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ABSTRACT Seismic inversion is an effective tool to estimate the properties of subsurface strata from
seismograms. However, the intrinsic ill-posedness of the inversion problem causes the inverted subsurface
properties to be easily polluted by inversion errors due to the random noise in the observed data. The inversion
errors make it difficult to interpret the geological features of subsurface strata, especially their boundaries and
textures. To recover high-fidelity inversion results from noisy observed data, we developed a hybrid total-
variation (HTV) regularization operator in this research. Compared with the conventional total-variation
(TV) regularization, the HTV regularization has two advantages when applied in seismic inversion. One
advantage is that HTV regularization overcomes the typical staircase effect of conventional TV regularization
while maintaining the advantage of TV regularization in edge-preserving properties. The determination of
regularization parameters is also a difficult problem in seismic inversionwith conventional TV regularization.
A large regularization parameter may lead to an oversmoothed inversion result, while a small value leads to
a noisy inversion result. Another advantage of HTV regularization is that it can generate proper inversion
results even if a regularization parameter that is too large is adopted, which makes it easy to set the value of
the regularization parameter. Numerical examples demonstrate the performance of the HTV regularization
method proposed in this research.

INDEX TERMS Seismic inversion, seafloor sediment properties, total-variation regularization, sharp
boundaries, staircase effect.

I. INTRODUCTION
In exploratory geophysics, seismic inversion is an effective
tool used to recover the properties of subsurface strata
from the observed wavefield. Due to the inherent ill-
posedness of the inversion problem, estimating the subsurface
properties with seismograms is a challenging problem [1].
Information on the inverted subsurface properties is easily
polluted by inversion errors due to random noise in the
observed data. A common approach to mitigate the ill-
posedness of the problem is to apply regularization to
the inversion process [2]–[5]. In this research, we focus
on estimating seafloor elastic parameters with prestack
seismic data. It is of vital importance for geological
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interpretation to recover high-fidelity inversion results with
clear boundaries and textures from noisy prestack seismic
data. A hybrid total-variation (HTV) regularization operator
is proposed to address the ill-posedness of prestack seismic
inversion.

HTV regularization improves conventional total-variation
(TV) regularization and shows better performance in seafloor
prestack seismic inversion. Conventional total-variation (TV)
regularization was first proposed by Rudin et al. [6] for image
denoising. Owing to its desirable edge-preserving property,
TV regularization is widely adopted in various applications,
such as electrical impedance tomography [7], [8], bioelectric
source imaging [9], [10], inverse wave propagation [11],
seismic inversion [12]–[16] and many other fields [17]–[23].
However, TV regularization usually suffers from the staircase
effect [24]–[26], which leads to misinterpretations of the
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strata features. Rather than minimizing the total variation
of the elastic parameters as in TV regularization, HTV
regularization minimizes the total variation of the zero-mean
oscillation component (ZMOC) of the elastic parameters.
The ZMOC is obtained by subtracting the local mean of the
upper and lower envelopes from the elastic parameters. HTV
regularization retains the advantage of TV regularization in
edge-preserving properties while effectively eliminating the
staircase effect of TV regularization. Therefore, HTV regu-
larization can recover geological boundaries and introduce no
staircase artifacts when applied in seafloor prestack seismic
inversion. In addition, a proper regularization parameter is of
vital importance for the inversion process with conventional
TV regularization. Many methods, such as generalized cross-
validation [27], [28], theMorozov discrepancy principle [29],
the L curve criterion [30] and the Arcangeli criterion [31],
have been developed to provide theoretical justification for
the appropriate parameter selection. If the regularization
parameter is too small, the regularization will not improve
the inversion result. If the regularization parameter is too
large, the inverse problem can be solved stably, but the
result will be too smooth to reveal the geological boundaries
and textures. Unlike conventional regularization methods,
HTV can generate a proper inversion result even if the
regularization parameter is very large. This property makes
it easy to choose the regularization parameter when HTV is
adopted.

