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ABSTRACT This article focuses on the trajectory-tracking of an underactuated surface vehicle (USV)
considering model uncertainties and nonlinear environmental disturbances. For trajectory tracking in an
actual USV sailing environment, both the inertia and damping matrixes are not diagonal, the velocities
states are unmeasurable, and error constraints and input saturation are considered. A robust control strategy is
proposed based on the backstepping method, state transformation, a super-twisting state observer, and neural
networks. All the closed-loop signals are uniformly ultimately bounded, which is proved by the Lyapunov
stability theory analysis. The advantages of the proposedmethod are as follows. (i) A super-twisting observer
is constructed to solve the problem of the velocities being unmeasurable, and the error between the virtual and
actual velocities converges to a small neighborhood around zero. (ii) Additional controllers are developed to
address input saturation of the system control. (iii) A predefined function design is employed to guarantee the
transient trajectory-tracking performance. Finally, simulation results verify the feasibility and effectiveness
of the proposed USV trajectory-tracking control method.

INDEX TERMS Underactuated surface vehicle, trajectory tracking, prescribed performance, neural network,
output feedback control.

I. INTRODUCTION
Research on underactuated surface vessels (USVs) has devel-
oped rapidly over the past few decades, with growing explo-
ration of and progress in marine science and technology.
USVs are mainly used in two ways: for marine survey and
defense, such as marine surveillance, disaster search and
rescue, and coastal early warning [1], [2]. Examples of typical
uses of USVs are the search of the wreckage of Malaysia
Airlines M370 and conducting water depth and topographic
surveys in Antarctica. Therefore, the design of advanced
control strategies has been increasingly researched to accom-
plish these complex tasks more accurately in a real marine
environment.

The associate editor coordinating the review of this manuscript and
approving it for publication was Rongni Yang.

In current studies, USV control strategies include path-
following control [3], [4], trajectory-tracking control [5], [6]
and formation control [7], [8]. A path-following controller
has no strict time requirements and is used to ensure USVs
stably track a predefined reference path. In [3], finite-time
path-tracking control and collision avoidance problems for
USVs are solved in the presence of uncertainties and input
saturation based on adaptive backstepping technique and the
Lyapunov method. In [4], the good path-tracking perfor-
mance is obtained by combining line-of-sight (LOS) and
model predictive control (MPC) methods to improve the
reference path-tracking precision. In [7], a distributed coop-
erative formation-tracking controller for fully automatic sur-
face vessels is proposed based on a self-structured neural
network to estimate the dynamics of unknown parameters,
and an adaptive law is used to estimate unknown external
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disturbances and the approximation errors of neural net-
works. In [8], a collision-avoiding and formation-tracking
controller is proposed for USVs. The subject of this study
is USV trajectory-tracking control. At present, a variety
of nonlinear system control methods have been developed,
such as backstepping control [9], [10], sliding mode con-
trol [11], [12], adaptive control [13], [14], robust H∞ con-
trol [15], [16], neural network control [17], [18], and fuzzy
control [19].

Model uncertainties and external disturbances are impor-
tant system characteristics that cannot be neglected in design-
ing algorithms for USV trajectory-tracking control [20], [21].
Many control methods have been used to address these issues.
Among these methods, adaptive control is a widely applied
control technology. In [22], a finite-time adaptive controller
is designed considering input saturation. Although the con-
troller considers environmental disturbances, model uncer-
tainties are neglected. In [23], USV tracking performance is
effectively improved by integrating an adaptive method with
a sliding-mode disturbance observer. Neural network is an
effective method with strong robustness that can be used to
consider unknown complex uncertainties. In [24], neural net-
works (NNs) are used to approximate model uncertainties by
introducing minimum learning parameters (MLPs) to reduce
the computational complexity. However, the designed con-
troller can only constrain the error signals to be semi-globally
uniformly ultimate bounded (SGUUB). In [25], an adaptive
radial basis function (RBF) NN is constructed to estimate a
time-varying uncertain hydrodynamic damping term. How-
ever, it is assumed that the inertia matrix does not contain
non-diagonal terms, which is not supported by the actual
system model. In this study, complex unknown uncertainties
are regarded as lumped uncertainties that are approximated
using an RBF neural network and an adaptive law is designed
to estimate the weights online.

