 km, from Fig. 2b,
it can be seen that depending upon the DSP chain or TPs
performance, the best optimized flat launch power is in the
range of —0.5 dBm to +0.5 dBm for the different (vendor)
TPs. Similar behaviour was also observed for shorter link
length of 160 km. Note that each vendor, if it would be the sole
vendor (aggregated network) would perform such optimiza-
tion, considering the network specificities, operation load,
etc., and select the corresponding optimized power. It is also
worth noting that while some vendors’ launch power (e.g.,
TP with DSP-4) is optimized, other TPs (DSP-1, DSP-2 and
DSP-3) may be in their nonlinear range.

However, assuming an environment with TPs from mul-
tiple vendors, such an optimization would not be feasible,
and related variations in the performance would need to be
covered by a corresponding increased margin as discussed in
the upcoming Section IV. Thereby, assuming that we use the
GN model as the PLM, we need to increase the DM in Eq. (3)
to account for the performance differences caused by the
TP’s different characteristics. Increasing the margin results in
underutilization of network capacity as certain TPs deployed
in the network have better performance than others at certain
conditions (e.g., network load). Our goal is thus to extend the
GN model based PLM to capture the TP characteristics in a
generic way, so as to reduce the margin required for multi-
vendor TP environment.

B. MULTI-VENDOR PLM

To extend the GN model to capture TP character-
istics, we introduce four performance factors, v =
{a, B,y,8}, where o and § cover vendor specific TP
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components variations; B covers amplifier characteristics;
and y covers vendor specific DSP implementation varia-
tions [9], [13], [14]. In a multi- vendor TPs scenario, these
performance terms {c, B, ¥, 8} would be different for the
heterogeneous TPs. Though this model is also applicable for
single vendor TPs (or networks with alien wavelength/TPs),
its importance is more relevant in multi-vendor networks.
To be more specific, we consider a scenario, where the line
system is open and TPs from M vendors are deployed (or
available for deployment for the new connections).

For a vendor i in M, we calculate the SNR of connection
n, which uses TP i (denoted as i = TP(n)) at the end of the
path, with Eq. (4), instead of Eq. (2):

Ot,'.P(,’n
Bi-PASE.n + Vi-PNLI.n

(%)l Pon

Pasg.n + (%)l PnLrn

SNRn (p7 ra vaz) ==

, i=TP(n) (4)

where v denote the TPs’ parameters vectors that includes
vi = {«j, Bi, ¥i, 8i} the performance factors of transponder i.

The QoT/SNR of connection n, calculated by the Qtool
that accounts for the proposed multi-vendor TPs dependent
performance factors is given as

QMV,n (pa r, V,Z) = [SNRn (P, r, vaz)]dB - SNRbe,i
—DM,, i=TP@),
SNRpop,i = SNRpop + 8 Q)

where SNRpp.; is the total dB penalty for i-th TP in back
to back (b2b) configuration, and §; is its vendor dependent
variation to some reference SNRpy, value (similar to Eq. (3)).

The performance factor 8 corresponds to the amplifiers’
performance and its contribution comes from the OLS.
An important effect that can be captured in the 8 parameter
is the wavelength dependent penalty (additional ASE noise)
due to the EDFA gain ripple effect. Several works have been
published targeting to estimate the penalties contributed by
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this effect [15], [24], [25]. However, this would be wave-
length dependent and common for all TPs, and thus it will be
a network (line system) rather than a TP vendor dependent
factor. Thus, for the remaining of this paper we will assume
B =1 for all TPs.

Eq. (4) and Eq. (5) account for vendor specific performance
factors. We call this as a multi-vendor Qtool and refer to
it by Omy. Note that in the past, a vendor dependent bias
term was added in the accumulation of linear/ASE noise to
account for TP implementations [30]. Our model, on the other
hand, is more generic and captures a broader range of imple-
mentation factors, including bias [ 14]. Furthermore, while we
started with the GN model and described our extensions to it
in the preceding definitions, the concept is generic, and our
proposed extensions can be applied to other PLMs/Qtools.

QOpyv includes performance factors coming from differ-
ent vendor TPs. Hence, when modeling a multi-vendor
TP network, the margin DM would be higher, if we use a
single vendor/traditional Qsy compared to the margin used
with the proposed multi-vendor Qyy, that is, DM >>DM
(demonstrated in results, Section V). Note that in this
work, we assume that for the connections, the transmitter —
receiver (Tx. -Rx.) pairs are from the same vendor. In more
diverse network disaggregation scenarios, where interoper-
ability between Tx. - Rx. from different vendors is possible,
such communication would follow a specific standardized
configuration (modulation format, DSP, etc.). In such a case,
we should have specific TP performance factors v; for the
standardized interoperable configurations, allowing the pro-
posed Quyy to achieve good accuracy also in such a network.

IV. CASE STUDY-FLAT POWER OPTIMIZATION USING
Osy AND 0y

In this section, we discuss the discrepancies in the SNR
values, if Qgy is used in networks where TPs from multiple
vendors are deployed (or available for deployment) and how
this could affect the optimization of the launch power of the
channels.