The remainder of this paper is organized as follows: First,
we review the background of seafloor prestack inversion
and regularization, followed by presentation of the HTV
operator. Second, numerical examples are used to study
the performance of the HTV regularization operator. Third,
a discussion is given to provide deeper insight into the
research. Finally, we present conclusions based on the
research in this paper.

II. THEORY
A. BACKGROUND
In marine seismic exploration, a source and streamer are
towed by the survey vessel. The seismic wave is generated
by the source, propagated by seawater, reflected by seabed
sediments, and finally received by the streamer (Fig. 1).
The seismic wave reflected from the seabed sediment
carries information on the sediment properties. Therefore,
the observed data from the streamer can be used to invert for
seabed sediment properties such as P-wave velocity, S-wave
velocity and density.

The relationship between the incidence angle and reflec-
tion coefficient at the seafloor is determined by the elastic
parameters of seawater and seabed sediment [32], [33]. For
seafloor prestack seismic inversion, elastic parameters of
seawater, including P-wave velocity and density, are typically
treated as known parameters. Therefore, the reflection
coefficients for one common reflection point (CRP) at
different incidence angles can be determined when the elastic

FIGURE 1. Cartoon for marine seismic observation system.

parameters of seabed sediment are given:

d = f (m) (1)

where d =
[
d1 d2 · · · dk

]
is the reflection coefficients for

one CRP at a given incidence angle θ =
[
θ1 θ2 · · · θk

]
.

m =
[
α β ρ

]
denotes the elastic parameters of the seabed

sediment at the reflection point with each component α, β
and ρ denoting P-wave velocity, S-wave velocity and density,
respectively.

The data acquisition process of a two-dimensional seismic
survey can be mathematically formulated as

D = A(M)+ n (2)

where D =
[
d1 d2 · · · dn

]T denotes the observed data for
all CRPs along the seismic survey, which are further used to
invert for the model parameter M =

[
m1 m2 · · · mn

]
. The

vector n is additive random noise generated in the acquisition
process. The functional A stands for a forward modeling
operator that differs for different problems.

The inversion process to estimate the model parameter M
with the observed data Dobs is commonly achieved by least-
square data fitting.

argmin
M
||A(M)− Dobs

||
2 (3)

The above inversion problem is typically ill-posed, and the
inversion results are not stable. A common way to surmount
this problem is to use regularization methods, in which a
regularization term is introduced to restrict the solutions:

argmin
M
||A(M)− Dobs

||
2
+ λR(M) (4)

where λ is a positive regularization parameter that plays
an important role in balancing the trade-off between the
regularization process and the data-fitting process. Total
variation regularization was first proposed by Rudin et al. [6],
and is widely used in different kinds of problems. For the
seafloor prestack inversion problem, the TV regularization
function R(M) can be written as

R(M) =
n−1∑
i=1

|mi −mi+1| (5)

Equation (5) corresponds to the spatial gradient of the
model parameter M, and minimizing (4) will effectively
attenuate the high gradient parts such as the inversion errors
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FIGURE 2. Elastic parameter model for the seafloor sediments. The horizontal axis denotes different locations for
different CRP numbers. The vertical axes are the P-wave velocity, S-wave velocity and density of the seafloor
sediments.

due to the noisy data. The essence of TV regularization is
to transform the oscillation inversion result into a piecewise-
constant result, which is also called the staircase effect. The
staircase effect leads to strong artifacts in the inversion result.
One other disadvantage of the TV approach is its tendency
to uniformly penalize the image gradient irrespective of the
underlying image structures. As a result, edges, especially
those of low contrast regions, are sometimes oversmoothed,
leading to loss of low contrast information. To address these
shortcomings, we propose an HTV regularization operator.