In addition to uncertainties, we consider error constraints
to improve transient and steady state performance, while
enhancing the navigation safety of the USV system. Tracking
errors that are not limited and go out of bounds can cause
control failure. Predefining a performance function is an
effective solution to solve the error constraint problem in
most cases. In [26], predefined performance boundaries are
extended to overcome problems with the convergence rate
and maximum overshoot. In [27], USV trajectory tracking
is stabilized using a predefined boundary constraint function
that is time-varying and asymmetric. The used controller can
make the tracking errors for the position and angle ultimately
converge to a small neighborhood around zero. In [28],
an error transformation method is presented that stabilizes
tracking errors within a predetermined constraint boundary
and improves tracking performance.

A variety of USV control methods can track a desired
trajectory in the presence of complex uncertainties and error
constraints. However, most of the studies that have been per-
formed have used positive diagonal dampingmatrix andmass
matrices, which are impractical. Fortunately, a coordinate

transformation method has been proposed to solve the cou-
pled problem by transforming the mass matrix into a diag-
onal form [29]. In [30], a state transformation method is
developed to solve a coupled USV dynamic model. In [31],
the aforementioned coordinate transformationmethod is used
to investigate an adaptive output feedback controller for USV
trajectory tracking. In [32], an adaptive USV trajectory-
tracking controller is combined with a high-gain observer
and a predefined performance function based on a realistic
dynamical model.

USV velocities are unmeasurable in practice. In [33]
and [34], a high-gain observer is used to obtain signals for
immeasurable velocities. In [35], a novel super-twisting algo-
rithm is designed to improve the tracking performance of a
marine autonomous surface ship. In [36], a novel extended-
states observer (ESO) is used to effectively estimate unmea-
surable velocities. The field of under-driven control involves
hybrid controllers, optimal control, fixed-time control, etc.
In [37], a hybrid controller is used to determine absolute
and relative speeds. In [38], an event-triggered scheme and
a networked predictive control technique are proposed to
stabilize networked control systems and save communica-
tion resources. In [39], a novel fixed-time control method
is proposed to ensure fixed-time stability. In [40], a multi-
objective optimization strategy is designed based on a non-
linear model predictive controller to reduce the number of
adjustable control parameters. In [41], a finite-time extended
state observer is established to improve the anti-interference
ability and tracking accuracy of a USV system.

Considering the issues presented above, a USV trajectory-
tracking control method is developed in this study to ensure
tracking accuracy and transient performance under the con-
ditions of unmeasurable velocities, input saturation, coupling
and unknown lumped uncertainties. The main characteristics
and contributions of this research study are described below.

(i): Unknown lumped uncertainties are estimated by RBF
neural networks combined with an adaptive method.

(ii): The problem of unmeasurable velocities is addressed
using a super-twisting observer.

(iii): The position error is constrained using a predefined
performance function.

This article is structured as follows. In Section 2, the USV
model, transformed error equations, and trajectory track-
ing control target are introduced. In Section 3, a USV
trajectory-tracking controller is designed based on backstep-
ping technique, a super-twisting observer, and neural net-
works. In Section 4, a stability proof based on Lyapunov
stability theory is presented. In Section 5, the results of
numerical simulations are presented to verify the effective-
ness of the proposed controller. In Section 6, the conclusions
are summarized.

II. USV MODEL AND PROBLEM FORMULATION
In this section, the USV model, errors dynamics and control
object are presented.
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A. MODEL DESCRIPTION
Herein, the USV kinematic and dynamic equations are pre-
sented. To derive a simple formula, we focus on the 3DOF
(degrees of freedom) motion, with respect to the surge, sway
and yaw axes.

The kinematics and dynamics of the multiple inputs and
outputs of the USV can be described as follows:

η̇ = J (φ)υ (1)

M υ̇ + C(υ)υ + D(υ)υ = sat(τ )+ τw (2)

where

J (φ) =

 cosφ − sinφ 0
sinφ cosφ 0
0 0 1


and η = [x, y, φ]T denotes the USV positions and orien-
tations in the geodetic fixed frame. υ = [u, v, r]T denotes
the components of the surge, sway and yaw velocities.
M = MT

∈ R3×3 represents the non-diagonal positive-
definite inertia matrix. C(υ) ∈ R3×3 denotes the centripetal
and Coriolis matrix. D(υ) ∈ R3×3 denotes the damping
matrix. τw = [τw1, τw2, τw3]T denotes the unknown bounded
external disturbances. J (φ) is a nonsingular rotation matrix
that is used to transform the coordinates from the body
fixed frame (BFF) to the earth fixed frame (EFF). The term
sat(τ ) = [sat(τu), 0, sat(τr )]T denotes the saturated control
inputs, where the saturated error is given by 1τ = τ −

sat(τ ) = [1τu, 0,1τr ]T .