In traditional or single-vendor optical networks, all net-
work elements are aggregated and under the control of the
proprietary controller, as shown in Fig. 1a. Every network
element configuration such as launch power of TPs, operating
points of amplifiers etc. are decided by the vendor. One of
the most crucial decisions by the vendor is to adjust the TPs
launch power. There are several ways to decide the launch
power of the TPs in a WDM system. The most common
practice, and the one discussed in the previous section, is to
set a flat launch power to all TPs which is found to be the
optimum for the central (target) channel at full load (worst
condition) on a multi-span link [14]. Such power optimization
results in low efficiency or excess margins for side channels
or diverse network paths and can be improved using more
sophisticated techniques [31], [32]. Setting a conservative
launch power is definitely a good strategy for networks with
limited knowledge about the used elements such as the disag-
gregated scenario [7]. In general, due to these uncertainties,
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FIGURE 3. Average and minimum-maximum SNR (dB) variation on the
central channel for different TP vendors, with respect to varying launch
powers at different transmission lengths.

the impact of the network disaggregation is accounted for
by considering an additional penalty or margin as discussed
in [6], [10] and also at the end of the previous paragraph.

Fig. 3 shows the average SNR value of the central channel
SNR (dB) of the four different (DSP) TP vendors at varying
transmission distances of 160 km (2 spans) and 480 km
(6 spans). Note that the number of channels (seven) was
assumed to be fixed. The curves show in addition to the
average SNR (dB) performance across all TP vendors, the
minimum-maximum SNR (dB) in the error bars (red color)
indicating the variation of the central channel for the dif-
ferent TP at each flat optimized launch power. Because of
the various DSP implementations, Fig. 2b already showed
that the optimal channel launch power for each TP vendor
was within 1 dB of one another. As so, when setting a flat
launch power for all TP, as done in this set of simulations,
it will not be optimal for some TPs. We noticed a similar
behavior at different transmission distances of 160 km and
480 km. In case of smaller distances (160 km), the maximum
SNR (dB) variation was found to be ~0.4 dB. However, for
longer transmission distance (480 km), we observe slightly
higher variation of ~0.59 dB in maximum average SNR (dB)
as shown in Fig. 3. Note that the channel count was low
and fixed. The VPI-implemented DSP chains, which act as
different vendor TPs, account for the majority of these SNR
variations. It is possible that the peak SNR (dB) variation
further increase to greater than 1 dB, when full network (high
load, diverse paths, etc.) are considered, as presented in the
results section.

Let us now evaluate the discrepancies in SNR values if we
have a network, where TPs from M = 4 different vendors
are deployed (or available for deployment). Note that the
four different DSP chains implemented in VPI (described in
Section III.A) are treated as four different TP vendors in this
section. Fig. 4a shows the VPI measured SNR values for the
seven pol.-mux. 16-QAM channels at 0 dBm of flat/uniform
launch power, when the DSP chain of TP#1 is considered for
a link length of 480 km. As can be seen, the minimum SNR
is obtained at the central channel, which is to be expected.
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FIGURE 4. (a) SNR (dB) values for VPl measured and trained Qgy for
seven channels at 480 km of link length considering DSP-1 chain, and
(b) TP vendor dependent (different DSP chains) SNR (dB) values at flat
optimized launch power values of —0.5 dBm for TP#3, 0 dBm for
TP#1 and TP#2 and 0.5 dBm for TP#4 as presented in Fig. 2b.

Fig. 4a also shows the SNR values for these seven channels
estimated after training the parameter vector r (fiber coeffi-
cients and bias) of the standard Qtool Qgy (training details
in Section IV.A). We also indicated the SNR (dB) training
error between trained single-vendor Qtool and VPI measured
values in the same plot, with maximum SNR (dB) mean
square error (MSE) of ~5.8 x 10793, We also noticed similar
training error (~6 X 1079 for the transmission distance
of 160 km. Note that, to improve the training accuracy with
more samples, we also used VPI monitored SNR values at
different spans lengths (during training). This is the typical
outcome we should expect when training the standard Qgy
for the single vendor environment. A key point that needs
to be highlighted here is that the results would be the same,
whether we assumed a single TP vendor or multiple TP
vendors in Qgy .

Now considering the scenario with M = 4 TP vendors
(with different vendor dependent DSP chains). If we use the
above trained single vendor Qtool Qgy, since there is no
TP/vendor dependent parameters in Qgsy, the estimated SNR
of all TPs would be the same, as shown in Fig. 4a. Instead,
as shown in Fig. 4b, the real SNR values of the four TPs vary
(according to their flat optimized power of Fig. 2b), and in
particular we observe a ~0.4 dB difference in the SNR value
of the central channel. So, a ~0.4 dB of higher margin would
be required to cover this estimation error. It is important to
note that this is a special case, a linear network of two spans,
where all the paths have the same length. For a more realistic
network with diverse links and paths, this margin value is
higher, as discussed in Section V.