B. HTV REGULARIZATION OPERATOR
It is clear that in (4), the real model parameter and the
inversion error are regularized simultaneously. Rather than
minimizing the total variation of the elastic parameters as
in TV regularization, HTV regularization minimizes the
inversion error of the elastic parameters. Consider that the
inversion result M from (3) with noisy observed data Dobs

is composed of two parts:

M =Mr
+Me (6)

whereMr is the real model parameter andMe is the inversion
error from the random noise in the observed data. Since (5) is
a linear function, the regularization term in (4) can be written
as:

R(M) = R(Mr )+ R(Me) (7)

From (7), it is clear that the desirable model parameter
Mr is regularized simultaneously with the inversion error
Me when (5) is applied. The abovementioned disadvantages
of TV regularization can be eliminated when only inversion

error Me is regularized. Therefore, the following equation is
proposed for seafloor prestack inversion.

argmin
M
||A(M)− Dobs

||
2
+ λR(Me) (8)

However, the inversion error Me is unknown. Therefore,
it is impossible to formulate the regularization in (8) directly.
In this research, we propose to use the ZMOC to approximate
Me. The ZMOC is obtained by subtracting the local mean of
the upper and lower envelopes from the elastic parameters in
the inversion process.

Me
≈M− ϕ(M) (9)

where the functional ϕ(·) gives the average of the upper and
lower envelopes of its input, which is used to approximate
Mr . Therefore, (8) can be written as

argmin
M
||A(M)− Dobs

||
2
+ λR(M− ϕ(M)) (10)

There is no analytical solution for (10), gradient-based
optimization methods can be used to solve it. When
solving (10) with a gradient-based optimization method,
the inversion result without regularization from (3) can be
adopted as the initial model. To help readers understand the
inversion process with HTV regularization method, a brief
algorithm (Algorithm 1) is given as follows:

As presented by Algorithm 1, the inversion without
regularization is first performed to generate nonregularized
inversion result Mnon. The comprehensive and detailed
methods for the inversion without regularization can be
found in the previous researches [32], [34]–[36]. Then,
the nonregularized inversion result Mnon is adopted as an
initial model for the HTV regularization inversion.WithMnon
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FIGURE 3. Reflection coefficient for the model parameters. The vertical axis is the incidence angle, while the
horizontal axis denotes the CRP number. The color bar gives the value of the reflection coefficient.

Algorithm 1 Implementation of the Proposed HTV
Regularization Method

Input:
·Observed data Dobs from the seismic survey with n

CRPs, D =
[
d1 d2 · · · dn

]T .
Inversion without regularization:
·Solve (3) under Dobs and then obtain the nonregu-

larized inversion result Mnon for the n CRPs, Mnon
=[

mnon
1 mnon

2 · · · mnon
n
]
.

HTV regularization inversion:
·SetMnon as initial model;
·Solve (10) and obtain the final inversion resultM for

the n CRPs of the seismic survey,M =
[
m1 m2 · · · mn

]
.

Output:
·The final inversion resultM.

as the initial model, equation (10) can be solved by the
gradient-based method [34], [35].

III. NUMERICAL EXAMPLES
Numerical examples are used to investigate the performance
of the HTV regularization method in this section. A two-
dimensional seismic survey with seafloor elastic property
distribution illustrated in Fig. 2, is adopted to demonstrate the
advantages of the HTV regularization.

The elastic properties of seawater are typically set as
known parameters with a P-wave velocity of 1530 m/s and
density of 1030 kg/m3. The reflection coefficient data for
all the CRPs are computed for 55 equally spaced incidence
angles from 1◦ to 55◦ (Fig. 3).

Independent, zero-mean Gaussian random error noise
levels of 0.25%, 0.5% and 0.75% are added to the noise-
free reflection coefficient to produce the observed data.

FIGURE 4. Regularization parameter used for inversion. The red dots give
the values of the regularization parameters λ (right vertical axis). The blue
dots give the values of λ measured in logarithm base-10 (left vertical
axis).

The noise level of the random errors is defined as (10)
in Liu and Liu [35]. The inversion process is performed
for different regularization parameter settings (24 logarithm
base-10 values equally spaced in the range of −8 to −4)
with results shown in Fig. 4. The regularization parameter
plays a balancing role between data fitting and regularization.
Fig. 5 gives the relationship between data fitting and
regularization when regularization parameters in Fig. 4 are
adopted under different noise levels.