sat(τi) =

{
sign(τi)τiM , |τi| > τiM

τi, |τi| ≤ τiM ,
i = u, r

where the upper bound τiM is known.
We streamline the controller design based on the kinemat-

ics and dynamic equations above by making the following
assumptions.
Assumption 1 ([42]): The unmeasurable external perturba-

tions τw are differentiable, time-varying and bounded.We can
determine a positive constant τ̄w that satisfies |τw| ≤ τ̄w.
Assumption 2 ([31]): The reference trajectory ηd =

[xd , yd , φd ]T is smooth, and its derivatives are bounded
and smooth. The USV reference trajectory is given by
η̇d = J (φd )υd .
Remark 1: In a practical ocean environment, the inertia

matrixM is time-varying and uncertain because of consump-
tion and payload motion in the system. C(υ) andD(υ) cannot
be estimated accurately.

To address this issue, M is divided into a nominal part
Mn and an uncertain part 1M . It follows that M = Mn +

1M . Similarly, C(υ) and D(υ) are divided into nominal and
uncertain dynamics. We thus obtain C(υ) = Cn(υ)+1C(υ)
and D(υ) = Dn(υ)+1D(υ). The USV dynamics (2) can be
expressed as

Mnυ̇ + Cn(υ)υ + Dn(υ)υ = sat(τ )+ f (3)

where f = [f1, f2, f3]T = −1M υ̇−1C(υ)υ−1D(υ)υ+τw.

Dn(υ) =

 d11(υ) 0 0
0 d22(υ) d23(υ)
0 d32(υ) d33(υ)

 ,
Mn =

m11 0 0
0 m22 m23
0 m32 m33

 ,
Cn(υ) =

 0 0 c13(υ)
0 0 c23(υ)

c31(υ) c32(υ) 0

 .
B. COORDINATE TRANSFORMATION
The USV inertia matrix is coupled, that is, the yaw moment
τr acts on both the yaw and sway axes. Thus, it is difficult
to design a controller and analyze the tracking performance
directly.

To solve this problem, we adopt the following state trans-
formation method [30]:

x̄ = x + δ cosφ, ȳ = y+ δsinφ, v̄ = v+ δr (4)

where δ = m23/m22. This transformation is equivalent to
moving the body frame origin by a small distance δ in the
surge motion direction.

Let η̄ = [x̄, ȳ, φ]T and ῡ = [u, v̄, r]T ; the USV dynamics
given in (3) can then be rewritten as

˙̄η = J (φ)ῡ (5)
˙̄υ = ϑ + F + τ̄ (6)

where F = [F1,F2,F3]T = [f1/m11, f2/m22, (−m23f2 +
m22f3)/ϒ]T ,
τ̄ = [(τu +1τu)/m11, 0,m22(τr +1τu)/ϒ]T ,
ϑ = [ϑ1, ϑ2, ϑ3]T and ϒ = m22m33 − m2

23. Here,
the expression for the vector ϑ is

ϑ1 = (m22(v̄− δr)r + m23r2 − d11u)/m11

ϑ2 = (−m11ur − d22(v̄− δr)− d23r)/m22

ϑ3 = ((m11m22 − m2
22)u(v̄− δr)+ (m11m23 − m22m23)ur

−(d33r + d32(v̄− δr))m22

+ (d23r + d22(v̄− δr))m23)/ϒ (7)

C. ERROR DYNAMICS OF TRAJECTORY TRACKING
To present the problem formulationmore clearly, the relations
between the USV BFF and the EFF are shown in FIGURE 1.

In the figure, Ob − XbYbZb is the USV body-fixed frame,
and O− XYZ is the earth-fixed inertial frame.

The USV tracking errors are defined as

xe = x̄ − x̄d , ye = ȳ− ȳd , φe = φ − φc (8)

where x̄d = xd + δ cosφd , ȳd = yd + δsinφd , and φc denote
the desired azimuth angle related to φd , xe, ye as

φc = arctan
ye
xe

tanh(E2/c)+ φd (1− tanh(E2/c)) (9)

where E =
√
x2e + y2e and c is a positive constant.
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FIGURE 1. Navigation and body frames for USV trajectory tracking.

Differentiating both sides of (8) yields

ẋe = u cosφ − v̄ sinφ − ˙̄xd
ẏe = u sinφ + v̄ cosφ − ˙̄yd
φ̇e = r − φ̇c (10)

This paper aims to design the control force τu and torques
τr based on output feedback to constrain the USV trajectory-
tracking errors and velocity-tracking errors within predefined
bounds.

III. CONTROLLER DESIGN
In this section, the design of a dynamic output feedback
controller based on the backstepping method and RBF neural
networks (NNs) is presented.