By definition, no TP vendor dependent performance fac-
tors are accounted in Qgy calculations, as opposed to Qyy .
The vendor dependent factors accounted in Qpsy can improve
the QoT estimation accuracy and enable the use of a lower
design margin. In our previous work [14], we tackled the
problem of TPs launch power optimization, where it was
assumed that we can choose for each channel a different
launch power, according to its needs, being a more sophisti-
cated solution than the flat power optimization we discussed
above. We showed notable improvements into two objective
functions using Quy instead of Qgy. In this work, we will
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target a different optimization problem, i.e., incremental plan-
ning, and thus showcase that the proposed PLM/Qtool mod-
eling is generic and can benefit a variety of use cases.

A. MACHINE LEARNING ASSISTED MODEL TRAINING

As shown in Fig. 4b and discussed above, the SNR values
vary for the different TPs. This cannot be captured by a single
vendor PLM as in Qgy. For this purpose, we proposed (in
Section II1.B) the multi-vendor PLM Qjyy, which includes
additional — vendor or TP specific — parameters v. We now
discuss how we can identify these parameters, which was not
explicitly provided in our previous work [14]. This can be
done through ML-assisted training in a greenfield deploy-
ment or while the network operates (brownfield).

The idea in such training is to fit the parame-
ters/coefficients of the Qv with measurements/monitoring
data in a testbed or in the operating network (reality/ground
truth), so that the proposed Qyy behaves similarly to the
real (multi-TP) world. In this work, we relied on ML based
nonlinear fitting techniques to do this. Since we consider QoT
estimation, the SNR and the bit error ratio (BER) are the
typical estimation targets [15]. We choose the former, i.e., the
SNR, as the targeted value for our study. Regarding the input
data/features, they include parameters such as connection’s
route, modulation format, symbol rate, launch power vector
etc. However, the most important input parameter is the power
level of the connection, since many effects (e.g., interference
noise, amplifier gain values, etc.) depend on that. Thus,
we should include variable power level measurements in
our training scenario to identify the related PLM and TP
coefficients.

To be more specific, in our proposed model, we assume
that the input data includes the TPs launch power vector
P, whereas the target data is the monitored SNR vector (on
input power vector p). Let Y, (p) denote the monitored SNR
value of connection n which uses transponder i = TP(n), and
Y n(p) denote the vector for all the connections »n in N. The
monitoring is assumed to be done at the coherent receivers
implementing the vendor dependent DSP chains. Note that in
the specific example that we consider, seven connections are
established whose monitored data is gathered from VPI set-
up as described in Section III.A. In VPI, we implement the
DSP chain that is configured with four sets of parameters to
emulate the effect of four different TPs/vendors.

According to the used PLM, and in particular whether it
calculates NLI based on the actual utilization or with coarser
calculations, a change in the launch power of a single connec-
tion impacts on the SNR values of several others (i.e., those
connections that interfere/cross the same connection). In our
case the implemented PLM model is the analytical version of
the GN model with detailed NLI calculations per span [21].

To make a multi-vendor PLM, we first identify the param-
eters of the PLM model, and in particular the Qyv, that need
to be fitted/trained. In this work, we select the following
two sets of parameters to be trained based on the monitored
information:
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i) r — fiber coefficients- attenuation, non-linear coeffi-
cients, dispersion coefficients, and a bias (TP indepen-
dent) [17], [28].

ii) v; — i-th TP vendor dependent performance factors
He;, vi, 6i} forall i = 1, .. ,M], where M is the num-
ber of different TP vendors (= 4 in our simulated
scenarios).

The generic goal is to apply a ML-based non-linear fitting
technique to fit the parameter vector r and/or v of the Qyy
with the monitored SNR information, that is ¥ y (p). For this
nonlinear fitting part, several approaches are available in the
literature, however, we relied on the Levenberg- Marquardt
(LM) algorithm which is suitable for solving nonlinear least
squares fitting problems [33]. The LM algorithm finds

r*.ov*=(r,v)* =argmin, (QN,MV P, r,v,2)—Ypn (p))2

(6)

where the asterisk (*) symbol represents the corresponding
trained parameter vector. Note that we assume known allo-
cation of TPs to the connections, which could be included in
z. If we focus on a particular transponder type i, then we can
write the above Eq. (6) as:

ri v = (r,v)]

1 l
. 2
= argmin, . (Qn,.mv @s1i-vi.2) — YN, (p))” (D)

where N; denotes the set of connections using transponder i,
Y v, is the vector of monitored values and v; = {«;, y;, §;} for
fixed B; = 1, correspond to transponder i.

Note that we have two training options: i) joint training,
where we combine all training sets for all TPs and train glob-
ally, as described in Eq. (6), and ii) separate training, where
we train independently for each TP type i, as described in
Eq. (7), in which case we obtain v} and M different r} vectors.
There are various methods to combine these r} vectors and
improve this fitting. In particular, we average the r} vectors,
make them constant, and rerun the fitting of Eq. (7) to only
obtain the TP performance factors v for each TP i.