In Fig. 5, the ‘‘Misfit’’ axis denotes the value of the data
misfit term ||A(M) − Dobs

||
2 of the objective function (4),

and the ‘‘RG’’ axis stands for the value of the regularization
function (5) R(M), where M is the inversion result under
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FIGURE 5. The ‘‘L’’ curves for different noise levels. Panels a), b) and c) are from the inversion process with observed data with
noise levels at 0.25%, 0.5% and 0.75%, respectively.

a certain regularization parameter. The symbols ‘‘+’’ are
obtained with the model parameters given by Fig. 2, while the
symbols ‘‘∗’’ are calculated with the inversion result without
regularization. The red curves are obtained with the inversion
result from the method proposed in this research. The blue
curves are calculated with the inversion result from the
conventional TV regularization method. All the curves are
L-shaped and are usually named the ‘‘L curve’’. With the
increase in regularization parameters, the RG decreases and
the misfit increases. As the RG decreases, the difference
between the red and blue curves becomes increasingly
obvious. When RG decreases to the value around ‘‘+’’,
the RG of the red curves stops decreasing, while that
of the blue curves continues decreasing. This means that
the TV will generate oversmoothed inversion results if the
regularization parameter is too large. However, the HTV
will not generate oversmoothed inversion results even if
the regularization parameter is too large. As a general rule,
the proper regularization parameter for TV regularization is
selected from the corner of the L curve where the curvature is
the maximum [30]. However, the maximum curvature point
is not easily determined.

Fig. 6 further illustrates the least-square misfit between
the inversion results from the regularization methods and
inversion results without regularization.

The horizontal axis is the value of the regularization
measured in logarithm base-10, while the vertical axis
(Misfit-nonREG) is the misfit between the nonregulariza-
tion inversion result and the regularized inversion result
||Mnon

− M||2. The red and blue curves are calculated
with the results from the HTV regularization and the
conventional TV regularization methods, respectively. It is
clear that the Misfit-nonREG grows as the regularization
parameter increases. Both TV and HTV curves can be
divided into two parts by their points at approximately
λ = 10−6. The Misfit-nonREG grows rapidly as the
regularization parameter increases from 10−8 to 10−6. When
the regularization parameter increases from 10−6 to 10−4,
the Misfit-nonREG grows slowly. In particular, the growth
rate of the HTV curves is similar to that of the TV curves
when the regularization parameter is lower than 10−6, while
the growth rate of the HTV curves becomes lower than
that of the TV curves when the regularization parameter is
larger than 10−6. As the regularization parameter increases
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FIGURE 6. Misfit between regularized inversion and nonregularized inversion. Panels a), b) and c) are from the inversion
process with observed data with noise levels at 0.25%, 0.5% and 0.75%, respectively.

to 10−6, the inversion error caused by the random noise in
the observed data is attenuated and gradually suppressed.
Conventional TV regularization generates an oversmoothed
result when the regularization parameter is larger than 10−6,
which leads to the continued growth of the Misfit-nonREG.
The HTV regularizationmethod does not continue smoothing
the inversion result as the regularization parameter increases
larger than 10−6. Therefore, the growth of Misfit-nonREG
suddenly slows down when the regularization parameter
reaches 10−6. Fig. 7 gives a comparison of the inversion
results from different inversion methods.

The inversion result without regularization is polluted by
oscillating inversion errors. As studied by Liu and Liu [35],
the S-wave velocity is the most susceptible to random noise in
the observed data, while the P-wave velocity and density are
susceptible to a lesser extent. It is clear that the oscillating
artifacts are effectively suppressed when regularization is
adopted. While both the TV and HTV regularization methods
generate similar results for P-wave velocity and density, they
generate different inversion results for S-wave velocity. The
inversion result from TV for S-wave velocity is combined

with piecewise constant values like a staircase along the
inversion result without regularization. However, the result
from HTV for S-wave velocity is much smoother without
the staircase effect when fitting the inversion result without
regularization. Fig. 8 gives more detailed information of
Fig. 7 by local magnification from CRP numbers 255 to 350.