A. NEURAL NETWORKS
As for system (6), we use RBF NNs to approximate the
lumped nonlinear uncertainties F1,F2,F3. The results can be
expressed as [43]

F(Xj) = W ∗Tj 2(Xj)+ ζ ∗j

W ∗ = argmin[sup
∣∣∣F(X )− F̂(X , Ŵ )

∣∣∣] (11)

where j = 1, 2, 3.W ∗j ∈ Rn is the optimal weight. ζ ∗j is

the bounded approximation error, where
∣∣∣ζ ∗j ∣∣∣ ≤ ζ̄ . 2(Xj) =

[2j,1,2j,2, . . . ,2j,n]T denotes the Gaussian basis function:

2(Xj) = exp(−

∥∥Xj − cj∥∥
b2j

), j = 1, 2, · · · , n (12)

where n is the number of RBF NNs nodes. cj and bj are the
center and width of the basis function, respectively.

The RBF NNs have the following properties:

−hiW̃ T
i Ŵi ≤

hi
2

(∥∥W ∗i ∥∥2 − ∥∥∥W̃i

∥∥∥2) , i = 1, 2, 3. (13)

B. SUPER-TWISTING VELOCITY OBSERVER
The immeasurability of the velocity states is addressed in this
subsection.

Let x̂, ŷ, φ̂, û, v̂, r̂ represent the estimated values of
x̄, ȳ, φ, u, v̄, r , respectively.
It is well known that J̇ (φ) = J (φ)S(r), where S(r) = 0 −r 0
r 0 0
0 0 0

.
The coordinate transformation on ϑ̄ , w = J (φ)ϑ̄ =

[w1,w2,w3]T yields{
˙̄η = w
ẇ = g(t, η̄,w, τ )+ ξ (t, η̄,w, τ )

(14)

where g(t, η̄,w, τ ) = S(r)w+ J (φ)ϑ + J (φ)τ̄ represents the
nominal part of the USV system dynamics. ξ (t, η̄,w, τ ) =
J (φ)F are the uncertainties.

Inspired by [44], a STA observer is designed to solve the
problem of the unmeasurable velocity based on the charac-
teristics of the USV system dynamics. The model (11) is
rewritten in state-space form as follows:{

˙̂η = ˆw+ z1
˙̂w = g(t, η, ŵ, τ )+ z2

(15)

where η̂ and ŵ are the state estimates, z1 and z2 are correction
variables with the following form:{

z1 = λ
∣∣η̄ − η̂∣∣1/2 sign (η̄ − η̂)

z2 = αsign
(
η̄ − η̂

) (16)

Thus, the unmeasurable velocity ϑ can be estimated as

υ̂ = JT (ŵ+ z1) (17)

The velocity observed errors are defined as

ue = û− u ve = v̂− v̄ re = r̂ − r (18)

The proposed super-twisting velocity observer is used to
accurately observe the velocities. Thus, these velocities can
be considered as known information. The following notation
is used in Section IV: û ≡ u, v̂ ≡ v̄, r̂ ≡ r .

C. POSITION-TRANSFORMED ERROR CONTROL
In this subsection, the position tracking errors in (8) are
guaranteed to converge by using a predefined bounded per-
formance function and the backstepping method.
Definition 1:A smooth function β(t) is a predefined bound

performance function [45] if β(t) is positive and monoton-
ically decreasing, where limt→∞ β(t) = β∞ > 0. This
function is expressed as

β(t) = (β0 − β∞)e−kt + β∞ (19)

where β0, β∞, α are positive scale constants. β0 and
β∞ determine the overshoot and steady-state performance,
respectively, and k represents a suitable predefined conver-
gence rate. To guarantee the predefined performance, we set

−β1(t) < xe(t) < β1(t)
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−β2(t) < ye(t) < β2(t)

−β3(t) < φe(t) < β3(t) (20)

To ensure effective constrained trajectory-tracking perfor-
mance, the conversion errors are defined as

ex = 3(
xe
β1

) ey = 3(
ye
β2

) eϕ = 3(
φe

β3
) (21)

Setting z1 =
xe
β1
, z2 =

ye
β2
, z3 =

φe
β3

yields

3(zi) = ln(
1+ zi
1− zi

), i = x, y, φ (22)

Differentiating both sides of (21) yields

ėx =
2(β1ẋe − xeβ̇1)

(1− z21)β
2
1

, ėy =
2(β2ẏe − yeβ̇2)

(1− z22)β
2
2

ėφ =
2(β3φ̇e − φeβ̇3)

(1− z23)β
2
3

(23)

Remark 2: We define the mapping relation 3(·) :

(−1, 1) → (−∞,∞),3(0) = 0.3(zi) is a smooth and
strictly increasing function.
Remark 3: We choose appropriate control parameters such

that if the transformed error ex , ey, eφ are bounded, then
xe, ye, φe are bounded and steady.