We now focus on two different ML-assisted training
schemes, depending upon the use case, for deriving the
parameter vectors r*, v*.

B. ML ASSISTED OFFLINE TRAINING

This approach is applicable to scenarios where the TPs from
M different vendors are available to characterize prior to
the field deployment, i.e., the planning phase or greenfield
deployment. Each vendor TP is characterized by a possible
set of modulation formats, symbol rates, launch power range,
etc. To plan the network, a PLM/Qtool would be available and
used by the network planner to assess the connections’ QoT
prior to their establishment. In our case, this tool is the GN
model based multi-vendor Qtool, i.e., Qyy .

We assume that we generate N, connections with the cen-
tral channel (ni =N "2+ 1) being of TP type i at power vector
P, and we repeat this for all the available TP types. We then
measure the SNR value Yi(p), of the central channel. The
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TABLE 1. Ground truth/reality (Qﬂv).

fiber coefficients and bias TP performance

Quv (ri=7r= fixed) factors (v;)

model att. Non- disp.

fitted (dBl/ linear (ps/. bias @ ) 5.
parameters km) wy (e (dB) i Yi i

km) )
TP1 0.81 | 0.78 | 0.85
TP2 0.82 | 096 | 0.72
0.21 1.36 | 17.19 | 2.6
TP3 096 | 0.86 | 091
TP4 0.82 | 0.84 | 0.94

launch power vector p is then varied (for all channels) over
a range of values, such as from p;,in t0 ppax (€.2. —4 dBm
to +4 dBm) at a step of pyep (e.g. 0.5 dB). The SNR is
monitored for the central channel n; over the tuned power
range and stored in a vector denoted by Y ;. As discussed, we
need to choose the parameters to train, which we identified to
be the sets r and/or v in the previous subsection. Generally,
we envision to perform this offline training phase in a lab
environment, as so accurate information about parameter
vector r of the real network would be hard to obtain and would
not be needed. Hence the goal in such an offline training
phase is to fit only parameter vector v for a fixed / known
r vector which is obtained by knowing the specifications of
the implemented setup (e.g., spans, attenuators, EDFAs, etc.)
or by fitting these parameters independently from the TPs.
To identify v, we change the launch powers of the TPs and
monitor the SNR vector. If available, we repeat with another
TP of the same type in the center and/or move the TP to
different locations apart from the center to enrich further
our training set. After training with LM algorithm — Eq. (7),
the fitted vl?‘ is obtained for vendor i and used in the Qpy ;.
Then we repeat this for the other TP/vendors. Fig. 6a provides
the pseudocode for offline training phase for TPs from M
different vendors.

13.8 0.04 137 0.05
-~ VPI mon.-TP#1 5 VPI mon.-TP#3 5
137 | trained Qv £ -3 trained Quy.s 1003 5
- | - training error 1002 g 13,5 R raming error /4 B2 9
2 i . 2l & Pl ? g
2 136 ‘, % ( £ B i {100 2
A \ Y 1 = H ! =
= \a\ g \ ) o £ % 133 — 4 £

13.5 St ¥ h ¥ P4 -0.01
I i g | AN g
¥ {002 13.1 S — 2
13.4 &\ / ™ ~ \ / N ™
2 \ 2

133 0.04 129 -0.05

0 2 4 6 8 0 2 4 6 8
connection ID connection ID

(a). (b).

FIGURE 5. Standard and trained (a). Quy 1, and (b) Qyy 3 with LM
algorithm on VPI monitored dataset for TP#1 and TP#3 respectively along
with training error.

We now discuss the results of applying this ML-assisted
training method to fit the measurements obtained through
VPI for the four TPs presented in Section III.A and Fig. 4b.
For this specific example, Fig. 5a and Fig. 5b show the trained
multi- vendor Qtool on TP#1 and TP#3 monitored data of
VPI, respectively. The LM-based training clearly fitted the
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available information:

(no. of available TPs from M vendors and their
characteristics such as possible modulation
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end
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SNR,(p,1,v;,2) — 2 training based on Levenberg-
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end \ |end and/orv;
use M trained PLMs for M vendors A
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FIGURE 6. Pseudo code for (a). offline, and (b) online training phase to identify TP vendor dependent performance factors.

Oumy parameters (v1 and vg and other TPs are not presented
in the figure for the sake of brevity) very well, with maximum
absolute training error of less than 0.05 dB (for all TPs).
Similar training error was also noticed for shorter links of
length 160 km. It is worth noting that in this performed fitting,
we trained GN- based Qysy with data measured in VPI. This
indicates that the proposed TP modeling and the GN-model
extensions can capture the performance variations of another
more realistic model and gives us confidence that they can
capture the related effects in real networks/fields.