Although the results from TV and HTV show slight
differences in P-wave velocity and density, they are both
acceptable for the following interpretation process. However,
the obvious staircase artifacts in the TV result for S-wave
velocity make the result a poor candidate for interpretation.
The result from the HTV regularization method properly
describes the elastic distribution of the seafloor sediments.
It is not always easy to determine the proper regularization
parameter for regularization inversion. A small regularization
parameter leads to a noisy inversion result. A large regu-
larization parameter may lead to an oversmoothed inversion
result for conventional TV regularization, while the HTV
regularization method gives acceptable results under a large
regularization parameter. Fig. 9 illustrates the inversion
results under regularization parameters 10−4.

VOLUME 9, 2021 117383



Y. Liu et al.: Hybrid Regularization Operator and Its Application in Seismic Inversion

FIGURE 7. Inversion result when λ = 10−6. The three panels from top to bottom are the inversion results
for P-wave velocity, S-wave velocity and density. The black curves denote the inversion result without
regularization, while the green and red curves are the inversion results from conventional TV regularization
and the method proposed in this research, respectively.

FIGURE 8. Local zoomed inversion result when λ = 10−6. The curves have the same meaning as those
in Fig. 7.

It is clear that the S-wave velocity from the TV regu-
larization method is obviously oversmoothed by piecewise
constant stairs, while that from the HTVmethod can properly
give the S-wave velocity distribution. The oversmoothed
result from TV will lead to misinterpretations that have lost
textures of the sediment distribution. In fact, the P-wave
velocity and density from TV are also oversmoothed by
piecewise constant stairs. Fig. 10 illustrates the details of
the inversion result by local magnification of Fig. 9 from
CRP numbers 255 to 350. From Fig. 10, we can see that
the staircase effect of density is much more obvious than
that of P-velocity for the TV regularization method. All three

parameters fromHTV can still properly describe the sediment
distribution.

IV. DISCUSSION
TV regularization can preserve the sharp boundaries while
effectively suppressing inversion errors. The regularization
parameter plays an important role in balancing the trade-off
between the regularization term and the data-misfit term. The
optimal choice of regularization parameters should take these
two cases into account. Too small a regularization parameter
may produce underregularized inversion results. Conversely,
too much regularization may be imposed on the inversion
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FIGURE 9. Inversion result when λ = 10−4. The curves have the same meaning as those in Fig. 7.

FIGURE 10. Local zoomed inversion result when λ = 10−4. The curves have the same meaning as those in Fig. 7.

if the regularization parameter is too large. The underregu-
larized inversion result suffers from inversion errors, which
makes it difficult to interpret the geological features of the
subsurface strata. Although the overregularized inversion
result is stable and clean from the oscillation errors, it does
not present the distribution of the sediments properly, which
is also not acceptable for the interpretation process. Since
HTV regularization only minimizes the ZMOC of the elastic

parameters, it does not produce an overregularized inversion
result even if the regularization parameter is too large.
This property makes it easy to determine the regularization
parameter when HTV regularization is adopted.

Another drawback of conventional TV regularization
applied in seismic prestack inversion is its staircase effect.
The staircase effect is most obvious for S-wave velocity, less
so for density and the least for P-wave velocity. Although the
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inversion errors can be suppressed, the staircase effect brings
artifacts to the interpretation process. HTV regularization has
no staircase effect and can generate proper inversion results
to illustrate the distribution of seafloor sediments.

V. CONCLUSION
It is important to recover high- fidelity elastic parameters
of seafloor sediments from noisy prestack seismic data.
Conventional TV regularization can suppress inversion errors
and preserve the sharp boundaries of the subsurface strata.
However, it always suffers from the staircase effect, and the
regularization parameter is not easily determined. A hybrid
regularization operator is proposed and applied in prestack
seismic inversion. HTV regularization does not oversmooth
the inversion result under a large regularization parameter,
so the regularization parameter is easy to determine. The
HTV has good edge-preservation performance but does not
suffer from the staircase effect. Numerical examples prove
the performance of the HTV regularization method proposed
in this research.
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