To stabilize the trajectory tracking position errors,
we define gi = (1−z2i )βi, i = 1, 2, 3, and choose a Lyapunov
function as

V1 =
1
2
g1e2x +

1
2
g2e2y +

1
2
g3e2φ (24)

D. VIRTUAL VELOCITY DESIGN
In this subsection, we design appropriate virtual velocities
υf = [uf , vf , rf ]T to stabilize the position transformed errors
ex , ey and eφ . The virtual velocities υf = [uf , vf , rf ]T are
designed as

uf = −λ1ex cosφ − λ1ey sinφ + ˙̄xd cosφ + ˙̄yd sinφ

vf = λ1ex sinφ − λ1ey cosφ − ˙̄xd sinφ + ˙̄yd cosφ

rf = −λ2eφ + φ̇d (25)

Combining (15) and (25) yields the errors between the
virtual and transformed velocities as

s1 = u− uf − α1 tanh ρ1
s2 = v̄− vf − α2 tanh ρ2
s3 = r − rf − α3 tanh ρ3 (26)

where α1, α2, α3 are positive constants. ρ1, ρ2, ρ3 are
designed as

ρ̇1 = cosh2 ρ1(−µuρ1 −1τu/m11)/α1

ρ̇2 = cosh2 ρ2(Ŵ T
2 22

(
X̂
)
− λ3s1 + λ3s2 − λ3s3 + ξ2)/α2

ρ̇3 = cosh2 ρ3(−µrρ3 − m221τu/ϒ)/α3 (27)

where λ3, µu, µr are positive constants.

Substituting (26) into (10) yields

ẋe = (s1 + uf + α1 tanh ρ1) cosφ

−(s2 + vf + α2 tanh ρ2) sinφ − ˙̄xd
ẏe = (s1 + uf + α1 tanh ρ1) sinφ

+(s2 + vf + α2 tanh ρ2) cosφ − ˙̄yd
φ̇e = (s3 + rf + α3 tanh ρ3)− φ̇c (28)

Substituting (28) into (23) yields

ėx = (−2λ1ex + 2s1 cosφ − 2s2 sinφ + ψ1)/g1
ėy = (−2λ1ey + 2s1 sinφ + 2s2 cosφ + ψ2)/g2
ėφ = (−2λ2eφ + 2s3 + ψ3)/g3 (29)

where gi = (1− z2i )βi, i = 1, 2, 3,

ψ1 = 2α1 cosφ tanh ρ1 − 2α2 sinφ tanh ρ2 − 2β̇1z1,

ψ2 = 2α1 sinφ tanh ρ1 + 2α2 cosφ tanh ρ2 − 2z2β̇2,

ψ3 = 2α3 tanh ρ3 − 2φ̇c + 2φ̇d − 2z3β̇3.

Remark 4: ˙̄xd , ˙̄yd , φ̇c are available and bounded. Using
|sin(·)| ≤ 1, |cos(·)| ≤ 1, |tanh(·)| ≤ 1 in conjunction
with (19) and (22) yields

∣∣3−1(·)∣∣ ≤ 1, |βi| ≤ αi(βi,0 −
βi,∞), i = 1, 2, 3. Thus, it is proven that positive constants
ψ̄i, ḡi exist that satisfyψi ≤ ψ̄i, gi ≤ βi,0, ġi ≤ ḡi, i = 1, 2, 3.
Differentiating (26) and combining the result with (27)

yields

ṡ1 = u̇− u̇f + µuρ1 +1τu/m11

ṡ2 = ˙̄v− v̇f − Ŵ T
2 22(X̂ )+ λ3s1 − λ3s2 + λ3s3 − ϑ2

ṡ3 = ṙ − ṙf + µrρ3 + m221τr/ϒ (30)

Combining the definitions τu = 1τu + sat(τu) and τr =
1τr + sat(τr ) with (30) yields

ṡ1 = ϑ1 + F1 − u̇f + µuρ1 + τu/m11

ṡ2 = F2 − v̇f − Ŵ T
2 22(X )+ λ3s1 − λ3s2 + λ3s3

ṡ3 = ϑ3 + F3 − ṙf + µrρ3 + m22τr/ϒ (31)

where X = [s1, s2, s3, xe, ye, φe]T .
Therefore, we design an output feedback control law for
τu, τr and an adaptive law for Ŵ as