Table. 1 indicates the fitted set of v; = {«;, i, 6;} for the
four TP vendors, after the training by the LM algorithm (VPI
setup at a length of 160 km). Identical TP parameters are
observed for link length of 480 km with slightly different GN
model fitted parameters. Note that the r parameters vector
was assumed to be known/fixed for all TPs, as discussed
above and also indicated in Table. 1, so that the training
focuses on the TP vendor dependent performance factors.

C. ML ASSISTED ONLINE TRAINING
The online training of the Qtool is applicable for more accu-
rate QoT/SNR estimation in an operating network. The idea
is to derive the TP performance factors from the established
connections and use them in the Oy for any future optimiza-
tion operation. One of the main assumption of this technique
is to know the TPs’ category for the already established
connections from the pool of M vendor TPs. Let us assume
N established connections with the power vector p. Again the
goal is to find v; = [{«;, 1, 8i}, fori = 1,2, ..,M] similar to
offline training. However, the network is operational and the
training similar to that of an offline network is an issue since,
changing powers may render some connections infeasible,
resulting in the disruption of some services.

We denote by i = TP(n) the transponder type of connection
n. We also denote by N; the set of connections using TP from
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vendor i (with total TP vendors M). For the connection n
let us denote by I(n) the set of connections that » interferes.
We choose connection 7 so that

Y1my®) — SNRy),tn) > SM, neN; (3

where SM stands for safety margin (e.g. = 1 dB) and is cho-
sen to avoid connections in I(n) to reach infeasibility level.
SNR;n).mn is the SNR threshold vector for /() set of connec-
tions, depending upon their modulation format. In this work,
we used SNR threshold calculated at a bit error ratio of 1 x
1072, from the formulas indicated in the Appendix A of [34].

The next step is to vary p and collect the training dataset.
We denote by py,, , the vector that includes all zeros and
a value of py,, (e.g. = 0.5 dB) for connection n. For each
TP vendor i, we identify candidate connections » in N; with
Eq. (8) and then change the initial p vector t0p+k Py p, k =
—1,1,-2,2,..... This change in launch power vector p is
performed for values of k until Eq. (8) stops to be satisfied.
So we start with small positive and negative values of k£ and
increase/decrease it as long as the criterion of Eq. (8) is met.
This is described in more detail in Fig. 6b. In this way we
obtain a set of Y,(p) for different p and the next step is
to apply fitting as discussed in Section IV.A (Eq. (6) and
Eq. (7)).

The evaluation of this online training is more complicated
than the offline one described above and necessitates network
level simulations. Since VPI simulations cannot achieve net-
work wide simulations (computation time constrain), it can-
not be used as the ground truth. Therefore, we replaced it
with a faster model, the proposed Qf,,{, Then, the ground
truth and the fitted model are both the same. The model
used as the ground truth has several parameters (span fiber
coefficients, bias, etc.) that are hidden/unknown and are fitted
in the second model. Note that this might have lower level of
realism than using two different models as done above, but we
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have verified in the previous subsection (Section IV.B) that
the proposed model fits very well to VPI, which is considered
to be a very realistic and accurate model.

V. RESULTS AND DISCUSSIONS

To quantify the benefits of the proposed Qtool extensions in
multi-vendor TPs network scenarios, we performed network
level simulations. For this analysis, we consider an Italian
backbone topology with 27 nodes and 43 bidirectional links
as shown in Fig. 7 and is similar to our past work [14].
The link lengths range from 80 to 480 km. We assumed
standard single mode fiber (SSMF) spans of 80 km, a traf-
fic load of 500 connections with uniformly chosen source-
destination nodes.

FIGURE 7. Simulated network topology with 27 nodes and
43 bidirectional links.

We assumed attenuation coefficient of 0.2 dB. km™!,
dispersion coefficient of 16.7 ps. (nm. km)~!, and nonlin-
ear coefficient of 1.3 W. km~' for SSMF. We considered
M = 4 TP vendors with performance factors
{o;, i, 6} = [{0.81, 0.78, 0.85}, {0.82, 0.96, 0.72}, {0.96,
0.86,0.91}, {0.82,0.84,0.94}] and fixed 8 = 1 obtained after
proper training of multivendor Qtool on VPI monitored data
(Fig. 4). Table. 1 shows the values for r and v; that were set to

f,,{, which was used as the ground truth in these simulations.
Each demand was served with one wavelength, assumed to be
modulated at symbol rate of 32 Gbaud with uniformly chosen
pol.-mux. transponders from M = 4 vendors. We assumed
modulation-tunable TPs that could adapt to { QPSK, 8-QAM,
16-QAM} modulation formats, leading to {100, 150, 200}
Gb/s of datarate, respectively. We assumed a frequency slot
size of 12.5 GHz in the C-band and allocated 3 spectrum slots
(so 37.5 GHz) for each 32 Gbaud connection. We consider a
stable network state, where a specific set of connections are
established and the goal is to establish a new set of connec-
tions, in a network upgrade/incremental planning phase.

We assumed a specific set of connections, which we routed
using a routing and spectrum assignment (RSA) algorithm
based on shortest path and first fit slots. Typically, routing
and wavelength assignment (RWA) algorithms refers to a
50 GHz grid, although they might be used for cases where all
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connections have the same bandwidth. However, we would
like to point out that the proposed solution can be applied for
connections of any bandwidth. Then we generated monitored
data using the ground truth Qf,[{, (parameters indicated in
Table. 1). Then these parameters were assumed unknown and
estimated through the proposed ML training technique. So,
we trained a second multivendor Qtool Oy on these estab-
lished connections and their monitored dataset. We assumed
that we have a new set of connection requests of 10% of the
total load. For example, at a load of 100 established connec-
tions which were used for training, additional 10% (10 new
connections) were generated and needed to be established.
For these new connections, we estimated their QoT with our
trained Qtool and calculated the testing error with respect
to the Qg[{, To verify the stability of the trained Qtools,
we averaged the results over 100 iterations at each load.

It is also worth noting that, the problem at hand is a
nonlinear fitting problem. As so the LM algorithm can find
and be stuck in a local minimum, which is not necessarily the
global minimum. Adding constraints to the model and train
it with better/accurate data is one way to avoid this. Certain
parameters in real networks, such as network measurements
or equipment datasheets, have a range of error/inaccuracy
(e.g. 5-10 percent) values, and these values can be used to add
such constraints. In our work, we assumed such constraints
on the GN model parameters such as, attenuation coeffi-
cient from 0.18-0.22 dB. km™!, dispersion coefficient from
16.7-17.4 ps. (nm. km)_l, and nonlinear coefficient from
1.28-1.42 W km~ L.

30
WOy — Qsv

@y, — Qsy(T)
25 GT *
WOy — Quv(",v;
BQSY — Quv(r,v;*

frequency
sk N
9)} (=]

p—
[—]

-1.5 -1 05 0 0.5 1 1.5 2

SNR (dB) margin

FIGURE 8. Penalty distribution for 500 connections, indicating min.
required design margin to accommodate TP performance variations.

As discussed, we randomly assigned a TP, chosen uni-
formly among the pool of M vendors to each connection.
We assumed a 0 dBm value of TP launch power indepen-
dent of TP vendor category for fair comparison. Taking as
reference the SNR obtained by using Qgy from Eq. (3) with
default parameters r, Fig. 8 depicts the estimation error for
500 connections (Qf,[{, — Qsy), which pertains to the lack
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TABLE 2. Training with only r*.

Qg model fitted fiber coefficients (r*) and bias
parameters
attenuation Non-linear dispersion bias (dB
(dB/km) | (W/km) (ps/ s
(nm. km))
Same for all
M=4 TPs 0.19 1.39 16.94 -1.85

of knowledge about the network and the TPs performance
factors. The penalties were distributed in positive and neg-
ative sides depending upon the TP performance factors and
were ~1.5 dB in total. Positive/negative penalties result in
upper/lower bounds for the design margin, which we call as
high/low margin. In standards ~2 dB of design margin is typ-
ically used to accommodate all uncertainties in single vendor
Qtool (Qsy) [10]. Fig. 8 allows verifying that ~1.5 dB of
QoT tool design margin would be required to accommodate
these TP dependent penalties. This indicates that an addi-
tional 1-2 dB of margin would be required for multivendor
networks [11]. The remaining part of the design margin
would cover the other uncertain effects such as EDFA gain
ripple, fast time varying polarization effects etc. To improve
the estimation accuracy, the very first step is to train the
Qtool to obtain (r, v)* parameters vector. We relied on LM
algorithm to fit (r, v)* at the load of 500 established connec-
tions (new/unestablished connections = 50) as presented in
Section IV.A.

The parameter vector r* plays a crucial role in attaining
good estimation accuracy. In our previous work [17], [28],
we trained the main parameters of GN model based PLM,
such as fiber attenuation, nonlinear and dispersion coefficient
(r) along with a bias (TP independent). In the following it
is shown and discussed how much accuracy can be attained
by proper selection of these parameters (r and/or v) in case
of a partial disaggregated network scenario where additional
uncertainties are present.

A. CASE 1 (REFERENCE) - TRAINING GN PARAMETERS
VECTOR r*

This case is used as a reference case in our work and is
inspired from [17] and [28]. In this case, only the fiber coef-
ficients and an additional bias (TP independent) are trained
with the LM algorithm to minimize the nonlinear least square
fitting error between Qgy(r*) and the ground truth QAG,I{,
As so there is no vector v for training. Table. 2 shows the
trained (green) parameters vector r* (along with the bias)
obtained at load of 500 connections.

B. CASE 2—TRAINING GN PARAMETERS VECTORS r* AND
TPs PARAMETERS VECTOR v*

This case corresponds to our proposed solution. We propose
to additionally train TP parameters vector v along with the
GN model parameters vector r, which was trained in the
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TABLE 3. Training with both r* and v}*.