τu = m11(−λ3s1 − λ3s2 − Ŵ T
1 21(X̂ )− ϑ̂1 − µuρ1)

τr = ϒ(−λ3s2 − λ3s3 − Ŵ T
3 23(X̂ )− ϑ̂3 − µrρ3)/m22

˙̂W = 0i(2i(X̂ )s− hiŴi), i = 1, 2, 3 (32)

where hi > 0.
Substituting (32) into (31) yields

ṡ1 = −λ3s1 − λ3s2 + F1 − ϑ1 − u̇f − Ŵ T
1 21(X̂ )

ṡ2 = λ3s1 − λ3s2 + λ3s3 − ϑ2 + F2 − v̇f − Ŵ T
2 22(X̂ )

ṡ3 = −λ3s2 − λ3s3 + F3 − ϑ3 − ṙf − Ŵ T
3 23(X̂ ) (33)

where ξ̃1 = ξ̂1 − ξ1, ξ̃2 = ξ̂2 − ξ2, ξ̃3 = ξ̂3 − ξ3.
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Defining σ1 = F1 − u̇f − W ∗T1 21(X ), σ2 = F2 − v̇f −
W ∗T2 22(X ) and σ3 = F3 − ṙf −W ∗T3 23(X ) yields

ṡ1 = −λ3s1 − λ3s2 − ϑ1 +W ∗T1 21(X )− Ŵ T
1 21(X̂ )+ σ1

ṡ2 = λ3s1−λ3s2+λ3s3−ϑ2+W ∗T2 22(X )−Ŵ T
2 22(X̂ )+ σ2

ṡ3 = −λ3s2 − λ3s3 − ϑ3 +W ∗T3 23(X )− Ŵ T
3 23(X̂ )+ σ3

(34)

Let us define a new Lyapunov function as

V2 =
1
2
s21 +

1
2
s22 +

1
2
s23 (35)

V3 =
3∑
i=1

W̃ T
i 0
−1
i W̃i (36)

IV. STABLITY ANALYSIS OF USV SYSTEM
Theorem 1: For the USV system with kinematics (1) and
dynamics (2), under the velocity states observer, the virtual
velocity laws (25), and the control laws (32), appropriate
control parameters α1, α2, α3, l1, l2, l3, λ1, λ2, λ3 exist such
that the USV control system states are bounded and converge
to a predefined scope.

A Lyapunov function candidate is constructed as

V = V1 + V2 + V3 (37)

Remark 5: Suitable parameters β1,0, β2,0, β3,0 are cho-
sen to ensure that the initial transformed tracking errors are
bounded, that is, |ex(0)| < β1,0,

∣∣ey(0)∣∣ < β2,0,
∣∣eφ(0)∣∣ <

β3,0. Then, the following conclusion can be drawn: the error
converges to a small range around zero, and the closed-loop
USV system states are ultimately bounded.

Substituting (29) into the expressions for the time deriva-
tives of V1 given in (24) yields

V̇1 = g1ex ėx + g2eyėy + g3eφ ėφ
+e2x ġ1/2+ e

2
y ġ2/2+ e

2
φ ġ3/2

= −2λ1e2x − 2λ2e2y − 2λ2e2φ + 2ex(s1 cosφ − s2 sinφ)

+2ey(s1 sinφ + s2 cosφ)+ 2eφs3 + exψ1 + eyψ2

+eφψ3 + e2x ġ1/2+ e
2
y ġ2/2+ e

2
φ ġ3/2 (38)

Then, applying Young’s inequality yields V̇1 as

V̇1 ≤ −(2λ1 − ḡ1/2− 5/2)e2x − (2λ1 − ḡ2/2− 5/2)e2y

−(2λ1 − ḡ3/2− 3/2)e2φ + 2
3∑
i=1

s2i +
1
2

3∑
i=1

ψ̄2
i (39)

Substituting (34) into the time derivatives of V2 given
in (35) yields

V̇2
= s1(−λ3s1 − λ3s2 − ξ̃1 +W ∗T1 21(X )− Ŵ T

1 21(X̂ )+ σ1)

+ŝ2(λ3s1 − λ3s2 + λ3s3 − ξ̃2 +W ∗T2 22(X )

−Ŵ T
2 22(X̂ )+ σ2)

+s2(−λ3s2−λ3s3 − ξ̃3+W ∗T3 23(X )−Ŵ T
3 23(X̂ )+σ3)

= −λ3

3∑
i=1

s2i +
3∑
i=1

si(W ∗Ti 2i(X )− Ŵ T
i 2i(X̂ )+ σi)