Quv” fiber coefficients and bias TP performance
model ) factors (v;")
fitted att. Non- disp.
parameter | (dB/ | lmear | (hs/ bias | a;* v 5
S km) wy

(nm.km (dB)
km) )

0.78 | 0.78 | 0.83

TPl 37 | (. | @4
. 081 | 0.92 | 0.76
(12) | 42) | 4.6
. 019 | 134 | 1728 | 21 [T o T o
38 | @ | 33)
4 0.84 | 0.81 | 091

@4 | G5 | G2

previous reference case. As discussed there are two options,
to train either i) jointly for all TPs or ii) individually. In these
simulations, we examined the fitting of individual training.
In such case, we obtain a different fiber coefficients and bias
vector (r}") for each TP i and then average those to obtain the
r* vector. We then keep this r* vector constant and fit only
vlf“ in a second round, to focus on the effect of TP vendor
dependent performance factors.

Table. 3 shows all trained (green) parameters obtained dur-
ing the online training phase. From the table one may observe
that the obtained values of «f, y* and &7 do not exactly
match to the ground truth parameters of Qg,{,, as shown in
Table. 1. This happened because in addition to the fitting of
those we need to fit the GN model coefficients (r* vector and
bias) which complicates the fitting. It should be noted that
the results mentioned in the Table. 3 (and also in other tables)
represent the average value of trained r* and v}* over 100 iter-
ations at a load of 500 connections. Within each iteration,
uniformly distributed source-destination node pairs and TPs
from M = 4 vendors are assigned to verify the working accu-
racy of the trained Qtools on different training (500 x 100)
and testing sets (50 x 100). We also varied the launch powers
of established connections and measured the SNR values,
similar to the online training approach, to further enrich the
training dataset. It is worth noting that as we varied the launch
powers, we always double-checked that the criteria of Eq. (8)
were met, ensuring that none of the connections went down.

The deviation percentage is a metric to measure the vari-
ation between the ground truth parameters (Table. 2) and
the estimated ones, as shown in Table. 3. To be more spe-
cific, the deviation percentage was defined as the difference
between the real/measured value and the estimated one
and normalized over the real value ((estimated — real /|
real).100%). The deviation percentage (%) value for each
estimated parameter of the v} vector is indicated in brackets
(red color) in Table. 3. We observed over the 100 runs,
the maximum percent deviation of ~5% for estimated v;
vector.
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C. CASE 3—TRAINING TPs PARAMETERS VECTORS v*

This case considers perfect knowledge of the fiber coeffi-
cients (that is r vector) and the goal is to trace optimum
parameter vector v for each TP vendor. In a sense this is an
unrealistic case (for online optimization) and is mainly used
as an upper performance bound. To perform this training,
we set to the fitted Qtool, the r* parameters that were used in
the ground truth Q,(f,,{,, which were those shown in Table. 1.
Then we trained individually for each TP and obtained the
fitted parameters «, ¥;* and 8} which are shown in Table. 4.
As shown the fitted v} (green) parameters vector is almost
similar to the one used in ground truth (Table. 1) and results
in most accurate SNR estimation compare to the rest of the
cases.

TABLE 4. Training with only v*.

. fiber coefficients and bias TP performance
Qmv @) factors (v;")
rggggl att. Non- disp.

dB, linear i * * *
parameters (km)/ wy (n(::i . E;ZS) a; Vi 8;
km) )
TP1 0.80 | 0.79 | 0.82
(1.2) | (1.3) | (3.5)
TP2 0.84 | 095 | 0.74
24 | (1.0) | (2.8)
TP3 0.94 | 0.88 | 0.92
@1 | @3) | (1.1
TP4 0.81 | 0.84 | 091
(1.2) | (04) | 3.2

Note that the values of the parameters vector v}
in Table. 4 represent the average value over 100 iterations.
The deviation percentage (%) value for each estimated
parameter of the v} vector is indicated in brackets (red color)
in Table. 4. We observed that the maximum percent deviation
for estimated v;" vector was ~3.5% (during 100 runs). How-
ever, the major limitation of this approach is the availability
of precise information of other physical layer parameters (GN
parameters vector r in this case), which make this case not
feasible in practical/real network scenario.

D. COMPARISON OF STUDIED SOLUTIONS-MARGIN
REDUCTION

We also calculated the mean square fitting error, MSE (dB)?
on the SNR values for all the above discussed three cases with
respect to the ground truth Qf,[{, As expected, we noticed
the best performance for Case 3, with a minimum value of
MSE = 8.82 x 107, For the Case 1 and Case 2, the MSE
was found to be 1.8 x107% and 3.8 x107, respectively.
Note that this MSE is calculated at online training phase
(500 established connections) and as so it represents how
accurately the model fits the training dataset (averaged over
100 iterations). We then used the testing dataset (50 new
connections) to obtain the testing error (again averaged over
100 iterations). Apart from the MSE, the maximum and
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FIGURE 9. Minimum-maximum overestimation and underestimation
error range for both high and low margin sides: for the
standard-untrained Qgy, for the trained Qgy (r*), for the proposed
Quy (r*,v;), and the Qpy with perfect physical layer knowledge (r,v;")
with respect to the ground truth Q,%/, on testing dataset at a load

of 500 connections.

minimum error are quite important in optical networks and
QoT estimation, since they define the required margins.

Fig. 9 shows the maximum and minimum overestima-
tion (positive) and underestimation (negative) SNR error
in dB over the 100 random traffic simulations. It also
shows the improvements relative to the traditional untrained
Qsy. Note that we define as maximum/minimum high
margin the maximum/minimum overestimation and as
maximum/minimum low margin the maximum/minimum
underestimation error. Note that these maximum and mini-
mum error values are calculated/chosen over 100 iterations.
These maximum overestimation/underestimation error val-
ues would be the corresponding high/low margins for the
Qtool implemented with training parameters vector of each
case presented in the previous subsections.

The high margin for the case that we only trained the fiber
coefficients and an additional bias (Case 1- reference) was
found to be ~0.76 dB, yielding a ~0.78 dB margin reduction
with respect to an untrained single vendor Qtool, i.e., Qgy.
The low margin was reduced to ~0.46 dB ultimately resulting
in margin reduction of ~0.94 dB. For Case 2, the proposed
solution, where three additional parameters «f, y;* and 8}
(per TP vendor) are also trained, resulted in ~1.3 dB of both
high and low margin savings as shown in Fig. 9. Further
improvements are obtained with Case 3, but as we already
discussed, such case is not very realistic, since it assumes
that precise information of fiber coefficients are known with
high accuracy. In total, with Case 2 (proposed solution),
we achieved additional ~40% and ~25% more margin reduc-
tion compared to Case 1 for maximum high and maximum
low margin respectively. Similar savings are also indicated in
the Fig. 8 for better understanding of readers. Note that when
we only used the initial launch power, we saved ~64-70%
of the margin (both high and low), which was improved to
additional ~20-25% by probing with different launch powers
(discussed in Section IV) as shown in Fig. 8 and Fig. 9.
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E. ROLE OF PROPOSED QTOOL IN TPs ASSIGNMENT
Besides Qtool training and margin reduction for unestab-
lished connections, we also examined how we can use such
information to decide the appropriateness of the available
TPs from the M vendors for unestablished connections. For
the SNR estimation, we used trained Qtools Q}“‘,IV’ ; for the
particular TP vendors (Table. 3). Out of those TPs, the one
with the highest SNR was chosen over the others.

30 - WTP1 BTP2
BTP3 ©TP4
s

0.52dB

20

15

10

avg. no. of selected M-type TPs

300 500 700

total connections load

FIGURE 10. Additional SNR (dB) improvements by proper selection of
TPs from M = 4 vendors at different traffic loads.

Fig. 10 represents the number of newly established con-
nections (10% of the load) that used each available TP from
M = 4 vendors at different loads. Note that the TPs are uni-
formly assigned for the total connection requests (established
and unestablished). Hence, our interest here is to showcase
the importance/role of vendor dependent TPs performance
factors in TPs assignment of the new connection requests.
For this, we uniformly generated and also averaged the results
100 times at each load.

At low loads, TPs from vendor 2 and vendor 3 were
more utilized as the nonlinear noise contribution is low and
thus TPs with better «* parameter are selected, as indicated
in Fig. 10. At high loads, the amount of TPs assignment
form vendor 2 was substantially decreased compared to the
low loads. This is because TPs from vendor 2 has the worst
y* parameter, resulting in higher nonlinear noise/penalty,
which plays a more important role at higher loads. Also,
the utilization of TPs from vendor 3 and vendor 4 increased
from medium (500) to high load (700) compared to vendor
2 for the considered network topology. It is because the links
are highly occupied and the nonlinear noise becomes promi-
nent. Fig. 10 also shows the additional maximum SNR (dB)
value (averaged over 100 iterations) that was achieved by
proper selection of TPs for the unestablished connection
requests. We observed an additional SNR improvement of
0.42-0.52 dB by proper selection of TPs from M = 4 different
vendors at different traffic loads on the considered network
topology.

VI. CONCLUSION
We proposed PLM extensions that capture the performance
variations of multi-vendor TPs. We also devised a monitoring
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and ML based training scheme (based on non-linear fitting)
to estimate the TP vendor dependent performance factors
for accurate Qtool modeling in partial disaggregated optical
networks. The trained multi-vendor Qtool is then used for
estimating the SNR values of new or unestablished connec-
tion requests, improving the estimation accuracy and thus
reducing the required margin. With the proposed approach,
we accomplished a design margin reduction from ~1.54 dB
to ~0.18 dB for new connection requests with respect to a
standard Qtool. We also showed additional SNR improve-
ments of upto ~0.5 dB that can be achieved by proper selec-
tion of TPs from different vendors on top of the previously
reduced design margin. This indicates that we can reduce
the overprovisioning of the emerging disaggregated optical
networks by combining the proposed Qtool with the resource
allocation algorithms to achieve such savings.
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