−

3∑
i=1

siξ̃i (40)

Substituting the adaptive law (32) into the expressions for
the time derivatives of V3 given in (36) yields

V̇3 =
3∑
i=1

(W̃ T
i 2i(X̂ )si − hiW̃ T

i Ŵi) (41)

Considering the RBF NNs properties given by (13) yields

V̇3 ≤
3∑
i=1

(W̃ T
i 2i(X̂ )si +

hi
2

∥∥W ∗i ∥∥2 − hi
2

∥∥∥W̃i

∥∥∥2) (42)

Considering (39), (40), and (42), and taking the time
derivatives of the expression for V given in (37) yields

V̇ ≤ −(2λ1 − ḡ1/2− 5/2)e2x − (2λ1 − ḡ2/2− 5/2)e2y

−(2λ1 − ḡ3/2− 3/2)e2φ + (2− λ3)
3∑
i=1

s2i −
3∑
i=1

ξ̃isi

+

3∑
i=1

siσi+
1
2

3∑
i=1

ψ̄2
i +

3∑
i=1

hi
2

∥∥W ∗i ∥∥2 − 3∑
i=1

hi
2

∥∥∥W̃i

∥∥∥2
+

3∑
i=1

(siW ∗Ti 2i(X )− siŴ T
i 2i(X̂ )+ W̃ T

i 2i(X̂ )si)

(43)

Remark 6: The terms ϑi, i = 1, 2, 3 given in (6) are
expressed with respect to υ. We design the control inputs con-
sidering saturation to ensure that the velocities υ = [u, v, r]T

are bounded. Finally, we assume that ξ1, ξ2, ξ3 are Lipschitz
functions.

Using the aforementioned assumptions yields the inequali-

ties
3∑
i=1
ξ̃isi ≤

3∑
i=1

(qis2i +q4), where q1, q2, q3, q4 are positive

constants.
To simplify V̇ in (43), we use the following inequality:

−W ∗Ti 2i(X )+ Ŵ T
i 2i(X̂ ) = W̃ T

i 2i(X̂ )

+W ∗Ti (2i(X )−2i(X̂ ))

≤ W̃ T
i 2i(X̂ )+ εi

∥∥W ∗i ∥∥ (44)

Combining this result with the previous inequality yields

V̇ ≤ −(2λ1 − ḡ1/2− 5/2)e2x − (2λ1 − ḡ2/2− 5/2)e2y
−(2λ1 − ḡ3/2− 3/2)e2φ − (−3+ λ3 − q1)s21
−(−3+ λ3 − q2)s22 − (−3+ λ3 − q3)s23

+
1
2
(

3∑
i=1

ψ̄2
i +

3∑
i=1

(hi + ε2i )
∥∥W ∗i ∥∥2 + 3∑

i=1

σ̄ 2
i ) (45)

Let us define D, µ as

D =
1
2
(

3∑
i=1

ψ̄2
i +

3∑
i=1

(hi + ε2i )
∥∥W ∗i ∥∥2 + 3∑

i=1

σ̄ 2
i ) (46)
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FIGURE 2. The architecture of the control method for to an underactuated surface vessel.

µ = min(
2λ1 − ḡ1/2− 5/2

β1,0
,
2λ1 − ḡ2/2− 5/2

β2,0
,

2λ2 − ḡ3/2− 3/2
β3,0

,−3+ λ3 − q1,−3+ λ3 − q2,

−3+ λ3 − q3,min(
hi

λmax(0
−1
i )

)) (47)

The following suitable control parameters are chosen to
ensure that µ is always a positive constant.

λ1 ≥ max(ḡ1/4+ 5/4, ḡ2/4+ 5/4, ḡ3/4+ 3/4)

λ2 ≥ ḡ3/4+ 3/4

λ3 ≥ max(3+ q1, 3+ q2, 3+ q3) (48)

Then, substituting (46) and (47) into (45) yields

V̇ ≤ −µV + D (49)

Solve the above equation (49), yields

V (t) ≤ (V (0)− D/µ) e−µt + D/µ (50)

Finally, we conclude that the USV closed-loop system is
stable and that the transformed errors ex , ey, eφ in (21) are
bounded. The coordinate transformation method given in (4)
is equivalent to moving the origin of the BFF to the EFF
forward by a very small distance δ along the surge direction.
Thus, the transformed errors are essentially the same as the
errors in the original coordinates. Thus, the original errors are
also bounded. The proposed control architecture is shown in
FIGURE 2.

V. SIMULATIONS AND COMPARATIVE ANALYSIS
In the section, the procedure for numerical simulations used
to analyze the performance of the proposed controller is
presented. The trajectory-tracking efficiency of the designed
controller is verified using theUSVmodel parameters in [29]:

m11 = 141.85,m22 = 191.75,m23 = 5.7,m32 = 5.7,

m33 = 15.6, c13(υ) = −191.75v− 5.7r,

c23(υ) = 141.85u, c31(υ) = 191.75v

+5.7r, c32(υ) = −141.85u,

d11(υ) = 45.6+ 67.26 |u| + 10u2,

d22(υ) = 29.54+ 73.85 |v| + 15 |r| ,

d23(υ) = −2.5+ 2 |v| + 10.71 |r| ,

d32(υ) = −2.4− 13 |v| − 0.2 |r| ,

d33(υ) = 5.59+ 10.71 |v| − 0.07 |r| .

First, as in [10], the USV reference trajectory is assumed
to be

yd =



2.1 sin(π t/75), 0 < t < 37.5

2.1, t < 112.5

−2.1 sin(π t/75), t < 187.5

−2.1, t >= 187.5

xd = 0.9t, φd = arc tan(
ẏd
ẋd

) (51)

The USV initial conditions of USV are selected as

x(0) = 0.5m, y(0) = 0.5m, φ(0) = 0rad,

u(0) = 0.3m/s, v(0) = 0.1m/s, r(0) = 0rad/s. (52)

To verify the performance of the designed controller,
we add an external disturbance from [24] and the following
external time-varying disturbances:

τw=

−8+ 1.2 sin(0.05t)+1.8 sin(0.7t)+1.2 sin(0.05t)
0.2 cos(0.5t)− 4+0.4 sin(0.1t)

0


(53)
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FIGURE 3. Position tracking of USV.

FIGURE 4. Position tracking errors xe.

FIGURE 5. Position tracking errors ye.

FIGURE 6. Real and estimated velocities.

The control parameters are chosen as follows: c = 0.01,
λ1 = 1, λ2 = 2, λ3 = 2, µr = 5, µu = 5, α1 = 30,
α2 = 50, α3 = 20. The STA observer parameters are selected

FIGURE 7. The norms of the RBF neural network weights.

FIGURE 8. The USV control force and moment.

as λ = 1.5 and α = 1.1. The predefined performance
functions are chosen as follows:

β1(t) = (18− 2)e−0.05t + 2

β2(t) = (18− 2)e−0.05t + 2

β3(t) = (6− π/8)e−0.05t + π/8 (54)

Then, the parameters of the RBF NNs with six hidden
nodes are chosen as0 = [15, 0, 0; 0, 20, 0; 0, 0, 45] , h1 =
1, h2 = 1, h3 = 1. The input vectors are designed as
X = [s1, s2, s3, xe, ye, φe]T . The width bj of the Gaussian
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function is an important factor affecting the network mapping
range. In the input, the closer the cj are to each other, the more
sensitive the Gaussian function is. We choose appropriate
values for cj according to [30], and the center vector and
variances are designed using trial and error to be bj = 10
and cj = 2[−0.2,−0.12,−0.04, 0.04, 0.12, 0.2].
Finally, we clearly show the advantages of the proposed

controller by comparison against the algorithm used in [10],
where the simulation time is set to 300 s, and the simulation
results are shown in FIGUREs 3-8.

FIGURE 3 shows that the proposed method has a higher
trajectory-tracking performance, as well as other advantages,
compared to the algorithm in [10]. FIGURE 4 and FIGURE
5 show under the proposed controller, the tracking speed
is faster and the steady-state errors are smaller than the
algorithm in [10], which shows that the proposed controller
has a higher dynamic performance during the initial stage
of tracking and a better control effect during final stable
tracking. FIGURE 6 shows that the unmeasurable velocities
of USV are accurately estimated by the STA observer. The
norms of the RBF NNs weights are shown in FIGURE 7.
Finally, FIGURE 8 clearly shows that the control force and
torque are continuous and smooth.

VI. CONCLUSION
In this paper, a trajectory-tracking controller is proposed for
underactuated surface vehicles, considering uncertainties and
unmeasurable velocities. The proposed USV controller has
the following advantages. (i) The system uncertainties are
estimated by RBF neural networks. (ii) The unmeasurable
velocities are estimated by a super-twisting observer. (iii)
The position tracking error and heading-angle tracking error
are guaranteed to converge using the backstepping method
and a predefined performance function. Finally, the simula-
tion results show that the proposed controller can stably and
quickly track the desired trajectory when the model parame-
ters of the USV are uncertain.
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